Análisis no lineal mediante el método de los elementos finitos del comportamiento estructural de pórticos metálicos con disipadores tipo Comb-teeth bajo la acción de carga cíclica

dc.contributor.advisorMolina Herrera, Maritzabelspa
dc.contributor.advisorVillalba Morales, Jesús Danielspa
dc.contributor.authorGualavisí Limaico, Mario Stevenspa
dc.contributor.researchgroupAnálisis, Diseño y Materiales Giesspa
dc.date.accessioned2022-02-04T20:30:49Z
dc.date.available2022-02-04T20:30:49Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEn los últimos años han sido múltiples las técnicas de control de respuesta sísmica propuestas con base en disipadores histeréticos metálicos. En varias investigaciones se ha demostrado las ventajas del uso de estos sistemas de control en edificaciones con respecto a la reducción de daño estructural y a la mejor respuesta sísmica de las estructuras. La facilidad de instalación, la relativa economía que proveen en su manufactura y la importante influencia que tienen los disipadores histeréticos sobre la respuesta dinámica de la edificación son las principales razones para su frecuente implementación. En el presente trabajo se propone una metodología guía para el análisis y diseño de pórticos metálicos con disipadores, buscando promover el uso de estos sistemas de protección sísmica en la práctica del diseñador estructural en Colombia. En primer lugar, se estableció un procedimiento para definir el modelo constitutivo para el material. La definición de los parámetros del modelo constitutivo del acero se basó en la calibración inicial de varios modelos numéricos con respecto a ensayos experimentales de otras investigaciones. Posteriormente se detallan los procedimientos que permiten dimensionar, diseñar y construir modelos numéricos tanto para disipadores aislados como para pórticos con disipadores. Con la metodología propuesta se analizó la influencia del disipador Comb-Teeth (CTD) en la respuesta mecánica de pórticos metálicos resistentes a momentos (PRM) de un piso y una luz. El análisis se hizo a través del método de los elementos finitos y consideró cuatro relaciones distintas de aspecto, altura/luz (H/L), para los pórticos. Para cada relación de aspecto se analizaron tres tipos de estructuras. La primera estructura consistió únicamente en el pórtico PRM mientras que las otras dos estructuras consideraban adicionalmente la integración de un disipador CTD de diferente capacidad cada una. Todos los pórticos analizados consideraron conexiones totalmente restringidas en los nudos diseñadas de acuerdo con los requisitos de AISC. Con los resultados obtenidos fue posible cuantificar la participación en la disipación de energía del dispositivo CTD y su influencia en la respuesta global de cada una de las estructuras. (Texto tomado de la fuente).spa
dc.description.abstractSeveral seismic response control techniques have been proposed in recent years based on metallic hysteretic dampers. Previous investigations have shown the advantages of using these control systems to reduce building damage and increase the structural capacity during seismic events. The main reasons for their frequent use are the ease of installation, the relative economy they provide in their manufacture, and the important influence that hysteretic dampers have on the dynamic response of the building. A guiding method for the analysis and design of steel frames with metallic dampers is proposed in this work to promote the use of these seismic protection systems in the practice of structural engineers in Colombia. First, a procedure was established to define the constitutive model for the material. The selection of the constitutive model parameters for structural steel was based on an initial calibration of different finite element models that was compared with experimental data from other researches. Subsequently, several detailed pre-dimensioning, design, and numerical modeling procedures were developed for both individual dampers and steel frames with dampers. The influence of the Comb-Teeth damper (CTD) on the mechanical response of one story one span special moment frame (SMF) was analyzed under this methodology. The analysis was made by the finite element method and considered four different aspect ratios for the frames. Three types structures were analyzed for each aspect ratio. The first structure consisted only of the SMF frame, while each of the other two structures also considered a CTD damper with a specific capacity in the frame. All the frames were designed with pre-qualified connections according to AISC requirements. With the results obtained, it was possible to quantify the participation of the CTD device in the energy and its influence on the global response of the structures.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaDiseño estructuralspa
dc.format.extentvi, 224 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80880
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAIS, “Reglamento Colombiano de Construcción Sismo Resistente NSR 10,” 2010.spa
dc.relation.referencesC. López, R. Retamales, and T. Kannegiesser, Protección Sísmica de Estructuras, 29th ed. Corporación de desarrollo tecnológico, 2011.spa
dc.relation.referencesL. Di Sarno and A. S. Elnashai, “Innovative strategies for seismic retrofitting of steel and composite structures,” Prog. Struct. Eng. Mater., vol. 7, no. 3, pp. 115–135, 2005.spa
dc.relation.referencesFederal Emergency Management Agency - FEMA, “NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings,” 1997.spa
dc.relation.referencesJ. Marko, D. Thambiratnam, and N. Perera, “Influence of damping systems on building structures subject to seismic effects,” Eng. Struct., no. 13, 2004.spa
dc.relation.referencesA. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Benisi Ghadim, and M. U. Hanif, “State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 455–478, 2020.spa
dc.relation.referencesJ. A. Oviedo and M. P. Duque, “Situación de las técnicas de control de respuesta sísmica en Colombia,” Rev. EIA, vol. 12, pp. 113–124, 2009.spa
dc.relation.referencesJ. Pimiento, A. Salas, and D. Ruiz, “Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero,” Rev. Ing. Constr., vol. 29, no. 3, pp. 283–298, 2014.spa
dc.relation.referencesS. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Seismic Behavior of Steel Frames Equipped with Comb-Teeth Metallic Yielding Dampers,” Int. J. Steel Struct., vol. 19, no. 4, pp. 1070–1083, 2019.spa
dc.relation.referencesS. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Numerical and experimental study of comb-teeth metallic yielding dampers,” Int. J. Steel Struct., vol. 16, no. 1, pp. 177–196, 2016.spa
dc.relation.referencesV. Budaházy, “Uniaxial cyclic steel behavior and model for dissipative structures Theses of the PhD Dissertation Supervisor,” 2015.spa
dc.relation.referencesR. K. Mohammadi, A. Nasri, and A. Ghaffary, “TADAS dampers in very large deformations,” Int. J. Steel Struct., vol. 17, no. 2, pp. 515–524, 2017.spa
dc.relation.referencesT. Paulay and M. J. N. Priestley, “Seismic Design Of Reinforced Concrete And Masonry Buildings.” Wiley,New York, 1992.spa
dc.relation.referencesM. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, “Displacement-Based Seismic Design of Structures. IUSS Press.” 2007.spa
dc.relation.referencesC. Christopoulos and A. Filiatrault, “Principles of Passive Supplemental Damping and Seismic Isolation.” IUSS Press, 2006.spa
dc.relation.referencesM. Mahmoudi and M. Zaree, “Determination the response modification factors of buckling restrained braced frames,” Procedia Eng., vol. 54, no. 2005, pp. 222–231, 2013.spa
dc.relation.referencesM. C. Constantinou, T. T. Soong, and G. F. Dargush, Passive Energy Dissipation Systems for Structural Design and Retrofit. Multidisciplinary Center for Earthquake Engineering Research, 1998.spa
dc.relation.referencesKeh-Chyuan Tsai, Huan-Wei Chen, Ching-Ping Hong, and Yung-Feng Su, “Design of steel triangular plate energy absorbers for seismic-resistant construction,” Earthquake Spectra, vol. 9, no. 3. pp. 505–528, 1993.spa
dc.relation.referencesS. Garivani, “Experimental and numerical study of metallic yielding damper with appropriate characteristics for application in simple steel frames,” Tarbiat Modares University (In persian), 2015.spa
dc.relation.referencesD. R. Teruna, T. A. Majid, and B. Budiono, “Experimental study of hysteretic steel damper for energy dissipation capacity,” Adv. Civ. Eng., vol. 2015, no. Figure 2, 2015.spa
dc.relation.referencesV. Budaházy and L. Dunai, “Parameter-refreshed Chaboche model for mild steel cyclic plasticity behavior,” Period. Polytech. Civ. Eng., vol. 57, no. 2, pp. 139–155, 2013.spa
dc.relation.referencesG. Cailletaud, K. Saï, and L. Taleb, Multi-mechanism Modeling of Inelastic Material Behavior, vol. 11, no. 19. London: John Wiley & Sons, Inc., 2018.spa
dc.relation.referencesM. G. Lee and F. Barlat, Modeling of Plastic Yielding, Anisotropic Flow, and the Bauschinger Effect, vol. 2. Elsevier, 2014.spa
dc.relation.referencesJ. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations, Parts I and II,” J. Press. Vessel Technol. Trans. ASME, vol. 105, no. 2, pp. 153–158, 1983.spa
dc.relation.referencesJ. L. J.-L. Chaboche, Mechanics of solid materials, vol. 19, no. 1. Cambridge University Press, 1994.spa
dc.relation.referencesM. Ottosen, N. S., Ristinmaa, “The mechanics of constitutive modeling,” Elsevier, 2005.spa
dc.relation.referencesG. R. Bhashyam, “ANSYS Mechanical — A Powerful Nonlinear Simulation Tool,” ANSYS, Inc., 2002.spa
dc.relation.referencesAnsys Inc., “Mechanical APDL Element Reference,” no. November. Ansys Inc., Canonsburg, PA, 2010.spa
dc.relation.referencesM. K. Thompson and J. M. Thompson, ANSYS Mechanical APDL for Finite Element Analysis. 2017.spa
dc.relation.referencesV. Budaházy and L. Dunai, “Chaboche-based cyclic material model for steel and its numerical application,” Proc. 9th fib Int. PhD Symp. Civ. Eng., pp. 555–560, 2012.spa
dc.relation.referencesS. F. Jacques Besson, Georges Cailletaud, Jean-Louis Chaboche, Non-Linear Mechanics of Materials. Netherlands: Springer, 2010.spa
dc.relation.referencesJ. L. Chaboche and D. Nouailhas, “Constitutive modeling of ratchetting effects-part I: Experimental facts and properties of the classical models,” J. Eng. Mater. Technol. Trans. ASME, vol. 111, no. 4, pp. 384–392, 1989.spa
dc.relation.referencesY. Huang, “Simulating the Inelastic Seismic Behavior of Steel Braced Frames Including the Effects of Low-Cycle Fatigue,” University of California, Berkeley, 2009.spa
dc.relation.referencesS. Ahn, T., Kim, Y., Park, J., Kim H., Jang, D., Oh, “Development of New Steel Damper for Seismic Retrofit of Existing Structures,” 15th World Conf. Earthq. Eng., 2012.spa
dc.relation.referencesK. Ghabraie, R. Chan, X. Huang, and Y. M. Xie, “Shape optimization of metallic yielding devices for passive mitigation of seismic energy,” Eng. Struct., vol. 32, no. 8, pp. 2258–2267, 2010.spa
dc.relation.referencesH. Hernandez Ramirez and A. Tena Colunga, “Evaluación Del Diseño Sísmico Resiliente Conforme Al Método De Las Fuerzas De Marcos Dúctiles De Acero Con Disipadores De Energía Histeréticos,” Rev. Ing. Sísmica, vol. 76, no. 98, p. 45, 2018.spa
dc.relation.referencesAISC, Steel Construction Manual, 15 th. American Institute of Steel Construction, 2017.spa
dc.relation.referencesAISC, “Specification for Structural Steel Buildings, ANSI / AISC 360-16,” Am. Inst. Steel Constr., p. 676, 2016.spa
dc.relation.referencesAISC, “Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16,” Am. Inst. Steel Constr., pp. 355–410, 2016.spa
dc.relation.referencesANSI/AISC 358-16, “Prequalified connections for pecial and intermediate steel moment frames for seismic applications,” Am. Inst. Steel Constr., no. 1, p. 284, 2016.spa
dc.relation.referencesAmerican Institute of Steel Construction, Steel Design Guide 29: Vertical Bracing Connections — Analysis and Design. AISC, 2014.spa
dc.relation.referencesZ. Li, G. Shu, and Z. Huang, “Development and cyclic testing of an innovative shear-bending combined metallic damper,” J. Constr. Steel Res., vol. 158, pp. 28–40, 2019.spa
dc.relation.referencesM. Seif, J. Main, J. Weigand, T. P. McAllister, and W. Luecke, “Finite element modeling of structural steel component failure at elevated temperatures,” Structures, vol. 6, pp. 134–145, 2016.spa
dc.relation.referencesJ. Montgomery, “Methods for Modeling Bolts in the Bolted Joint,” ANSYS User’s Conf., no. Figure 2, p. 15, 2002.spa
dc.relation.referencesAmerican Society of Civil Engineers, ASCE standard, ASCE/SEI, 41-17, seismic evaluation and retrofit of existing buildings, no. June. 2017.spa
dc.relation.referencesEN1993-1-5, “Eurocode 3: Design of steel structures - Part 1-5: General rules - Plated structural elements,” CEN, Brussels, vol. 5, no. 2006, p. 53, 2006.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembEarthquake engineeringeng
dc.subject.lembIngeniería sísmicaspa
dc.subject.lembEarthquake resistant designeng
dc.subject.lembDiseño sismo resistentespa
dc.subject.lembEnergy dissipationeng
dc.subject.lembDispersión energéticaspa
dc.subject.proposalDisipadores tipo Comb-Teethspa
dc.subject.proposalSistemas de control pasivospa
dc.subject.proposalDisipación de energíaspa
dc.subject.proposalDisipadores metálicos de fluenciaspa
dc.subject.proposalComb-Teeth damperseng
dc.subject.proposalPassive seismic controleng
dc.subject.proposalEnergy dissipationeng
dc.subject.proposalMetallic yielding damperseng
dc.titleAnálisis no lineal mediante el método de los elementos finitos del comportamiento estructural de pórticos metálicos con disipadores tipo Comb-teeth bajo la acción de carga cíclicaspa
dc.title.translatedNonlinear finite element analysis of steel frames with Comb-teeth dampers under cyclic loadingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1721617536.2021.pdf
Tamaño:
19.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: