Evolución proto biótica de la ruta Wood-Ljungdahl (WL) en ambientes hidrotermales durante la vida temprana, eón Arqueano: revisión, síntesis y modelo geoquímico

dc.contributor.advisorAndrade Pérez, Luis Eugenio
dc.contributor.authorReyes Quiñones, Rosa Alejandra
dc.contributor.researchgroupGrupo de Ciencias Planetarias y Astrobiología (Gcpa)spa
dc.date.accessioned2025-03-26T14:36:27Z
dc.date.available2025-03-26T14:36:27Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas
dc.description.abstractCon el fin de explicar la evolución de la ruta de Wood-Ljungdahl (WL) durante la emergencia de la vida en el eón Arqueano, se propone un modelo basado en precursores ambientales hidrotermales. Para construir este modelo, se establecieron los mecanismos sensibles al contexto fisicoquímico en sistemas abióticos desde dos enfoques: con el enfoque bottom-up, se identificaron las condiciones que podrían facilitar las reacciones pre y protobióticas, y con el enfoque top-down, se constató la conservación molecular del mecanismo de reducción en la rama carboxilo y el núcleo de las enzimas monóxido de carbono deshidrogenasa CODH en bacterias acetógenas y arqueas metanógenas, lo que respalda la ancestría de esta ruta. La hipótesis de un origen autótrofo se valida mediante un mecanismo catalítico basado en metales de transición presentes tanto en los minerales derivados de la serpentinización en las fumarolas hidrotermales alcalinas como en los sitios activos de las enzimas y cofactores. Se propone una jerarquía de factores involucrados en la constitución de la ruta WL, así como en otras posibles trayectorias evolutivas, como la emergencia de la compartimentalización y la información en protocélulas y el mundo del RNA en estos ambientes submarinos. Finalmente, se destaca la dificultad de reconstruir con certeza el metabolismo de los primeros organismos y las condiciones geoquímicas de esa época, y se ofrecen recomendaciones para superar algunas de estas limitaciones en futuras investigaciones (Texto tomado de la fuente)spa
dc.description.abstractIn order to explain the evolution of the Wood-Ljungdahl (WL) pathway during the emergence of life in the Archean eon, a model is proposed based on hydrothermal environmental precursors. To construct this model, mechanisms sensitive to the physicochemical context in abiotic systems were established from two approaches: using the bottom-up approach, the conditions that could facilitate prebiotic and protobiotic reactions were identified, and with the top-down approach, the molecular conservation of the reduction mechanism in the carboxyl branch and the core of carbon monoxide dehydrogenase CODH enzymes in acetogenic bacteria and methanogenic archaea was confirmed, supporting the ancestry of this pathway. The hypothesis of an autotrophic origin is validated by a catalytic mechanism mediated by transition metals found both in minerals derived from serpentinization in alkaline hydrothermal vents and in the active sites of enzymes and cofactors. A hierarchy of factors involved in the constitution of the WL pathway is proposed, as well as in other possible evolutionary trajectories, such as the emergence of compartmentalization and information in protocells and the RNA world in these submarine environments. Finally, the difficulty of reconstructing with certainty both the metabolism of the first organisms and the geochemical conditions of that era is highlighted, and recommendations are offered to overcome some of these limitations in future research.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.methodsSe emplea una metodología basada en la modelización ecológica mediante heurísticas sensibles al contexto para la identificación de mecanismos en más de 500 publicaciones recopiladas utilizando ecuaciones de búsqueda en el Sistema Nacional de Bibliotecas de la Universidad Nacional de Colombia (SINAB) y otras bases de datos académicas. Mediante el establecimiento de parámetros de interés y clasificando las variables cualitativas asociada a cada documento y/o autor utilizando un gestor bibliográfico, se identifican las convergencias y discrepancias en las hipótesis y resultados presentes en la bibliografía.spa
dc.description.notesVersión en alta definición del modelo final disponible en: https://drive.google.com/file/d/1zICUFTtnenLT-1Y3aCSDyV7RUlU7KzK9/view?usp=sharing
dc.description.researchareaBiología teóricaspa
dc.description.researchareaEmergencia de la vidaspa
dc.format.extentxvi, 72 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87736
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAdam, Panagiotis S., Guillaume Borrel, y Simonetta Gribaldo. 2018. «Evolutionary History of Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase, One of the Oldest Enzymatic Complexes». Proceedings of the National Academy of Sciences 115(6). doi: 10.1073/pnas.1716667115.spa
dc.relation.referencesAnón. s. f. «Europa Clipper: Todo sobre la misión - NASA Ciencia». Recuperado 23 de octubre de 2024 (https://ciencia.nasa.gov/mission/europaclipper/).spa
dc.relation.referencesArndt, Nicholas T., y Euan G. Nisbet. 2012. «Processes on the Young Earth and the Habitats of Early Life». Annual Review of Earth and Planetary Sciences 40(1):521-49. doi: 10.1146/annurev-earth-042711-105316.spa
dc.relation.referencesBar-Even, Arren, Avi Flamholz, Elad Noor, y Ron Milo. 2012. «Thermodynamic Constraints Shape the Structure of Carbon Fixation Pathways». Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817(9):1646-59. doi: 10.1016/j.bbabio.2012.05.002.spa
dc.relation.referencesBartlett, Stuart, y Michael L. Wong. 2020. «Defining lyfe in the universe: From three privileged functions to four pillars». Life 10(4):1-22. doi: 10.3390/life10040042.spa
dc.relation.referencesBasen, Mirko, y Volker Müller. 2023. «Editorial: Acetogens - from the Origin of Life to Biotechnological Applications». Frontiers in Microbiology 14:1186930. doi: 10.3389/fmicb.2023.1186930.spa
dc.relation.referencesBecerra, Arturo, Luis Delaye, Sara Islas, y Antonio Lazcano. 2007. «The Very Early Stages of Biological Evolution and the Nature of the Last Common Ancestor of the Three Major Cell Domains». Annual Review of Ecology, Evolution, and Systematics 38(1):361-79. doi: 10.1146/annurev.ecolsys.38.091206.095825.spa
dc.relation.referencesBecerra, Arturo, Mario Rivas, Carlos García-Ferris, Antonio Lazcano, y Juli Peretó. 2014. «A phylogenetic approach to the early evolution of autotrophy: The case of the reverse TCA and the reductive acetyl-CoA pathways». International Microbiology 17(2):91-97. doi: 10.2436/20.1501.01.211.spa
dc.relation.referencesBedau, Mark A., y Carol E. Cleland. 2010. The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science. 1.a ed. Cambridge University Press.spa
dc.relation.referencesBelthle, Kendra S., y Harun Tüysüz. 2023. «Linking Catalysis in Biochemical and Geochemical CO 2 Fixation at the Emergence of Life». ChemCatChem 15(4):e202201462. doi: 10.1002/cctc.202201462.spa
dc.relation.referencesBorrel, Guillaume, Panagiotis S. Adam, y Simonetta Gribaldo. 2016. «Methanogenesis and the wood–ljungdahl pathway: An ancient, versatile, and fragile association». Genome Biology and Evolution 8(6):1706-11. doi: 10.1093/gbe/evw114.spa
dc.relation.referencesBraakman, Rogier, y Eric Smith. 2012. «The emergence and early evolution of biological carbon-fixation». PLoS Computational Biology 8(4). doi: 10.1371/journal.pcbi.1002455.spa
dc.relation.referencesCamprubi, Eloi, Sean F. Jordan, Rafaela Vasiliadou, y Nick Lane. 2017. «Iron Catalysis at the Origin of Life». IUBMB Life 69(6):373-81. doi: 10.1002/iub.1632.spa
dc.relation.referencesCohen, Steven E., Mehmet Can, Elizabeth C. Wittenborn, Rachel A. Hendrickson, Stephen W. Ragsdale, y Catherine L. Drennan. 2020. «Crystallographic Characterization of the Carbonylated A-Cluster in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase». ACS Catalysis 10(17):9741-46. doi: 10.1021/acscatal.0c03033.spa
dc.relation.referencesCoveney, Peter V., Jacob B. Swadling, Jonathan A. D. Wattis, y H. Christopher Greenwell. 2012. «Theory, modelling and simulation in origins of life studies». Chemical Society Reviews 41(16):5430-46. doi: 10.1039/c2cs35018a.spa
dc.relation.referencesDalai, Punam, y Nita Sahai. 2019. «Mineral–Lipid Interactions in the Origins of Life». Trends in Biochemical Sciences 44(4):331-41. doi: 10.1016/j.tibs.2018.11.009.spa
dc.relation.referencesDamer, Bruce. 2016. «A Field Trip to the Archaean in Search of Darwin’s Warm Little Pond». Life 6(2):21. doi: 10.3390/life6020021.spa
dc.relation.referencesDamer, Bruce, y David Deamer. 2020. «The Hot Spring Hypothesis for an Origin of Life». Astrobiology 20(4):429-52. doi: 10.1089/ast.2019.2045.spa
dc.relation.referencesDe Farias, Savio Torres, y Francisco Prosdocimi. 2016. «Buds of the tree: The highway to the last universal common ancestor». International Journal of Astrobiology 16(2):105-13. doi: 10.1017/S147355041600029X.spa
dc.relation.referencesDeamer, David, y Arthur L. Weber. 2010. «Bioenergetics and Life’s Origins David». Cold Spring Harb Perspect Biol 1-17. doi: 10.1101/cshperspect.a00492.spa
dc.relation.referencesDelaye, Luis, y Arturo Becerra. 2012. «Cenancestor, the Last Universal Common Ancestor». Evolution: Education and Outreach 5(3):382-88. doi: 10.1007/s12052-012-0444-8.spa
dc.relation.referencesDjokic, Tara, Martin J. Van Kranendonk, Kathleen A. Campbell, Jeff R. Havig, Malcolm R. Walter, y Diego M. Guido. 2021. «A Reconstructed Subaerial Hot Spring Field in the ∼3.5 Billion-Year-Old Dresser Formation, North Pole Dome, Pilbara Craton, Western Australia». Astrobiology 21(1):1-38. doi: 10.1089/ast.2019.2072.spa
dc.relation.referencesFontecilla‐Camps, Juan C. 2019. «Geochemical Continuity and Catalyst-Cofactor Replacement in the Emergence and.pdf».spa
dc.relation.referencesFontecilla-Camps, Juan C. 2022. «Nickel and the Origin and Early Evolution of Life». Metallomics 14(4):mfac016. doi: 10.1093/mtomcs/mfac016.spa
dc.relation.referencesHazen, Robert M., y Dimitri A. Sverjensky. 2010. «Mineral surfaces, geochemical complexities, and the origins of life.» Cold Spring Harbor perspectives in biology 2(5). doi: 10.1101/cshperspect.a002162.spa
dc.relation.referencesJiao, Jian-Yu, Li Fu, Zheng-Shuang Hua, Lan Liu, Nimaichand Salam, Peng-Fei Liu, Ai-Ping Lv, Geng Wu, Wen-Dong Xian, Qiyun Zhu, En-Min Zhou, Bao-Zhu Fang, Aharon Oren, Brian P. Hedlund, Hong-Chen Jiang, Rob Knight, Lei Cheng, y Wen-Jun Li. 2021. «Insight into the Function and Evolution of the Wood–Ljungdahl Pathway in Actinobacteria». The ISME Journal 15(10):3005-18. doi: 10.1038/s41396-021-00935-9.spa
dc.relation.referencesKahana, Amit, Lior Segev, y Doron Lancet. 2023. «Protobiotic Network Reproducers Are Compositional Attractors: Enhanced Probability for Life’s Origin». SSRN Electronic Journal (1). doi: 10.2139/ssrn.4317204.spa
dc.relation.referencesKasting, James F. 2019. «Early Earth Atmosphere and Oceans». Pp. 49-61 en Earth’s Oldest Rocks. Elsevier.spa
dc.relation.referencesKolb, Vera M. 2019. Handbook of Astrobiology. editado por K. Vera M. Florida: CRC Press Taylor & Francis Group.spa
dc.relation.referencesKondepudi, Dilip K., y Roger A. Hegstrom. 1990. «La quiralidad del universo». Investigación y ciencia (162):58-67.spa
dc.relation.referencesKoonin, Eugene V., Kira S. Makarova, y Yuri I. Wolf. 2021. «Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century». Trends in Microbiology 29(7):582-92. doi: 10.1016/j.tim.2021.01.005.spa
dc.relation.referencesLane, Nick (University College London). 2015. «Life force: why energy shapes evolution». The Biochemist (October):6-11.spa
dc.relation.referencesLemaire, Olivier N., Marion Jespersen, y Tristan Wagner. 2020. «CO2-Fixation Strategies in Energy Extremophiles: What Can We Learn From Acetogens?» Frontiers in Microbiology 11:486. doi: 10.3389/fmicb.2020.00486.spa
dc.relation.referencesMaltais, Thora R., David VanderVelde, Douglas E. LaRowe, Aaron D. Goldman, y Laura M. Barge. 2020. «Reactivity of Metabolic Intermediates and Cofactor Stability under Model Early Earth Conditions». Origins of Life and Evolution of Biospheres 50(1-2):35-55. doi: 10.1007/s11084-019-09590-9.spa
dc.relation.referencesMartin, William, John Baross, Deborah Kelley, y Michael J. Russell. 2008. «Hydrothermal vents and the origin of life.» Nature reviews. Microbiology 6(11):805-14. doi: 10.1038/nrmicro1991.spa
dc.relation.referencesMartin, William F. 2019. «Carbon–Metal Bonds: Rare and Primordial in Metabolism». Trends in Biochemical Sciences 44(9):807-18. doi: 10.1016/j.tibs.2019.04.010.spa
dc.relation.referencesMartin, William F. 2020. «Older Than Genes: The Acetyl CoA Pathway and Origins». Frontiers in Microbiology 11(June):1-21. doi: 10.3389/fmicb.2020.00817.spa
dc.relation.referencesMartin, William, y Michael J. Russell. 2007. «On the Origin of Biochemistry at an Alkaline Hydrothermal Vent». Philosophical Transactions of the Royal Society B: Biological Sciences 362(1486):1887-1926. doi: 10.1098/rstb.2006.1881.spa
dc.relation.referencesMcCollom, T. M., y J. S. Seewald. 2013. «Serpentinites, Hydrogen, and Life». Elements 9(2):129-34. doi: 10.2113/gselements.9.2.129.spa
dc.relation.referencesMontoya Lorenzana, Lilia, María Guadalupe Cordero Tercero, y Sandra Ignacia Ramírez Jiménez. 2022. Astrobiología: Una visión transdisciplinaria de la vida en el Universo. Fondo de Cultura Economica.spa
dc.relation.referencesMrnjavac, Natalia, Loraine Schwander, Max Brabender, y William F. Martin. 2024. «Chemical Antiquity in Metabolism». Accounts of Chemical Research 57(16):2267-78. doi: 10.1021/acs.accounts.4c00226.spa
dc.relation.referencesMuchowska, Kamila B., Elodie Chevallot-Beroux, y Joseph Moran. 2019. «Recreating ancient metabolic pathways before enzymes». Bioorganic and Medicinal Chemistry 27(12):2292-97. doi: 10.1016/j.bmc.2019.03.012.spa
dc.relation.referencesMuchowska, Kamila B., Sreejith J. Varma, y Joseph Moran. 2020. «Nonenzymatic Metabolic Reactions and Life’s Origins». Chemical Reviews 120(15):7708-44. doi: 10.1021/acs.chemrev.0c00191.spa
dc.relation.referencesMulkidjanian, Armen Y. 2009. «On the Origin of Life in the Zinc World: 1. Photosynthesizing, Porous Edifices Built of Hydrothermally Precipitated Zinc Sulfide as Cradles of Life on Earth». Biology Direct 4(1):26. doi: 10.1186/1745-6150-4-26.spa
dc.relation.referencesNitschke, Wolfgang, y Michael J. Russell. 2010. «Beating the acetyl coenzyme-pathway to the origin of life». Phil. Trans. R. Soc. Lond. B. Biol. Sci 368:20120258.spa
dc.relation.referencesPeretó, Juli. 2012. «Out of Fuzzy Chemistry: From Prebiotic Chemistry to Metabolic Networks». Chemical Society Reviews 41(16):5394. doi: 10.1039/c2cs35054h.spa
dc.relation.referencesPoliseli, Luana, Jeferson G. E. Coutinho, Blandina Viana, Federica Russo, y Charbel N. El-Hani. 2022. «Philosophy of science in practice in ecological model building». Biology and Philosophy 37(4):1-27. doi: 10.1007/s10539-022-09851-4.spa
dc.relation.referencesPopa, Radu. 2007. Between Necessity and Probability: Searching for the Definition and Origin of Life. Vol. 6.spa
dc.relation.referencesPreiner, Martina, Silke Asche, Sidney Becker, Holly C. Betts, Adrien Boniface, Eloi Camprubi, Kuhan Chandru, Valentina Erastova, Sriram G. Garg, Nozair Khawaja, Gladys Kostyrka, Rainer Machné, Giacomo Moggioli, Kamila B. Muchowska, Sinje Neukirchen, Benedikt Peter, Edith Pichlhöfer, Ádám Radványi, Daniele Rossetto, Annalena Salditt, Nicolas M. Schmelling, Filipa L. Sousa, Fernando D. K. Tria, Dániel Vörös, y Joana C. Xavier. 2020. «The future of origin of life research: Bridging decades-old divisions». Life 10(3). doi: 10.3390/life10030020.spa
dc.relation.referencesProsdocimi, Francisco, y Sávio Torres de Farias. 2022. «Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes». BioSystems 220(July). doi: 10.1016/j.biosystems.2022.104751.spa
dc.relation.referencesRalser, Markus. 2018. «An Appeal to Magic? The Discovery of a Non-Enzymatic Metabolism and Its Role in the Origins of Life». Biochemical Journal 475(16):2577-92. doi: 10.1042/BCJ20160866.spa
dc.relation.referencesRimmer, Paul, y Oliver Shorttle. 2019. «Origin of Life’s Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents». Life 9(1):12. doi: 10.3390/life9010012.spa
dc.relation.referencesRussell, Michael J. 2023. «A Self-Sustaining Serpentinization Mega-Engine Feeds the Fougerite Nanoengines Implicated in the Emergence of Guided Metabolism». Frontiers in Microbiology 14:1145915. doi: 10.3389/fmicb.2023.1145915.spa
dc.relation.referencesRussell, Michael J., Wolfgang Nitschke, y Elbert Branscomb. 2013. «The Inevitable Journey to Being». Philosophical Transactions of the Royal Society B: Biological Sciences 368(1622):20120254. doi: 10.1098/rstb.2012.0254.spa
dc.relation.referencesRussell, Michael, y Adrian Ponce. 2020. «Six ‘Must-Have’ Minerals for Life’s Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite». Life 10(11):291. doi: 10.3390/life10110291.spa
dc.relation.referencesSagan, Carl. 1980. COSMOS.spa
dc.relation.referencesScharf, Caleb, Nathaniel Virgo, H. James Cleaves, Masashi Aono, Nathanael Aubert-Kato, Arsev Aydinoglu, Ana Barahona, Laura M. Barge, Steven A. Benner, Martin Biehl, Ramon Brasser, Christopher J. Butch, Kuhan Chandru, Leroy Cronin, Sebastian Danielache, Jakob Fischer, John Hernlund, Piet Hut, Takashi Ikegami, Jun Kimura, Kensei Kobayashi, Carlos Mariscal, Shawn McGlynn, Brice Menard, Norman Packard, Robert Pascal, Juli Pereto, Sudha Rajamani, Lana Sinapayen, Eric Smith, Christopher Switzer, Ken Takai, Feng Tian, Yuichiro Ueno, Mary Voytek, Olaf Witkowski, y Hikaru Yabuta. 2015. «A Strategy for Origins of Life Research». Astrobiology 15(12):1031-42. doi: 10.1089/ast.2015.1113.spa
dc.relation.referencesSchoepp-Cothenet, Barbara, Robert Van Lis, Ariane Atteia, Frauke Baymann, Line Capowiez, Anne-Lise Ducluzeau, Simon Duval, Felix Ten Brink, Michael J. Russell, y Wolfgang Nitschke. 2013. «On the Universal Core of Bioenergetics». Biochimica et Biophysica Acta (BBA) - Bioenergetics 1827(2):79-93. doi: 10.1016/j.bbabio.2012.09.005.spa
dc.relation.referencesSchulze-Makuch, Dirk, y Louis N. Irwin. 2018. «Building Blocks of Life». Life in the Universe 100:101-21. doi: 10.1007/978-3-319-97658-7_6.spa
dc.relation.referencesSchwander, Loraine, Max Brabender, Natalia Mrnjavac, Jessica L. E. Wimmer, Martina Preiner, y William F. Martin. 2023. «Serpentinization as the Source of Energy, Electrons, Organics, Catalysts, Nutrients and pH Gradients for the Origin of LUCA and Life». Frontiers in Microbiology 14:1257597. doi: 10.3389/fmicb.2023.1257597.spa
dc.relation.referencesScossa, Federico, y Alisdair R. Fernie. 2020. «The evolution of metabolism: How to test evolutionary hypotheses at the genomic level». Computational and Structural Biotechnology Journal 18:482-500. doi: 10.1016/j.csbj.2020.02.009.spa
dc.relation.referencesShibuya, Takazo, Michael J. Russell, y Ken Takai. 2016. «Free Energy Distribution and Hydrothermal Mineral Precipitation in Hadean Submarine Alkaline Vent Systems: Importance of Iron Redox Reactions under Anoxic Conditions». Geochimica et Cosmochimica Acta 175:1-19. doi: 10.1016/j.gca.2015.11.021.spa
dc.relation.referencesSousa, Filipa L., Thorsten Thiergart, Giddy Landan, Shijulal Nelson-Sathi, Inês A. C. Pereira, John F. Allen, Nick Lane, y William F. Martin. 2013. «Early Bioenergetic Evolution». Philosophical Transactions of the Royal Society B: Biological Sciences 368(1622):20130088. doi: 10.1098/rstb.2013.0088.spa
dc.relation.referencesSteel, Mike, Joana C. Xavier, y Daniel H. Huson. 2020. «The Structure of Autocatalytic Networks, with Application to Early Biochemistry».spa
dc.relation.referencesSutherland, John D. 2017. «Opinion: Studies on the origin of life-The end of the beginning». Nature Reviews Chemistry 1:1-8. doi: 10.1038/s41570-016-0012.spa
dc.relation.referencesTrail, Dustin, E. Bruce Watson, y Nicholas D. Tailby. 2011. «The Oxidation State of Hadean Magmas and Implications for Early Earth’s Atmosphere». Nature 480(7375):79-82. doi: 10.1038/nature10655.spa
dc.relation.referencesWächtershäuser, Günter. 2007. «On the chemistry and evolution of the pioneer organism». Chemistry and Biodiversity 4(4):584-602. doi: 10.1002/cbdv.200790052.spa
dc.relation.referencesWeiss, Madeline C., Martina Preiner, Joana C. Xavier, Verena Zimorski, y William F. Martin. 2018. «The last universal common ancestor between ancient Earth chemistry and the onset of genetics». PLoS Genetics 14(8):1-19. doi: 10.1371/journal.pgen.1007518.spa
dc.relation.referencesWeiss, Madeline C., Filipa L. Sousa, Natalia Mrnjavac, Sinje Neukirchen, Mayo Roettger, Shijulal Nelson-Sathi, y William F. Martin. 2016. «The physiology and habitat of the last universal common ancestor». Nature Microbiology 1(9):1-8. doi: 10.1038/nmicrobiol.2016.116.spa
dc.relation.referencesWestall, Frances, André Brack, Alberto G. Fairén, y Mitchell D. Schulte. 2023. «Setting the Geological Scene for the Origin of Life and Continuing Open Questions about Its Emergence». Frontiers in Astronomy and Space Sciences 9:1095701. doi: 10.3389/fspas.2022.1095701.spa
dc.relation.referencesWilliams, Tom A., Gergely J. Szöllősi, Anja Spang, Peter G. Foster, Sarah E. Heaps, Bastien Boussau, Thijs J. G. Ettema, y T. Martin Embley. 2017. «Integrative Modeling of Gene and Genome Evolution Roots the Archaeal Tree of Life». Proceedings of the National Academy of Sciences 114(23). doi: 10.1073/pnas.1618463114.spa
dc.relation.referencesWimmer, Jessica L. E., Joana C. Xavier, Andrey d.N. Vieira, Delfina P. H. Pereira, Jacqueline Leidner, Filipa L. Sousa, Karl Kleinermanns, Martina Preiner, y William F. Martin. 2021. «Energy at Origins: Favorable Thermodynamics of Biosynthetic Reactions in the Last Universal Common Ancestor (LUCA)». Frontiers in Microbiology 12(December). doi: 10.3389/fmicb.2021.793664.spa
dc.relation.referencesXavier, Joana C., Rebecca E. Gerhards, Jessica L. E. Wimmer, Julia Brueckner, Fernando D. K. Tria, y William F. Martin. 2021. «The Metabolic Network of the Last Bacterial Common Ancestor». Communications Biology 4(1):413. doi: 10.1038/s42003-021-01918-4.spa
dc.relation.referencesXavier, Joana C., Wim Hordijk, Stuart Kauffman, Mike Steel, y William F. Martin. 2020. «Autocatalytic chemical networks at the origin of metabolism». Proceedings of the Royal Society B: Biological Sciences 287(1922). doi: 10.1098/rspb.2019.2377.spa
dc.relation.referencesXavier, Joana C., Martina Preiner, y William F. Martin. 2018. «Something Special about CO-Dependent CO2 Fixation». The FEBS Journal 285(22):4181-95. doi: 10.1111/febs.14664.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocBiogeoquímicaspa
dc.subject.agrovocBiogeochemistryeng
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsEvolución Molecularspa
dc.subject.decsMetabolismo Energéticospa
dc.subject.decsEnergy Metabolismeng
dc.subject.decsBacterias Anaerobiasspa
dc.subject.decsBacteria, Anaerobiceng
dc.subject.decsArchaea
dc.subject.proposalAbiogénesisspa
dc.subject.proposalCatálisisspa
dc.subject.proposalComplejización químicaspa
dc.subject.proposalFumarolaspa
dc.subject.proposalMetabolismo tempranospa
dc.subject.proposalAbiogenesiseng
dc.subject.proposalCatalysiseng
dc.subject.proposalChemical complexificationeng
dc.subject.proposalEarly metabolismeng
dc.subject.proposalFumaroleseng
dc.titleEvolución proto biótica de la ruta Wood-Ljungdahl (WL) en ambientes hidrotermales durante la vida temprana, eón Arqueano: revisión, síntesis y modelo geoquímicospa
dc.title.translatedProto-biotic evolution of the Wood-Ljungdahl (WL) pathway in hydrothermal environments during early life, Archean eon: review, synthesis, and geochemical modeleng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010218625.2025.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: