Método de cinemática inversa en tiempo real basado en FABRIK para estructuras altamente restrictas

dc.contributor.advisorCharalambos Hernández, Jean Pierre
dc.contributor.authorChaparro Cuevas, Sebastian Eduardo
dc.date.accessioned2021-07-30T14:58:32Z
dc.date.available2021-07-30T14:58:32Z
dc.date.issued2021
dc.descriptionilustraciones, tablasspa
dc.description.abstractEste trabajo introduce un método de cinemática inversa en tiempo real para estructuras altamente restrictas mediante el uso de pasos heurísticos, definidos en el espacio de las orientaciones, que pueden acoplarse para producir resultados precisos y movimientos suaves. Estos pasos buscan aprovechar las mejores propiedades de tres de los algoritmos heurísticos más relevantes en el estado del arte: Cyclic Coordinate Descent (CCD), Triangulation (TIK) y Forward and Backward Reaching Inverse Kinematics (FABRIK), prestando mayor interés en este último dado su correcto desempeño en términos de suavidad visual. Adicionalmente, se introduce el algoritmo Generic Heuristic Inverse Kinematics (GHIK) encargado de aplicar los pasos propuestos de forma iterativa, garantizar el cumplimiento de las restricciones rotacionales y evitar situaciones de estancamiento; además, es capaz de trabajar con objetivos orientacionales y estructuras articuladas con múltiples efectores finales. Los resultados obtenidos muestran que la aproximación descrita puede aplicarse en tiempo real sobre estructuras arbitrarias complejas y que su desempeño en términos de precisión, escalabilidad y suavidad visual, es superior al obtenido por otras heurísticas en estado del arte. (Texto tomado de la fuente)spa
dc.description.abstractThis thesis introduces a novel Inverse Kinematics (IK) method for highly constrained articulated bodies via real time heuristic steps, given in orientation space, that may be coupled together in order to generate accurate and visually smooth results. These steps harness widely known IK heuristic algorithms best properties, such as Cyclic Coordinate Descent (CCD), Triangulation (TIK) and Forward and Backward Reaching Inverse Kinematics (FABRIK), focusing on the last one due to its visual smoothness. It is also introduced a Generic Heuristic algorithm (GHIK) that solves IK iteratively using the introduced heuristic steps and is able to deal with orientation constraints, deadlock issues, target orientations and articulated bodies with multiple end effectors. Obtained results suggest that the proposed approach is able to solve IK in real time for complex arbitrary articulated bodies and outperforms other tested heuristics regarding accuracy, scalability and visual smoothness. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaComputación gráficaspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79872
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesR. P. Paul, Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators. Richard Paul, 1981.spa
dc.relation.references“Autodesk maya.” https://www.autodesk.com/products/maya/overview, Accedido: 2020-11-20.spa
dc.relation.references“Autodesk 3ds max.” https://www.autodesk.com/products/3ds-max/overview, Accedido: 2020-11-2.spa
dc.relation.references“Blender.” https://www.blender.org, Accedido: 2020-11-2.spa
dc.relation.referencesC. Hecker, B. Raabe, R. W. Enslow, J. DeWeese, J. Maynard, and K. van Prooijen, “Real-time motion retargeting to highly varied user-created morphologies,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–11, 2008.spa
dc.relation.referencesS. Coros, P. Beaudoin, and M. Van de Panne, “Generalized biped walking control,” ACM Transactions On Graphics (TOG), vol. 29, no. 4, pp. 1–9, 2010.spa
dc.relation.referencesS. Starke, H. Zhang, T. Komura, and J. Saito, “Neural state machine for character-scene interactions.,” ACM Trans. Graph., vol. 38, no. 6, pp. 209–1, 2019.spa
dc.relation.referencesA. Aristidou and J. Lasenby, “Motion capture with constrained inverse kinematics for real-time hand tracking,” in 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 1–5, IEEE, 2010.spa
dc.relation.referencesC. Malleson, A. Gilbert, M. Trumble, J. Collomosse, A. Hilton, and M. Volino, “Real-time full-body motion capture from video and imus,” in 2017 International Conference on 3D Vision (3DV), pp. 449–457, IEEE, 2017.spa
dc.relation.referencesY. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-Moll, “Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time,” ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1–15, 2018.spa
dc.relation.referencesA. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir, “Inverse Kinematics Techniques in Computer Graphics: A Survey,” Computer Graphics Forum, vol. 37, no. 6, pp. 35–58, 2018.spa
dc.relation.referencesL. Unzueta, M. Peinado, R. Boulic, and A. Suescun, “Full-body performance animation with Sequential Inverse Kinematics,” Graphical Models, vol. 70, no. 5, pp. 87–104, 2008.spa
dc.relation.referencesA. Aristidou and J. Lasenby, “FABRIK: A fast, iterative solver for the Inverse Kinematics problem,” Graphical Models, vol. 73, no. 5, pp. 243–260, 2011.spa
dc.relation.referencesC. Welman, “Inverse kinematics and geometric constraints for articulated figure manipulation,” Master’s thesis, Theses (School of Computing Science)/Simon Fraser University, 1993.spa
dc.relation.referencesB. Kenwright, “Inverse Kinematics – Cyclic Coordinate Descent (CCD),” Journal of Graphics Tools, vol. 16, no. 4, pp. 177–217, 2012.spa
dc.relation.referencesA. Aristidou, Y. Chrysanthou, and J. Lasenby, “Extending FABRIK with model constraints,” Comput. Animat. Virtual Worlds, vol. 27, pp. 35–57, Jan. 2016.spa
dc.relation.referencesL. . T. Wang and C. C. Chen, “A combined optimization method for solving the inverse kinematics problems of mechanical manipulators,” IEEE Transactions on Robotics and Automation, vol. 7, no. 4, pp. 489–499, 1991.spa
dc.relation.referencesR. Muller-Cajar and R. Mukundan, “Triangualation - A New Algorithm for Inverse Kinematics,” Image and Vision Computing New Zealand (IVCNZ) 2007, no. December, pp. 181–186, 2007.spa
dc.relation.referencesS. Starke, Bio IK: A Memetic Evolutionary Algorithm for Generic Multi-Objective Inverse Kinematics. PhD thesis, Universität Hamburg, Fachbereich Informatik, 2016.spa
dc.relation.referencesF. Dunn and I. Parberry, 3D Math Primer for Graphics and Game Development. Boca Raton, FL: A K Peters/CRC Press, second ed., 2011.spa
dc.relation.referencesN. M. Bajaj, A. J. Spiers, and A. M. Dollar, “State of the art in prosthetic wrists: Commercial and research devices,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 331–338, 2015.spa
dc.relation.referencesM. P. Johnson, Exploiting Quaternions to Support Expressive Interactive Character Motion. PhD thesis, 2003.spa
dc.relation.referencesA. J. Hanson, Visualizing Quaternions. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006.spa
dc.relation.referencesW. R. Hamilton, “Theory of quaternions,” Proceedings of the Royal Irish Academy (1836-1869), vol. 3, pp. 1–16, 1844.spa
dc.relation.referencesF. S. Grassia, “Practical parameterization of rotations using the exponential map,” J. Graph. Tools, vol. 3, p. 29–48, Mar. 1998.spa
dc.relation.referencesB. Huyghe, Design and implementation of a mobile sensor system for human posture tracking. PhD thesis, 01 2011.spa
dc.relation.referencesJ. Wilhelms and A. V. Gelder, “Fast and Easy Reach-Cone Joint Limits,” Journal of Graphics Tools, vol. 6, no. 2, pp. 27–41, 2001.spa
dc.relation.referencesM. Engell-Nørregard, S. Niebe, and K. Erleben, “A joint-constraint model for human joints using signed distance-fields,” Multibody System Dynamics, vol. 28, 08 2012.spa
dc.relation.referencesR. Diankov, “Automated construction of robotic manipulation programs,” 2010.spa
dc.relation.referencesD. Tolani, A. Goswami, and N. I. Badler, “Real-time inverse kinematics techniques for anthropomorphic limbs,” Graphical Models, vol. 62, no. 5, pp. 353 – 388, 2000.spa
dc.relation.referencesS. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods,” IEEE Transactions in Robotics and Automation, vol. 17, 05 2004.spa
dc.relation.referencesN. Courty and E. Arnaud, “Inverse kinematics using sequential monte carlo methods,” in International Conference on Articulated Motion and Deformable Objects, pp. 1–10, Springer, 2008.spa
dc.relation.referencesA. El-Sherbiny, M. A. Elhosseini, and A. Y. Haikal, “A comparative study of soft computing methods to solve inverse kinematics problem,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 2535–2548, 2018.spa
dc.relation.referencesJ. Demby’s, Y. Gao, and G. N. DeSouza, “A study on solving the inverse kinematics of serial robots using artificial neural network and fuzzy neural network,” in 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6, IEEE, 2019.spa
dc.relation.referencesS. Otte, A. Zwiener, R. Hanten, and A. Zell, “Inverse recurrent models – an application scenario for many-joint robot arm control,” pp. 149–157, 09 2016.spa
dc.relation.referencesY. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankanhalli, and W. Geng, “Marker-less 3d human motion capture with monocular image sequence and heightmaps,” in European Conference on Computer Vision, pp. 20–36, Springer, 2016.spa
dc.relation.referencesT. von Marcard, R. Henschel, M. J. Black, B. Rosenhahn, and G. Pons-Moll, “Recovering accurate 3d human pose in the wild using imus and a moving camera,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617, 2018.spa
dc.relation.referencesM. Shi, K. Aberman, A. Aristidou, T. Komura, D. Lischinski, D. Cohen-Or, and B. Chen, “Motionet: 3d human motion reconstruction from monocular video with skeleton consistency,” ACM Transactions on Graphics (TOG), vol. 40, no. 1, pp. 1–15, 2020.spa
dc.relation.referencesD. Holden, J. Saito, and T. Komura, “A deep learning framework for character motion synthesis and editing,” ACM Transactions on Graphics (TOG), vol. 35, no. 4, pp. 1–11, 2016.spa
dc.relation.referencesX. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic locomotion skills using hierarchical deep reinforcement learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1–13, 2017.spa
dc.relation.referencesK. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, “Drecon: data-driven responsive control of physics-based characters,” ACM Transactions On Graphics (TOG), vol. 38, no. 6, pp. 1–11, 2019.spa
dc.relation.referencesR. Kulpa and F. Multon, “Fast inverse kinematics and kinetics solver for human-like figures,” in 5th IEEE-RAS International Conference on Humanoid Robots, 2005., pp. 38– 43, 2005.spa
dc.relation.referencesJ. Huang, M. Fratarcangeli, Y. Ding, and C. Pelachaud, “Inverse kinematics using dynamic joint parameters: inverse kinematics animation synthesis learnt from sub-divided motion micro-segments,” The Visual Computer, vol. 33, no. 12, pp. 1541–1553, 2017.spa
dc.relation.referencesB. Kenwright, “Inverse kinematics with dual-quaternions, exponential-maps, and joint limits,” International journal on advances in intelligent systems, vol. 6, pp. 53–65, 2013.spa
dc.relation.referencesM. Meredith and S. Maddock, “Real-time inverse kinematics: The return of the jacobian,” 01 2004.spa
dc.relation.referencesY. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness for robot manipulator control,” 1986.spa
dc.relation.referencesC. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1, pp. 93–101, 1986.spa
dc.relation.referencesS. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse kinematics,” Journal of Graphics tools, vol. 10, no. 3, pp. 37–49, 2005.spa
dc.relation.referencesY.-C. Chen and I. D. Walker, “A consistent null-space based approach to inverse kinematics of redundant robots,” in [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 374–381, IEEE, 1993.spa
dc.relation.referencesP. Baerlocher and R. Boulic, “An inverse kinematics architecture enforcing an arbitrary number of strict priority levels,” The visual computer, vol. 20, no. 6, pp. 402–417, 2004.spa
dc.relation.referencesM. Meredith and S. Maddock, “Adapting motion capture data using weighted real-time inverse kinematics,” Computers in Entertainment (CIE), vol. 3, no. 1, pp. 5–5, 2005.spa
dc.relation.referencesJ. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA: Springer, second ed., 2006.spa
dc.relation.referencesR. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.spa
dc.relation.referencesJ. Zhao and N. I. Badler, “Inverse kinematics positioning using nonlinear programming for highly articulated figures,” ACM Transactions on Graphics (TOG), vol. 13, no. 4, pp. 313–336, 1994.spa
dc.relation.referencesP. Beeson and B. Ames, “Trac-IK: An open-source library for improved solving of generic inverse kinematics,” in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 928–935, 2015.spa
dc.relation.referencesK. Erleben and S. Andrews, “Solving inverse kinematics using exact hessian matrices,” Computers and Graphics, vol. 78, pp. 1 – 11, 2019.spa
dc.relation.referencesT. Yenamandra, F. Bernard, J. Wang, F. Mueller, and C. Theobalt, “Convex optimisation for inverse kinematics,” 2019 International Conference on 3D Vision (3DV), 2019.spa
dc.relation.referencesJ. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95- International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, 1995.spa
dc.relation.referencesJ. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975. second edition, 1992.spa
dc.relation.referencesT. Collins and W.-M. Shen, “Paso: An integrated, scalable pso-based optimization framework for hyper-redundant manipulator path planning and inverse kinematics.”,” Information Sciences Institute Technical Report, 2016.spa
dc.relation.referencesJ. K. Parker, A. R. Khoogar, and D. E. Goldberg, “Inverse kinematics of redundant robots using genetic algorithms,” in Proceedings, 1989 International Conference on Robotics and Automation, pp. 271–276 vol.1, 1989.spa
dc.relation.referencesM. Stollenga, L. Pape, M. Frank, J. Leitner, A. F¨orster, and J. Schmidhuber, “Task-relevant roadmaps: A framework for humanoid motion planning,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5772–5778, 2013.spa
dc.relation.referencesJ. Lander and G. Content, “Making kine more flexible,” Game Developer Magazine, vol. 1, no. November, pp. 15–22, 1998.spa
dc.relation.referencesH. J. Shin, J. Lee, S. Y. Shin, and M. Gleicher, “Computer puppetry: An importance-based approach,” ACM Transactions on Graphics, vol. 20, no. 2, pp. 67–94, 2001.spa
dc.relation.referencesD. Merrick and T. Dwyer, “Skeletal Animation for the Exploration of Graphs,” Australasian Symposium on Information Visualisation, (invis.au’04), vol. 35, pp. 61–70, 2004.spa
dc.relation.referencesO. Cardwell and R. Mukundan, “Visualization and analysis of inverse kinematics algorithms using performance metric maps,” in 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, WSCG 2011 - In Co-operation with EUROGRAPHICS, Full Papers Proceedings, (Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zealand), pp. 163–168, 2011.spa
dc.relation.referencesA. Martín, A. Barrientos, and J. Del Cerro, “The natural-CCD algorithm, a novel method to solve the inverse kinematics of hyper-redundant and soft robots,” Soft Robotics, vol. 5, no. 3, pp. 242–257, 2018.spa
dc.relation.referencesJ. O. Kim, B. R. Lee, C. H. Chung, J. Hwang, and W. Lee, “The inductive inverse kinematics algorithm to manipulate the posture of an articulated body,” in Computational Science — ICCS 2003 (P. M. A. Sloot, D. Abramson, A. V. Bogdanov, J. J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev, eds.), (Berlin, Heidelberg), pp. 305–313, Springer Berlin Heidelberg, 2003.spa
dc.relation.referencesR. Mukundan, “A robust inverse kinematics algorithm for animating a joint chain,” International Journal of Computer Applications in Technology, vol. 34, no. 4, pp. 303– 308, 2009.spa
dc.relation.referencesA. Aristidou and J. Lasenby, “Real-time marker prediction and cor estimation in optical motion capture,” The Visual Computer, vol. 29, no. 1, pp. 7–26, 2013.spa
dc.relation.referencesA. Lansley, P. Vamplew, P. Smith, and C. Foale, “Caliko: An inverse kinematics software library implementation of the FABRIK algorithm,” Journal of Open Research Software, vol. 4, no. 1, 2016.spa
dc.relation.references“Fffbik: Fabric canvas FABRIK fullbody ik.” https://github.com/yamahigashi/ fabric-fabrik-fullbody-ik, Accedido: 2020-11-20.spa
dc.relation.references“Root-motion, final-ik.” http://root-motion.com, Accedido: 2020-11-20.spa
dc.relation.references“Unreal engine - FABRIK.” https://docs.unrealengine.com/en-US/ AnimatingObjects/SkeletalMeshAnimation/NodeReference/Fabrik/index.html, Accedido: 2020-11-20.spa
dc.relation.referencesJ. Huang and C. Pelachaud, “An efficient energy transfer inverse kinematics solution,” in Motion in Games (M. Kallmann and K. Bekris, eds.), (Berlin, Heidelberg), pp. 278–289, Springer Berlin Heidelberg, 2012.spa
dc.relation.referencesS. Moya and F. Colloud, “A fast geometrically-driven prioritized inverse kinematics solver,” 2013.spa
dc.relation.referencesA. Bentrah, A. Djeffal, M. Babahenini, C. Gillet, P. Pudlo, and A. Taleb-Ahmed, “Full body adjustment using iterative inverse kinematic and body parts correlation,” in Computational Science and Its Applications – ICCSA 2014 (B. Murgante, S. Misra, A. M. A. C. Rocha, C. Torre, J. G. Rocha, M. I. Falcao, D. Taniar, B. O. Apduhan, and O. Gervasi, eds.), (Cham), pp. 681–694, Springer International Publishing, 2014.spa
dc.relation.referencesS. Tao and Y. Yang, “Collision-free motion planning of a virtual arm based on the FABRIK algorithm,” Robotica, vol. 35, no. 6, p. 1431–1450, 2017.spa
dc.relation.referencesT. Ribeiro and A. Paiva, “Expressive Inverse Kinematics Solving in Real-time for Virtual and Robotic Interactive Characters,” no. October, 2019.spa
dc.relation.referencesK. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-d point sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5, pp. 698–700, 1987.spa
dc.relation.referencesJ. Wu, “Rigid 3-d registration: A simple method free of svd and eigendecomposition,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 8288– 8303, 2020.spa
dc.relation.referencesThe Processing Foundation, “Processing,” Accedido: 2020-01-17.spa
dc.relation.referencesCharalambos, Jean, “Nub,” 2020-08-17.spa
dc.relation.referencesN. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE Transactions on Information Theory, vol. 55, no. 10, pp. 4723–4741, 2009.spa
dc.relation.referencesH. Heike, H. Wickham, and K. Kafadar, “Letter-value plots: Boxplots for large data,” J. Comput. Graph. Stat, vol. 26, pp. 469–477, 2017.spa
dc.relation.references“Truebones zoo collection.” https://gumroad.com/truebones/p/ free-truebones-zoo-over-75-animals-and-animations, Accedido: 2020-11-20.spa
dc.relation.references“CMU graphics lab motion capture database.” mocap.cs.cmu.edu, Accedido: 2020-11- 20.spa
dc.relation.referencesL. Kavan, “Part i: direct skinning methods and deformation primitives,” in ACM SIGGRAPH, vol. 2014, pp. 1–11, 2014spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembCinemática
dc.subject.lembKinematics
dc.subject.proposalCinemática inversaspa
dc.subject.proposalRestricciones rotacionalesspa
dc.subject.proposalReconstrucción de movimientospa
dc.subject.proposalAnimación de personajesspa
dc.subject.proposalInverse kinematicseng
dc.subject.proposalRotational constraintseng
dc.subject.proposalMotion reconstructioneng
dc.subject.proposalCharacter animationeng
dc.subject.unescoRobótica
dc.subject.unescoRobotics
dc.subject.unescoControl automático
dc.subject.unescoAutomatic control
dc.titleMétodo de cinemática inversa en tiempo real basado en FABRIK para estructuras altamente restrictasspa
dc.title.translatedFABRIK based real-time inverse kinematics method for highly constrained articulated bodieseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015435451.2021.pdf
Tamaño:
5.62 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: