Valorización de cascarilla de arroz mediante transformación termocatalítica para la obtención de sílice amorfa mesoporosa
dc.contributor.advisor | Moreno Guáqueta, Sonia | spa |
dc.contributor.advisor | Centeno Gallego, Miguel Ángel | spa |
dc.contributor.author | Díaz Tovar, Dairo | spa |
dc.contributor.orcid | Díaz Tovar, Dairo [0000000300357977] | spa |
dc.contributor.researchgroup | Estado Sólido y Catálisis Ambiental | spa |
dc.date.accessioned | 2025-03-18T14:47:40Z | |
dc.date.available | 2025-03-18T14:47:40Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | La siguiente investigación se centró en el estudio sistemático de los efectos de los tratamientos de molienda, tamizado, lixiviación y descomposición térmica de cascarilla de arroz para la obtención de biosílice amorfa mesoporosa. Para ello, se evaluó como los factores experimentales de los anteriores tratamientos, determinan las propiedades fisicoquímicas y térmicas de la cascarilla de arroz tratada, así como las propiedades fisicoquímicas y texturales de la biosílice obtenida. Se establecieron los tripletes cinéticos de la combustión y la pirólisis de la cascarilla cruda y tratada, y se evaluó el efecto de un catalizador en el proceso de pirólisis. Se determinó que el tamaño de partícula de la cascarilla de arroz molida y tamizada afecta significativamente las propiedades fisicoquímicas y térmicas de la cascarilla tratada, haciendo posible clasificar algunas fracciones granulométricas en grupos homogéneos. Se sintetizó biosílice mesoporosa de 99,45 ± 0.04 % de pureza, 318 ± 10 m2 g-1 de área superficial y 0,46 ± 0.01 cm3 g-1 de volumen de poro, a partir de la lixiviación de cascarilla en HCl a pH 1,5. El estudio cinético permitió establecer que la descomposición térmica puede ser descrita por un modelo de reacción en multipasos. Se propuso un método novedoso basado en la modificación de la regresión lineal múltiple para la determinación simultánea del factor pre-exponencial y el modelo de reacción de la ley de velocidad. Los resultados obtenidos son consistentes con los reportados en la literatura para biomasa lignocelulósica (Texto tomado de la fuente). | spa |
dc.description.abstract | The following research focused on systematically studying the effects of milling, sieving, leaching, and thermal decomposition treatments on rice husks to obtain mesoporous amorphous biosilica. So, it was evaluated how the experimental factors of the previous treatments determine the physicochemical and thermal properties of the treated rice husk and how they affect the physicochemical and textural properties of the biosilica. The kinetic triplets of combustion and pyrolysis of the raw and treated husk were determined; in the same way, the effect of a catalyst in the pyrolysis process was evaluated. It was found that the particle size of the milled and sieved rice husk significantly affects the physicochemical and thermal properties of the treated husk. It is possible to classify some granulometric fractions into homogeneous groups. Mesoporous biosilica of 99.45 ± 0.04 % of purity, 318 ± 10 m2 g-1 surface area and 0.46 ± 0.01 cm3 g-1pore volume, was synthesized from rice husk leaching in HCl at pH 1.5. The kinetic study showed that a multistep reaction model could describe the thermal decomposition, and a novel method based on modifying the multiple linear regression for the simultaneous determination of the pre-exponential factor and the rate law reaction model was proposed. The results obtained were consistent with those reported in the literature for lignocellulosic biomass. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.description.methods | Investigación cuantitativa | spa |
dc.description.researcharea | Materiales y energía | spa |
dc.description.sponsorship | Colfuturo Universidad Internacional del Trópico Americano | spa |
dc.format.extent | xiv, 206 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87682 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher | Universidad de Sevilla | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.references | M. Quinlan, “Five challenges to humanity: Learning from pattern/repeat failures in past disasters?,” The Economic and Labour Relations Review, vol. 31, no. 3, pp. 444–466, 2020. | spa |
dc.relation.references | M. Mishra et al., “A bibliometric analysis of sustainable development goals (SDGs): a review of progress, challenges, and opportunities,” Environ Dev Sustain, vol. 26, no. 5, pp. 11101–11143, 2024, doi: 10.1007/s10668-023-03225-w. | spa |
dc.relation.references | M. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, and D. L. Smith, “Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization,” Renewable and Sustainable Energy Reviews, vol. 139, p. 110691, 2021, doi: https://doi.org/10.1016/j.rser.2020.110691. | spa |
dc.relation.references | J. Escalante et al., “Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach,” Renewable and Sustainable Energy Reviews, vol. 169, no. August, p. 112914, 2022, doi: 10.1016/j.rser.2022.112914. | spa |
dc.relation.references | R. Kumar et al., “Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels,” Renewable and Sustainable Energy Reviews, vol. 123, no. May 2019, 2020, doi: 10.1016/j.rser.2020.109763. | spa |
dc.relation.references | M. Joshi and S. Manjare, “Chemical approaches for the biomass valorisation: a comprehensive review of pretreatment strategies,” Environmental Science and Pollution Research, vol. 31, no. 36, pp. 48928–48954, 2024, doi: 10.1007/s11356-024-34473-6. | spa |
dc.relation.references | M. A. Abbas, W. H. Kwan, M. H. Samsudin, and T. K. Hai, “Optimising Factors for the Production of Amorphous Rice Husk Ash via Combustion Process for Sustainable Construction: A Review,” Journal of Advanced Research in Applied Mechanics, vol. 120, no. 1, pp. 50–61, 2024, doi: 10.37934/aram.120.1.5061. | spa |
dc.relation.references | A. Bin Rahman, Rubaiyath, and J. Zhang, “Trends in rice research: 2030 and beyond,” Food Energy Secur, vol. 12, no. 2, p. e390, Mar. 2023, doi: https://doi.org/10.1002/fes3.390. | spa |
dc.relation.references | H. Beidaghy Dizaji et al., “Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review,” Applied Sciences, vol. 9, no. 6, 2019, doi: 10.3390/app9061083. | spa |
dc.relation.references | N. Soltani, A. Bahrami, M. I. Pech-Canul, and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chemical Engineering Journal, vol. 264, pp. 899–935, 2015. | spa |
dc.relation.references | H. Moayedi, B. Aghel, M. M. Abdullahi, H. Nguyen, and A. Safuan A Rashid, “Applications of rice husk ash as green and sustainable biomass,” J Clean Prod, vol. 237, p. 117851, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.117851. | spa |
dc.relation.references | J. Chun and J. H. Lee, “Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk,” Sustainability, vol. 12, no. 24, 2020, doi: 10.3390/su122410683. | spa |
dc.relation.references | M. Choudhary et al., “Sustainable valorization of rice husk: thermal behavior and kinetics after chemical treatments,” Biomass Convers Biorefin, 2023, doi: 10.1007/s13399-023-04774-w. | spa |
dc.relation.references | R. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247–255, 2017, doi: https://doi.org/10.1016/j.fuproc.2017.01.046. | spa |
dc.relation.references | I. Quispe, R. Navia, and R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolysis: A review,” Waste Management, vol. 59, pp. 200–210, 2017, doi: https://doi.org/10.1016/j.wasman.2016.10.001. | spa |
dc.relation.references | G. Sharma, M. Kaur, S. Punj, and K. Singh, “Biomass as a sustainable resource for value‐added modern materials: a review,” Biofuels, Bioproducts and Biorefining, vol. 14, no. 3, pp. 673–695, 2020. | spa |
dc.relation.references | S. Zhang and Y. Xiong, “Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar,” RSC Adv, vol. 6, pp. 5270–5277, 2016, doi: 10.1039/C5RA22350D. | spa |
dc.relation.references | S. Steven, E. Restiawaty, and Y. Bindar, “Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect,” Renewable and Sustainable Energy Reviews, vol. 149, 2021, doi: 10.1016/j.rser.2021.111329. | spa |
dc.relation.references | L. Escaño, E. Federico, M. Rivero, L. Barett, and C. Merchand, “Guía práctica y estudio de casos Producción más limpia,” Programa Buenos Aires produce más limpio. pág, vol. 250, 2011. | spa |
dc.relation.references | I. Quispe, R. Navia, and R. Kahhat, “Life Cycle Assessment of rice husk as an energy source. A Peruvian case study,” J Clean Prod, vol. 209, pp. 1235–1244, 2019, doi: https://doi.org/10.1016/j.jclepro.2018.10.312. | spa |
dc.relation.references | D. Díaz Tovar, “Transformación tecnológica sustentable de cascarilla de arroz producida en los principales molinos del Departamento de Casanare,” Tesis de maestría, Universidad Internacional Iberoaméricana, 2020. doi: 10.13140/RG.2.2.16223.06565. | spa |
dc.relation.references | M. Kumar, P. K. Mishra, and S. N. Upadhyay, “Thermal degradation of rice husk: Effect of pre-treatment on kinetic and thermodynamic parameters,” Fuel, vol. 268, p. 117164, 2020, doi: https://doi.org/10.1016/j.fuel.2020.117164. | spa |
dc.relation.references | W. Xu et al., “Comparative study of water-leaching and acid-leaching pretreatment on the thermal stability and reactivity of biomass silica for viability as a pozzolanic additive in cement,” Materials, vol. 11, no. 9, 2018, doi: 10.3390/ma11091697. | spa |
dc.relation.references | S. Chandrasekhar, P. N. Pramada, and L. Praveen, “Effect of organic acid treatment on the properties of rice husk silica,” J Mater Sci, vol. 40, no. 24, pp. 6535–6544, 2005, doi: 10.1007/s10853-005-1816-z. | spa |
dc.relation.references | J. Kong, D. Wei, P. Xing, Y. Zhuang, X. Jin, and K. Ye, “Clean Preparation of High-Purity Silicon from Rice Husk Ash by a Modified Metallurgical Method,” JOM, vol. 73, no. 6, pp. 1919–1927, 2021, doi: 10.1007/s11837-021-04674-2. | spa |
dc.relation.references | H. Beidaghy, T. Zeng, and D. Enke, “New fuel indexes to predict ash behavior for biogenic silica production,” Fuel, no. September, p. 122345, 2021, doi: 10.1016/j.fuel.2021.122345. | spa |
dc.relation.references | S. H. Chang, “Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: a Review,” Bioenergy Res, pp. 1–20, 2019, doi: https://doi.org/10.1007/s12155-019-10059-w. | spa |
dc.relation.references | L. Brewer, U.S. Rice industry, elements and global competitiveness, 1 st. New York: Nova Publishers, 2015. | spa |
dc.relation.references | L. Benassi et al., “Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator,” J Environ Manage, vol. 159, pp. 128–134, 2015, doi: https://doi.org/10.1016/j.jenvman.2015.05.015. | spa |
dc.relation.references | D. Díaz Tovar, “Usos potenciales de cascarilla de arroz en el departamento de Casanare,” Monografía, Universidad Nacional Abierta y a Distancia, 2019. doi: 10.13140/RG.2.2.29644.83848. | spa |
dc.relation.references | A. Zielonka, E. Żymańczyk-Duda, M. Brzezińska-Rodak, M. Duda, J. Grzesiak, and M. Klimek-Ochab, “Nanosilica synthesis mediated by Aspergillus parasiticus strain,” Fungal Biol, vol. 122, no. 5, pp. 333–344, 2018, doi: https://doi.org/10.1016/j.funbio.2018.02.004. | spa |
dc.relation.references | D. Quiceno Villada and M. Y. Mosquera Gutierrez, “Alternativas Tecnológicas para el uso de la cascarilla de arroz como combustible,” Universidad Autonoma de Occidente, 2010. | spa |
dc.relation.references | G. Marrugo, C. F. Valdés, and F. Chejne, “Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources,” Energy & Fuels, vol. 30, no. 10, pp. 8386–8398, Oct. 2016, doi: 10.1021/acs.energyfuels.6b01596. | spa |
dc.relation.references | G. Marrugo, C. F. Valdés, and F. Chejne, “Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed,” Energy and Fuels, vol. 31, no. 9, pp. 9408–9421, 2017, doi: 10.1021/acs.energyfuels.7b00665. | spa |
dc.relation.references | C. He et al., “Evidence for ‘silicon’within the cell walls of suspension‐cultured rice cells,” New Phytologist, vol. 200, no. 3, pp. 700–709, 2013. | spa |
dc.relation.references | R. V Krishnarao and M. M. Godkhindi, “Distribution of silica in rice husks and its effect on the formation of silicon carbide,” Ceram Int, vol. 18, no. 4, pp. 243–249, 1992, doi: https://doi.org/10.1016/0272-8842(92)90102-J. | spa |
dc.relation.references | P. Kolar and H. Jin, “Baseline characterization data for raw rice husk,” Data Brief, vol. 25, p. 104219, 2019, doi: 10.1016/j.dib.2019.104219. | spa |
dc.relation.references | M. A. Salam, K. Ahmed, T. Hossain, Md. S. Habib, Md. S. Uddin, and N. Papri, “Prospect of Molecular Sieves Production using Rice Husk in Bangladesh: A Review,” International Journal of Chemistry, Mathematics and Physics, vol. 3, no. 6, pp. 105–134, 2019, doi: 10.22161/ijcmp.3.6.2. | spa |
dc.relation.references | L. A. Zemnukhova and Yu. M. Nikolenko, “Study by X-ray photoelectron spectroscopy of rice husk and the products of its processing,” Russ J Gen Chem, vol. 81, no. 4, p. 694, 2011, doi: 10.1134/S1070363211040128. | spa |
dc.relation.references | H. Marsmann, “29Si NMR,” in Encyclopedia of spectroscopy and spectrometry, Segunda., J. Lindon, G. Tranter, and D. Koppenaal, Eds., San Diego: Academic Press, 2010, p. 3233. | spa |
dc.relation.references | H. Hamdan, M. N. M. Muhid, S. Endud, E. Listiorini, and Z. Ramli, “29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites,” J Non Cryst Solids, vol. 211, no. 1–2, pp. 126–131, 1997, doi: 10.1016/S0022-3093(96)00611-4. | spa |
dc.relation.references | K. Mochidzuki, A. Sakoda, M. Suzuki, and J. Izumi, “Structural Behavior of Rice Husk Silica in Pressurized Hot-Water,” Ind. Eng. Chem., vol. 40, pp. 5705–5709, 2001. | spa |
dc.relation.references | B. D. Park, S. Gon Wi, K. Ho Lee, A. P. Singh, T. H. Yoon, and Y. Soo Kim, “Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques,” Biomass Bioenergy, vol. 25, no. 3, pp. 319–327, 2003, doi: 10.1016/S0961-9534(03)00014-X. | spa |
dc.relation.references | S. C. Byun et al., “Morphology of the cross section of silica layer in rice husk,” J Nanosci Nanotechnol, vol. 11, no. 2, pp. 1305–1309, 2011, doi: 10.1166/jnn.2011.3338. | spa |
dc.relation.references | H. Ehrlich, K. D. Demadis, O. S. Pokrovsky, and P. G. Koutsoukos, “Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments,” Chem Rev, vol. 110, no. 8, pp. 4656–4689, Aug. 2010, doi: 10.1021/cr900334y. | spa |
dc.relation.references | W. J. Lee, S. L. Bernasek, and C. S. Han, “Interpretation on Nanoporous Network Structure in Rice Husk Silica Layer: A Graph Model,” ACS Omega, vol. 3, no. 9, pp. 11544–11549, 2018, doi: 10.1021/acsomega.8b01453. | spa |
dc.relation.references | A. I. Zakharov, A. V Belyakov, and A. N. Tsvigunov, “Forms of extraction of silicon compounds in rice husks,” Glass and Ceramics, vol. 50, no. 9, pp. 420–425, 1993, doi: 10.1007/BF00683590. | spa |
dc.relation.references | B. Luh, “Rice hulls,” in Rice production, 2nd ed., B. Luh, Ed., Boston: Springer, 1991, ch. 12, pp. 688–713. | spa |
dc.relation.references | W. Simmler, “Silicon Compounds, Inorganic,” in Ullmann’s Encyclopedia of Industrial Chemistry, 2000, pp. 615–635. doi: https://doi.org/10.1002/14356007.a24_001. | spa |
dc.relation.references | N. Cardona Uribe, C. Arenas Echeverri, M. Batancur, L. Jaramillo, and J. Martínez, “Posibilidades de usar la ceniza de cascarilla de arroz como reforzante en el sector de polímeros – una revisión,” Revista UIS Ingenierías, vol. 17, no. 1, pp. 127–142, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018012. | spa |
dc.relation.references | F. Adam, J. N. Appaturi, and A. Iqbal, “The utilization of rice husk silica as a catalyst: Review and recent progress,” Catal Today, vol. 190, no. 1, pp. 2–14, 2012, doi: https://doi.org/10.1016/j.cattod.2012.04.056. | spa |
dc.relation.references | V. Swamy, S. K. Saxena, B. Sundman, and J. Zhang, “A thermodynamic assessment of silica phase diagram,” J Geophys Res Solid Earth, vol. 99, no. B6, pp. 11787–11794, 1994. | spa |
dc.relation.references | W. Cai, R. Liu, Y. He, M. Chai, and J. Cai, “Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor,” Fuel Processing Technology, vol. 171, no. November 2017, pp. 308–317, 2018, doi: 10.1016/j.fuproc.2017.12.001. | spa |
dc.relation.references | R. A. Bakar, R. Yahya, and S. N. Gan, “Production of High Purity Amorphous Silica from Rice Husk,” Procedia Chem, vol. 19, pp. 189–195, 2016, doi: https://doi.org/10.1016/j.proche.2016.03.092. | spa |
dc.relation.references | H. Beidaghy-Dizaji, T. Zeng, and D. Enke, “Mitigation of ash-melting behaviour during combustion of silica-rich biomass assortments to enhance porosity of biogenic silica,” 29th European Biomass Conference and Exhibition, p. 5, 2021, doi: 10.5071/29thEUBCE2021-3AO.9.4. | spa |
dc.relation.references | C. Klein and B. Dutrow, The 23rd Edition of the Manual of Mineral Science: (after James D. Dana). John Wiley & Sons, 2008. | spa |
dc.relation.references | R. V Krishnarao, J. Subrahmanyam, and T. Jagadish Kumar, “Studies on the formation of black particles in rice husk silica ash,” J Eur Ceram Soc, vol. 21, no. 1, pp. 99–104, 2001, doi: https://doi.org/10.1016/S0955-2219(00)00170-9. | spa |
dc.relation.references | A. Anca-Couce, P. Sommersacher, C. Hochenauer, and R. Scharler, “Multi-stage model for the release of potassium in single particle biomass combustion,” Fuel, vol. 280, no. June, p. 118569, 2020, doi: 10.1016/j.fuel.2020.118569. | spa |
dc.relation.references | C. Yu et al., “Influence of leaching pretreatment on fuel properties of biomass,” Fuel Processing Technology, vol. 128, pp. 43–53, 2014, doi: 10.1016/j.fuproc.2014.06.030. | spa |
dc.relation.references | Y. W. Bandara, P. Gamage, and D. S. Gunarathne, “Hot water washing of rice husk for ash removal: The effect of washing temperature, washing time and particle size,” Renew Energy, vol. 153, pp. 646–652, 2020, doi: https://doi.org/10.1016/j.renene.2020.02.038. | spa |
dc.relation.references | S. Gu, J. Zhuo, Z. Luo, Q. Wang, and M. Ni, “A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk,” Ind Crops Prod, vol. 50, pp. 540–549, Oct. 2013, doi: 10.1016/J.INDCROP.2013.08.004. | spa |
dc.relation.references | J. Ge et al., “Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus,” Bioresour Technol, vol. 307, p. 123246, 2020, doi: https://doi.org/10.1016/j.biortech.2020.123246. | spa |
dc.relation.references | Q. Guo, Z. Cheng, G. Chen, B. Yan, L. Hou, and F. Ronsse, “Optimal strategy for clean and efficient biomass combustion based on ash deposition tendency and kinetic analysis,” J Clean Prod, vol. 271, p. 122529, 2020, doi: 10.1016/j.jclepro.2020.122529. | spa |
dc.relation.references | L. Xiong, K. Saito, E. H. Sekiya, P. Sujaridworakun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Journal of metals, materials and minerals, vol. 19, no. 2, pp. 73–77, 2009. | spa |
dc.relation.references | L. Xiong, E. H. Sekiya, P. Sujaridworakun, S. Wada, and K. Saito, “Burning temperature dependence of rice husk ashes in structure and property,” Journal of metals, materials and minerals, vol. 19, no. 2, pp. 95–99, 2009. | spa |
dc.relation.references | T.-H. Liou, “Evolution of chemistry and morphology during the carbonization and combustion of rice husk,” Carbon N Y, vol. 42, no. 4, pp. 785–794, 2004, doi: https://doi.org/10.1016/j.carbon.2004.01.050. | spa |
dc.relation.references | J. Shen, X. Liu, S. Zhu, H. Zhang, and J. Tan, “Effects of calcination parameters on the silica phase of original and leached rice husk ash,” Mater Lett, vol. 65, no. 8, pp. 1179–1183, 2011, doi: 10.1016/j.matlet.2011.01.034. | spa |
dc.relation.references | C. Arce and L. Kratky, “Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization,” iScience, vol. 25, no. 7, 2022, doi: 10.1016/j.isci.2022.104610. | spa |
dc.relation.references | Y. Shen, “Biomass pretreatment for steam gasification toward H2-rich syngas production – An overview,” Int J Hydrogen Energy, vol. 66, no. April, pp. 90–102, 2024. | spa |
dc.relation.references | C. Mayer-Laigle, A. Bourmaud, D. U. Shah, N. Follain, and J. Beaugrand, “Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibre,” Powder Technol, vol. 360, pp. 129–140, 2020, doi: 10.1016/j.powtec.2019.10.024. | spa |
dc.relation.references | G. Guo et al., “Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics,” Bioresour Technol, vol. 301, no. November 2019, 2020, doi: 10.1016/j.biortech.2020.122732. | spa |
dc.relation.references | C. Mayer-Laigle, N. Blanc, R. K. Rajaonarivony, and X. Rouau, “Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour,” Bioengineering, vol. 5, no. 2, 2018, doi: 10.3390/bioengineering5020041. | spa |
dc.relation.references | Q. Guo, X. Chen, and H. Liu, “Experimental research on shape and size distribution of biomass particle,” Fuel, vol. 94, pp. 551–555, 2012, doi: https://doi.org/10.1016/j.fuel.2011.11.041. | spa |
dc.relation.references | H.-J. Kim and Y.-G. Eom, “Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites,” Journal of the Korean Wood Science and Technology, vol. 29, no. 3, pp. 59–67, 2001. | spa |
dc.relation.references | M. Estevez, S. Vargas, V. M. Castaño, and R. Rodriguez, “Silica nano-particles produced by worms through a bio-digestion process of rice husk,” J Non Cryst Solids, vol. 355, no. 14, pp. 844–850, 2009, doi: https://doi.org/10.1016/j.jnoncrysol.2009.04.011. | spa |
dc.relation.references | V. K. Gupta and M. G. Tuohy, Mycodegradation of lignocelluloses. Suiza: Springer, 2019. | spa |
dc.relation.references | T. N. Ang, “Production of laccase ezyme using rice husk as substrate in fungal solid-state fermentation,” University of Malaya, 2013. | spa |
dc.relation.references | K. Rohatgi, S. V Prasad, and P. K. Rohatgi, “Release of silica-rich particles from rice husk by microbial fermentation,” J Mater Sci Lett, vol. 6, no. 7, pp. 829–831, 1987, doi: 10.1007/BF01729027. | spa |
dc.relation.references | R. Potumarthi, R. Raju, P. Nayak, and A. Jetty, “Bioresource Technology Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars,” Bioresour Technol, vol. 128, pp. 113–117, 2013, doi: 10.1016/j.biortech.2012.10.030. | spa |
dc.relation.references | V. Bansal, A. Ahmad, and M. Sastry, “Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica,” J Am Chem Soc, vol. 128, no. 43, pp. 14059–14066, 2006. | spa |
dc.relation.references | H. Chen et al., “Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass,” ACS Sustain Chem Eng, vol. 1, no. 2, pp. 254–259, Feb. 2013, doi: 10.1021/sc300115r. | spa |
dc.relation.references | S. Zhang, T. Chen, and Y. Xiong, “Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica,” Waste Biomass Valorization, vol. 9, no. 5, pp. 861–869, 2018, doi: 10.1007/s12649-017-9845-9. | spa |
dc.relation.references | T.-H. Liou and C.-C. Yang, “Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash,” Materials Science and Engineering: B, vol. 176, no. 7, pp. 521–529, 2011, doi: https://doi.org/10.1016/j.mseb.2011.01.007. | spa |
dc.relation.references | T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1126–1140, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.185. | spa |
dc.relation.references | A. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica,” J Mater Sci, vol. 23, no. 1, pp. 21–24, 1988, doi: 10.1007/BF01174029. | spa |
dc.relation.references | V. B. Carmona, R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini, “Nanosilica from rice husk: Extraction and characterization,” Ind Crops Prod, vol. 43, pp. 291–296, 2013, doi: https://doi.org/10.1016/j.indcrop.2012.06.050. | spa |
dc.relation.references | J. H. Lee, J. H. Kwon, J.-W. Lee, H. Lee, J. H. Chang, and B.-I. Sang, “Preparation of high purity silica originated from rice husks by chemically removing metallic impurities,” Journal of Industrial and Engineering Chemistry, vol. 50, pp. 79–85, 2017, doi: https://doi.org/10.1016/j.jiec.2017.01.033. | spa |
dc.relation.references | J. R. He, W. C. Kuo, C. S. Su, and H. P. Lin, “Isolation of bio-mesoporous silica from rice husk,” Journal of the Chinese Chemical Society, vol. 61, no. 7, pp. 836–840, 2014, doi: 10.1002/jccs.201300658. | spa |
dc.relation.references | P. Chen, H. Bie, and R. Bie, “Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles,” Korean Journal of Chemical Engineering, vol. 35, no. 9, pp. 1911–1918, 2018, doi: 10.1007/s11814-018-0103-z. | spa |
dc.relation.references | J. Umeda and K. Kondoh, “High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal,” Ind Crops Prod, vol. 32, no. 3, pp. 539–544, Nov. 2010, doi: 10.1016/J.INDCROP.2010.07.002. | spa |
dc.relation.references | N. Yalçin and V. Sevinç, “Studies on silica obtained from rice husk,” Ceram Int, vol. 27, no. 2, pp. 219–224, 2001, doi: 10.1016/S0272-8842(00)00068-7. | spa |
dc.relation.references | S. Chandrasekhar, P. N. Pramada, and J. Majeed, “Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash,” J Mater Sci, vol. 41, no. 23, pp. 7926–7933, 2006. | spa |
dc.relation.references | Q. Feng, H. Yamamichi, M. Shoya, and S. Sugita, “Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment,” Cem Concr Res, vol. 34, no. 3, pp. 521–526, 2004, doi: 10.1016/j.cemconres.2003.09.005. | spa |
dc.relation.references | L. Xiong, E. H. Sekiya, S. Wada, and K. Saito, “Facile Catalytic Combustion of Rice Husk and Burning Temperature Dependence of the Ashes,” ACS Appl Mater Interfaces, vol. 1, no. 11, pp. 2509–2518, Nov. 2009, doi: 10.1021/am9004623. | spa |
dc.relation.references | D. Schneider, S. Wassersleben, M. Weiß, R. Denecke, A. Stark, and D. Enke, “A Generalized Procedure for the Production of High-Grade, Porous Biogenic Silica,” Waste Biomass Valorization, vol. 11, no. 1, pp. 1–15, 2020, doi: 10.1007/s12649-018-0415-6. | spa |
dc.relation.references | A. Zareihassangheshlaghi et al., “Behavior of Metal Impurities on Surface and Bulk of Biogenic Silica from Rice Husk Combustion and the Impact on Ash-Melting Tendency,” ACS Sustain Chem Eng, vol. 8, no. 28, pp. 10369–10379, Jul. 2020, doi: 10.1021/acssuschemeng.0c01484. | spa |
dc.relation.references | D. Feng, Y. Zhang, Y. Zhao, and S. Sun, “Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties,” Energy, vol. 152, pp. 166–177, Jun. 2018, doi: 10.1016/J.ENERGY.2018.03.119. | spa |
dc.relation.references | T. N. Ang, G. C. Ngoh, and A. S. May Chua, “Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk,” Bioresour Technol, vol. 135, pp. 116–119, May 2012, doi: 10.1016/J.BIORTECH.2012.09.045. | spa |
dc.relation.references | M. K. Islam et al., “Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery,” Bioresour Technol, vol. 298, no. December 2019, p. 122558, 2020, doi: 10.1016/j.biortech.2019.122558. | spa |
dc.relation.references | T. Hardianto, A. A. Wenas, and F. B. Juangsa, “Upgrading process of palm empty fruit bunches as alternative solid fuel: a review,” Clean Energy, vol. 7, no. 6, pp. 1173–1188, 2023, doi: 10.1093/ce/zkad059. | spa |
dc.relation.references | L. Xiong, K. Saito, E. Sekita, P. Sujaridworaun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Metals, Materials and Minerals, vol. 19, no. 2, pp. 73–77, 2009. | spa |
dc.relation.references | S. K. S. Hossain and P. K. R. Lakshya Mathur, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, 2018, doi: 10.1080/21870764.2018.1539210. | spa |
dc.relation.references | X. Liu et al., “Catalytic effects of ion-exchangeable potassium ion on combustion behavior of Loy Yang lignite,” Thermochim Acta, vol. 687, no. March, p. 178582, 2020, doi: 10.1016/j.tca.2020.178582. | spa |
dc.relation.references | J. Hu, Y. Yan, Y. Song, J. Liu, F. Evrendilek, and M. Buyukada, “Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: Bioenergy, emission and ash deposition improvements,” J Clean Prod, vol. 270, p. 122418, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122418. | spa |
dc.relation.references | L. Wang et al., “Investigation on catalyzed combustion of wheat straw by thermal analysis,” Thermochim Acta, vol. 512, no. 1–2, pp. 254–257, 2011, doi: 10.1016/j.tca.2010.11.006. | spa |
dc.relation.references | J. Cai, S. Wang, C. Kuang, and X. Tang, “Insight into the kinetic analysis of catalytic combustion for biomass after alkaline metals loaded pretreatment,” Fuel, vol. 203, pp. 501–513, 2017, doi: https://doi.org/10.1016/j.fuel.2017.04.137. | spa |
dc.relation.references | R. Yuan, S. Yu, and Y. Shen, “Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues,” Waste Management, vol. 87, pp. 86–96, 2019, doi: https://doi.org/10.1016/j.wasman.2019.02.009. | spa |
dc.relation.references | K. Aldebrecht, M. Olarte, and H. Wang, “Upgrading Fast Pyrolysis Liquids,” in Thermochemical processing of biomass, R. Brown, Ed., Iowa: Wiley, 2019, ch. 7, p. 400. | spa |
dc.relation.references | M. Sharifzadeh et al., “The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions,” Prog Energy Combust Sci, vol. 71, pp. 1–80, 2019, doi: https://doi.org/10.1016/j.pecs.2018.10.006. | spa |
dc.relation.references | S. Eibner, F. Broust, J. Blin, and A. Julbe, “Catalytic effect of metal nitrate salts during pyrolysis of impregnated biomass,” J Anal Appl Pyrolysis, vol. 113, pp. 143–152, 2015, doi: 10.1016/j.jaap.2014.11.024. | spa |
dc.relation.references | A. Awasthi and T. Bhaskar, “Chapter 11 - Combustion of Lignocellulosic Biomass,” in Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. B. T.-B. A. F. and C. P. for the P. of L. and G. B. (Second E. Ricke, Eds., Academic Press, 2019, pp. 267–284. doi: https://doi.org/10.1016/B978-0-12-816856-1.00011-7. | spa |
dc.relation.references | O. Senneca, R. Chirone, and P. Salatino, “Oxidative pyrolysis of solid fuels,” J Anal Appl Pyrolysis, vol. 71, no. 2, pp. 959–970, 2004, doi: https://doi.org/10.1016/j.jaap.2003.12.006. | spa |
dc.relation.references | S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim Acta, vol. 520, no. 1, pp. 1–19, 2011, doi: https://doi.org/10.1016/j.tca.2011.03 | spa |
dc.relation.references | S. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim Acta, vol. 590, pp. 1–23, 2014, doi: https://doi.org/10.1016/j.tca.2014.05.036. | spa |
dc.relation.references | S. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics,” Thermochim Acta, vol. 689, p. 178597, 2020, doi: https://doi.org/10.1016/j.tca.2020.178597. | spa |
dc.relation.references | N. Koga et al., “ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics,” Thermochim Acta, vol. 719, p. 179384, 2023, doi: https://doi.org/10.1016/j.tca.2022.179384. | spa |
dc.relation.references | J. Grams and A. M. Ruppert, “Development of heterogeneous catalysts for thermo-chemical conversion of lignocellulosic biomass,” Energies (Basel), vol. 10, no. 4, p. 545, 2017, doi: https://doi.org/10.3390/en10040545. | spa |
dc.relation.references | R. Svoboda, “Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses,” J Eur Ceram Soc, vol. 44, no. 1, pp. 401–407, 2024, doi: https://doi.org/10.1016/j.jeurceramsoc.2023.08.050. | spa |
dc.relation.references | H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12, pp. 1781–1788, 2007, doi: https://doi.org/10.1016/j.fuel.2006.12.013. | spa |
dc.relation.references | O. Senneca, R. Chirone, and P. Salatino, “Oxidative pyrolysis of solid fuels,” J Anal Appl Pyrolysis, vol. 71, no. 2, pp. 959–970, 2004, doi: https://doi.org/10.1016/j.jaap.2003.12.006. | spa |
dc.relation.references | G. Mishra and T. Bhaskar, “Non isothermal model free kinetics for pyrolysis of rice straw,” Bioresour Technol, vol. 169, pp. 614–621, 2014, doi: https://doi.org/10.1016/j.biortech.2014.07.045. | spa |
dc.relation.references | W. Wang et al., “Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure,” Fuel, vol. 322, p. 124200, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124200. | spa |
dc.relation.references | M. E. Mostafa, R. A. Alsulami, and Y. M. Khedr, “Chemical kinetic models, reaction mechanism estimation and thermodynamic parameters for the thermochemical conversion of solid wastes: Review,” J Anal Appl Pyrolysis, vol. 179, p. 106431, 2024, doi: https://doi.org/10.1016/j.jaap.2024.106431. | spa |
dc.relation.references | Y. Zhong, T. Zhou, S. Wei, Z. Tang, C. Li, and Y. Ding, “Kinetic reaction mechanism of lignocellulosic biomass oxidative pyrolysis based on combined kinetics,” J Environ Manage, vol. 352, p. 120055, 2024, doi: https://doi.org/10.1016/j.jenvman.2024.120055. | spa |
dc.relation.references | O. Senneca and F. Cerciello, “Kinetics of combustion of lignocellulosic biomass: recent research and critical issues,” Fuel, vol. 347, p. 128310, 2023, doi: https://doi.org/10.1016/j.fuel.2023.128310. | spa |
dc.relation.references | S. Steven et al., “Transformation method in determining kinetic parameters of biomass thermal decomposition from solid-state approach to volatile state approach,” Biomass Bioenergy, vol. 183, p. 107171, 2024, doi: https://doi.org/10.1016/j.biombioe.2024.107171. | spa |
dc.relation.references | I. Rovenţa, L. A. Perez-Maqueda, and A. Rotaru, “Advancements in the integration and understanding of the Sestak–Berggren generalized conversion function for heterogeneous kinetics,” J Therm Anal Calorim, 2023, doi: 10.1007/s10973-023-12727-8. | spa |
dc.relation.references | R. Aniza, W.-H. Chen, E. E. Kwon, Q.-V. Bach, and A. T. Hoang, “Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review,” Energy Conversion and Management: X, vol. 22, p. 100538, 2024, doi: https://doi.org/10.1016/j.ecmx.2024.100538. | spa |
dc.relation.references | Z. Zhang et al., “Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis,” Renew Energy, vol. 202, pp. 154–171, 2023, doi: https://doi.org/10.1016/j.renene.2022.11.072. | spa |
dc.relation.references | M. G. Grønli, G. Várhegyi, and C. Di Blasi, “Thermogravimetric Analysis and Devolatilization Kinetics of Wood,” Ind Eng Chem Res, vol. 41, no. 17, pp. 4201–4208, Aug. 2002, doi: 10.1021/ie0201157. | spa |
dc.relation.references | P. Ma, B. Li, R. Diao, X. Liu, Z. Cheng, and F. Qi, “Demineralization effects on physicochemical and combustion characteristics of biomass: Insights into distributed kinetics, flue gas evolution, and slag formation,” Fuel, vol. 370, Aug. 2024, doi: 10.1016/j.fuel.2024.131836. | spa |
dc.relation.references | A. Bin Rahman, Rubaiyath, and J. Zhang, “Trends in rice research: 2030 and beyond,” Food Energy Secur, vol. 12, no. 2, p. e390, Mar. 2023, doi: https://doi.org/10.1002/fes3.390. | spa |
dc.relation.references | F. and A. O. of the U. N. FAO, “FAOSTAT.” [Online]. Available: https://www.fao.org/faostat/en/#data/QCL | spa |
dc.relation.references | G. Jyothsna, A. Bahurudeen, and P. Sahu, “Sustainable utilization of rice husk for cleaner energy: A circular economy between agricultural, energy and construction sectors,” Materials Today Sustainability, vol. 25, p. 100667, 2024, doi: https://doi.org/10.1016/j.mtsust.2024.100667. | spa |
dc.relation.references | N. Soltani, A. Bahrami, M. I. Pech-Canul, and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chemical Engineering Journal, vol. 264, pp. 899–935, 2015. | spa |
dc.relation.references | A. Kumar, B. Sengupta, D. Dasgupta, T. Mandal, and S. Datta, “Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Rev Environ Sci Biotechnol, vol. 15, no. 1, pp. 47–65, 2016, doi: 10.1007/s11157-015-9388-0. | spa |
dc.relation.references | H. Beidaghy Dizaji et al., “Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review,” 2019. doi: 10.3390/app9061083. | spa |
dc.relation.references | M. A. Mosaberpanah and S. A. Umar, “Utilizing Rice Husk Ash as Supplement to Cementitious Materials on Performance of Ultra High Performance Concrete: – A review,” Materials Today Sustainability, vol. 7–8, p. 100030, 2020, doi: https://doi.org/10.1016/j.mtsust.2019.100030. | spa |
dc.relation.references | W. K. Setiawan and K.-Y. Chiang, “Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study,” Chemosphere, vol. 279, 2021, doi: 10.1016/j.chemosphere.2021.130541. | spa |
dc.relation.references | R. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247–255, 2017, doi: https://doi.org/10.1016/j.fuproc.2017.01.046. | spa |
dc.relation.references | R. Taurino, F. Bondioli, and M. Messori, “Use of different kinds of waste in the construction of new polymer composites: review,” Materials Today Sustainability, vol. 21, p. 100298, 2023, doi: https://doi.org/10.1016/j.mtsust.2022.100298. | spa |
dc.relation.references | S. Yu, L. Wang, Q. Li, Y. Zhang, and H. Zhou, “Sustainable carbon materials from the pyrolysis of lignocellulosic biomass,” Materials Today Sustainability, vol. 19, p. 100209, 2022, doi: https://doi.org/10.1016/j.mtsust.2022.100209. | spa |
dc.relation.references | W. J. Lee, S. L. Bernasek, and C. S. Han, “Interpretation on Nanoporous Network Structure in Rice Husk Silica Layer: A Graph Model,” ACS Omega, vol. 3, no. 9, pp. 11544–11549, 2018, doi: 10.1021/acsomega.8b01453. | spa |
dc.relation.references | S. C. Byun et al., “Morphology of the cross section of silica layer in rice husk,” J Nanosci Nanotechnol, vol. 11, no. 2, pp. 1305–1309, 2011, doi: 10.1166/jnn.2011.3338. | spa |
dc.relation.references | Q. Guo, X. Chen, and H. Liu, “Experimental research on shape and size distribution of biomass particle,” Fuel, vol. 94, pp. 551–555, 2012, doi: https://doi.org/10.1016/j.fuel.2011.11.041. | spa |
dc.relation.references | M. Gil and I. Arauzo, “Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels,” Fuel Processing Technology, vol. 127, pp. 80–87, 2014, doi: https://doi.org/10.1016/j.fuproc.2014.06.016. | spa |
dc.relation.references | K. Chen et al., “Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010,” Chemosphere, vol. 287, no. P2, p. 132222, 2022, doi: 10.1016/j.chemosphere.2021.132222. | spa |
dc.relation.references | Q. Zhang et al., “Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes,” Ind Crops Prod, vol. 146, p. 112185, 2020, doi: https://doi.org/10.1016/j.indcrop.2020.112185. | spa |
dc.relation.references | J.-C. Motte, J.-Y. Delenne, X. Rouau, and C. Mayer-Laigle, “Mineral–vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles,” Bioresour Technol, vol. 192, pp. 703–710, 2015, doi: https://doi.org/10.1016/j.biortech.2015.06.036. | spa |
dc.relation.references | T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1126–1140, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.185. | spa |
dc.relation.references | S. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog Energy Combust Sci, vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004. | spa |
dc.relation.references | S. S. Shukla, R. Chava, S. Appari, B. A, and B. V. R. Kuncharam, “Sustainable use of rice husk for the cleaner production of value-added products,” J Environ Chem Eng, vol. 10, no. 1, p. 106899, 2022, doi: 10.1016/j.jece.2021.106899. | spa |
dc.relation.references | J. Shen, X.-S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes, and C.-Z. Li, “Effects of particle size on the fast pyrolysis of oil mallee woody biomass,” Fuel, vol. 88, no. 10, pp. 1810–1817, 2009, doi: https://doi.org/10.1016/j.fuel.2009.05.001. | spa |
dc.relation.references | C. Mayer-Laigle, A. Bourmaud, D. U. Shah, N. Follain, and J. Beaugrand, “Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibre,” Powder Technol, vol. 360, pp. 129–140, 2020, doi: 10.1016/j.powtec.2019.10.024. | spa |
dc.relation.references | I. Nasir, N. Ameram, A. Ali, S. R. Hassan, N. A. C. Zaudin, and J. M. Sapari, “A review of rice husk silica as a heterogeneous catalyst support,” Journal of Metals, Materials and Minerals, vol. 31, no. 4, pp. 1–12, 2021, doi: 10.14456/jmmm.2021.51. | spa |
dc.relation.references | S. Raja, M. Ravichandran, R. S. R. Isaac, and N. Abilash, “A review: Sources of silica from agro waste and its extraction methods,” Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 8 Special Issue, pp. 765–772, 2019. | spa |
dc.relation.references | S. Nawaz, F. Jamil, P. Akhter, M. Hussain, H. Jang, and Y.-K. Park, “Valorization of lignocellulosic rice husk producing biosilica and biofuels—a review,” JPhys Energy, vol. 5, no. 1, 2023, doi: 10.1088/2515-7655/aca5b4. | spa |
dc.relation.references | V. Branco and M. Costa, “Effect of particle size on the burnout and emissions of particulate matter from the combustion of pulverized agricultural residues in a drop tube furnace,” Energy Convers Manag, vol. 149, pp. 774–780, 2017, doi: https://doi.org/10.1016/j.enconman.2017.03.012. | spa |
dc.relation.references | J. F. Saldarriaga, R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao, “Fast characterization of biomass fuels by thermogravimetric analysis (TGA),” Fuel, vol. 140, pp. 744–751, 2015, doi: 10.1016/j.fuel.2014.10.024. | spa |
dc.relation.references | J. Parikh, S. A. Channiwala, and G. K. Ghosal, “A correlation for calculating elemental composition from proximate analysis of biomass materials,” Fuel, vol. 86, no. 12–13, pp. 1710–1719, 2007, doi: 10.1016/j.fuel.2006.12.029. | spa |
dc.relation.references | J. F. Saldarriaga Elorza, “Avances en el modelado de la combustión de biomasa en spouted bed cónico,” Universidad del País Vasco, 2015. | spa |
dc.relation.references | C. Wang, X. Zhang, Y. Liu, and D. Che, “Pyrolysis and combustion characteristics of coals in oxyfuel combustion,” Appl Energy, vol. 97, pp. 264–273, 2012, doi: 10.1016/j.apenergy.2012.02.011. | spa |
dc.relation.references | C. Liu, J. Liu, F. Evrendilek, W. Xie, J. Kuo, and M. Buyukada, “Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS,” Renew Energy, vol. 148, pp. 1074–1093, 2020, doi: 10.1016/j.renene.2019.09.133. | spa |
dc.relation.references | Y. Y. Isworo, G.-M. Kim, J.-W. Jeong, and C.-H. Jeon, “Evaluation of Torrefied Empty Fruit Bunch (EFB) and Kenaf Combustion Characteristics: Comparison Study between EFB and Kenaf Based on Microstructure Analysis and Thermogravimetric Methods,” Energy & Fuels, vol. 34, no. 6, pp. 7094–7104, Jun. 2020, doi: 10.1021/acs.energyfuels.9b04380. | spa |
dc.relation.references | C. Mayer-Laigle et al., “DRY biorefineries: Multiscale modeling studies and innovative processing,” Innovative Food Science and Emerging Technologies, vol. 46, pp. 131–139, 2018, doi: 10.1016/j.ifset.2017.08.006. | spa |
dc.relation.references | T. G. Bridgeman et al., “Influence of particle size on the analytical and chemical properties of two energy crops,” Fuel, vol. 86, no. 1, pp. 60–72, 2007, doi: https://doi.org/10.1016/j.fuel.2006.06.022. | spa |
dc.relation.references | D. A. Ramirez-Quintero and W. A. Bizzo, “Experimental characterization of the size, shape and ash composition of solid particles from different biomasses and separated by elutriation,” Biomass Bioenergy, vol. 172, p. 106767, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106767. | spa |
dc.relation.references | C. Arce and L. Kratky, “Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization,” iScience, vol. 25, no. 7, 2022, doi: 10.1016/j.isci.2022.104610. | spa |
dc.relation.references | G. Guo et al., “Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics,” Bioresour Technol, vol. 301, no. December 2019, 2020, doi: 10.1016/j.biortech.2020.122732. | spa |
dc.relation.references | M. Alhinai, A. Azad, M. Abu-Bakar, and N. Phusunti, “Characterisation and thermochemical conversion of rice husk for biochar production,” International Journal of Renewable Energy Research, vol. 8, no. 3, pp. 1648–1656, 2018. | spa |
dc.relation.references | H.-J. Kim and Y.-G. Eom, “Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites,” Journal of the Korean Wood Science and Technology, vol. 29, no. 3, pp. 59–67, 2001. | spa |
dc.relation.references | X. Chen et al., “Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield,” Fuel Processing Technology, vol. 196, no. August, p. 106180, 2019, doi: 10.1016/j.fuproc.2019.106180. | spa |
dc.relation.references | S. V Vassilev, D. Baxter, and C. G. Vassileva, “An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types,” Fuel, vol. 117, pp. 152–183, 2014, doi: https://doi.org/10.1016/j.fuel.2013.09.024. | spa |
dc.relation.references | T. Ma, C. Fan, L. Hao, S. Li, W. Song, and W. Lin, “Fusion characterization of biomass ash,” Thermochim Acta, vol. 638, pp. 1–9, 2016, doi: 10.1016/j.tca.2016.06.008. | spa |
dc.relation.references | F. He, X. Li, F. Behrendt, T. Schliermann, J. Shi, and Y. Liu, “Critical changes of inorganics during combustion of herbaceous biomass displayed in its water soluble fractions,” Fuel Processing Technology, vol. 198, no. October 2019, p. 106231, 2020, doi: 10.1016/j.fuproc.2019.106231. | spa |
dc.relation.references | I. J. Fernandes et al., “Characterization of rice husk ash produced using different biomass combustion techniques for energy,” Fuel, vol. 165, pp. 351–359, 2016, doi: https://doi.org/10.1016/j.fuel.2015.10.086. | spa |
dc.relation.references | X. Bai, G. Wang, Y. Yu, D. Wang, and Z. Wang, “Changes in the physicochemical structure and pyrolysis characteristics of wheat straw after rod-milling pretreatment,” Bioresour Technol, vol. 250, pp. 770–776, 2018, doi: https://doi.org/10.1016/j.biortech.2017.11.085. | spa |
dc.relation.references | C. Mayer-Laigle, N. Blanc, R. K. Rajaonarivony, and X. Rouau, “Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour,” 2018. doi: 10.3390/bioengineering5020041. | spa |
dc.relation.references | P. Boonsuk et al., “Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites,” Int J Biol Macromol, vol. 167, pp. 130–140, 2021, doi: 10.1016/j.ijbiomac.2020.11.157. | spa |
dc.relation.references | S. El-Sayed, “Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA,” Engineering in Agriculture, Environment and Food, vol. 12, no. 4, pp. 460–469, 2019, doi: 10.1016/j.eaef.2019.08.002. | spa |
dc.relation.references | P. He, Y. Liu, L. Shao, H. Zhang, and F. Lü, “Particle size dependence of the physicochemical properties of biochar,” Chemosphere, vol. 212, pp. 385–392, 2018, doi: https://doi.org/10.1016/j.chemosphere.2018.08.106. | spa |
dc.relation.references | T. CaliŃski, “Dendrogram,” Wiley StatsRef: Statistics Reference Online, pp. 1–3, 2014. | spa |
dc.relation.references | M. Forina, C. Armanino, and V. Raggio, “Clustering with dendrograms on interpretation variables,” Anal Chim Acta, vol. 454, no. 1, pp. 13–19, 2002, doi: 10.1016/S0003-2670(01)01517-3. | spa |
dc.relation.references | S. M. Al-Amsyar, “Sulfonated-silica/carbon composites from rice husk as heterogeneous catalysts in fructose conversion: The effect of controlling carbonization temperature of rice husk on its physicochemical properties and catalytic activities,” Microporous and Mesoporous Materials, vol. 336, 2022, doi: 10.1016/j.micromeso.2022.111896. | spa |
dc.relation.references | A. M. Grimm, L. Y. Dorsch, G. H. Kloess, D. Enke, and A. Roppertz, “Transition metal promoted combustion of rice husk and rice straw towards an energy optimized synthesis of biogenic silica,” Biomass Bioenergy, vol. 155, no. September, p. 106282, 2021, doi: 10.1016/j.biombioe.2021.106282. | spa |
dc.relation.references | C. Mayer-Laigle, R. K. Rajaonarivony, X. Rouau, and C. Fabre, “Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up,” Open Research Europe, vol. 1, 2022, doi: 10.12688/openreseurope.14017.2. | spa |
dc.relation.references | G. Kumar et al., “A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels,” Fuel, vol. 251, pp. 352–367, 2019, doi: https://doi.org/10.1016/j.fuel.2019.04.049. | spa |
dc.relation.references | M. Choudhary et al., “Sustainable valorization of rice husk: thermal behavior and kinetics after chemical treatments,” Biomass Convers Biorefin, 2023, doi: 10.1007/s13399-023-04774-w. | spa |
dc.relation.references | P. Giudicianni et al., “Inherent Metal Elements in Biomass Pyrolysis: A Review,” Energy and Fuels, vol. 35, 2021, doi: 10.1021/acs.energyfuels.0c04046. | spa |
dc.relation.references | S. Rajamani, S. S. N. Kolla, R. Gudivada, R. Raghunath, K. Ramesh, and S. A. Jadhav, “Valorization of Rice Husk to Value-Added Chemicals and Functional Materials,” Int J Environ Res, vol. 17, no. 1, p. 22, 2023, doi: 10.1007/s41742-023-00512-2. | spa |
dc.relation.references | R. Madrid, F. Margarido, and C. A. Nogueira, “Valorisation of rice husk by chemical and thermal treatments,” in Materials Science Forum, P. A.M.P., C. for M. and M. T. CT2M University of Minho, Campus de Azurém, Guimarães, 4800-058, P. A.S., and U. of M. Institute for Polymers and Composites/I3N Campus de Azurém, Guimarães, 4800-058, Eds., Instituto Superior Técnico, Technical University of Lisbon (TULisbon), 1049-001 Lisboa, Av. Rovisco Pais, Portugal: Trans Tech Publications Ltd, 2013, pp. 659–664. doi: 10.4028/www.scientific.net/MSF.730-732.659. | spa |
dc.relation.references | A. R. Capelo, G. Mármol, and J. A. Rossignolo, “Optimization of the rice husk ash production process for the manufacture of magnesium silicate hydrate cements,” J Clean Prod, vol. 425, p. 138891, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138891. | spa |
dc.relation.references | F. I. Gómez-Castro and C. Gutiérrez-Antonio, Biomass: The driver for sustainable development. Elsevier, 2022. doi: https://doi.org/10.1016/B978-0-12-824116-5.00008-8. | spa |
dc.relation.references | S. Rajamani, S. S. N. Kolla, R. Gudivada, R. Raghunath, K. Ramesh, and S. A. Jadhav, “Valorization of Rice Husk to Value-Added Chemicals and Functional Materials,” Int J Environ Res, vol. 17, no. 1, p. 22, 2023, doi: 10.1007/s41742-023-00512-2. | spa |
dc.relation.references | W. H. Kwan and Y. S. Wong, “Acid leached rice husk ash (ARHA) in concrete: A review,” Mater Sci Energy Technol, vol. 3, pp. 501–507, 2020, doi: 10.1016/j.mset.2020.05.001. | spa |
dc.relation.references | Y. S. Wong, W. H. Kwan, and M. Lim, “Enhancing pozzolanic properties of rice husk ash using acid leaching treatment,” in AIP Conference Proceedings, 2019. doi: 10.1063/1.5126562. | spa |
dc.relation.references | A. Anca-Couce, P. Sommersacher, C. Hochenauer, and R. Scharler, “Multi-stage model for the release of potassium in single particle biomass combustion,” Fuel, vol. 280, no. June, p. 118569, 2020, doi: 10.1016/j.fuel.2020.118569. | spa |
dc.relation.references | Z. Wang and Y. Xiong, “Simultaneous improvement in qualities of bio-oil and syngas from catalytic pyrolysis of rice husk by demineralization,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, pp. 1–14, 2020, doi: 10.1080/15567036.2020.1824038. | spa |
dc.relation.references | L. Xiong, K. Saito, S. Wada, and E. H. Sekiya, “Utilization of rice husk to synthesize high-performance phosphors,” Journal of Metals, Materials and Minerals, vol. 19, no. 2, pp. 39–43, 2009. | spa |
dc.relation.references | Y. Shen, P. Zhao, and Q. Shao, “Porous silica and carbon derived materials from rice husk pyrolysis char,” Microporous and Mesoporous Materials, vol. 188, pp. 46–76, 2014, doi: https://doi.org/10.1016/j.micromeso.2014.01.005. | spa |
dc.relation.references | Y. Shen, “Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review,” J Agric Food Chem, vol. 65, no. 5, pp. 995–1004, Feb. 2017, doi: 10.1021/acs.jafc.6b04777. | spa |
dc.relation.references | A. Chakraverty, H. D. Banerjee, and P. Mishra, “Production of amorphous silica from rice husk in a vertical furnace,” AMA, Agricultural Mechanization in Asia, Africa and Latin America, vol. 21, no. 4, pp. 69–75, 1990, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025498665&partnerID=40&md5=1cb1e47bbd4d36662aad8de51f3499a5 | spa |
dc.relation.references | A. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of thermal decomposition of rice husk,” Thermochim Acta, vol. 94, no. 2, pp. 267–275, 1985, doi: https://doi.org/10.1016/0040-6031(85)85270-9. | spa |
dc.relation.references | A. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica,” J Mater Sci, vol. 23, no. 1, pp. 21–24, 1988, doi: 10.1007/BF01174029. | spa |
dc.relation.references | N. Surayah Osman and N. Sapawe, “Waste Material As an Alternative Source of Silica Precursor in Silica Nanoparticle Synthesis-A Review,” Mater Today Proc, vol. 19, pp. 1267–1272, 2019, doi: 10.1016/j.matpr.2019.11.132. | spa |
dc.relation.references | J. Umeda and K. Kondoh, “High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal,” Ind Crops Prod, vol. 32, no. 3, pp. 539–544, 2010, doi: 10.1016/j.indcrop.2010.07.002. | spa |
dc.relation.references | A. Kumar, B. Sengupta, D. Dasgupta, T. Mandal, and S. Datta, “Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Rev Environ Sci Biotechnol, vol. 15, no. 1, pp. 47–65, 2016, doi: 10.1007/s11157-015-9388-0. | spa |
dc.relation.references | S. Sohni, N. A. N. Norulaini, R. Hashim, S. B. Khan, W. Fadhullah, and A. K. Mohd Omar, “Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources,” Ind Crops Prod, vol. 111, pp. 642–650, 2018, doi: https://doi.org/10.1016/j.indcrop.2017.11.031. | spa |
dc.relation.references | S. Zhang, H. Zhang, X. Liu, S. Zhu, L. Hu, and Q. Zhang, “Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst,” Fuel Processing Technology, vol. 175, pp. 17–25, 2018, doi: https://doi.org/10.1016/j.fuproc.2018.03.002. | spa |
dc.relation.references | S. Zhang, S. Zhu, H. Zhang, T. Chen, and Y. Xiong, “Catalytic fast pyrolysis of rice husk: Effect of coupling leaching with torrefaction pretreatment,” J Anal Appl Pyrolysis, vol. 133, pp. 91–96, 2018, doi: https://doi.org/10.1016/j.jaap.2018.04.016. | spa |
dc.relation.references | Q. Dong, S. Zhang, K. Ding, S. Zhu, H. Zhang, and X. Liu, “Pyrolysis behavior of raw/torrefied rice straw after different demineralization processes,” Biomass Bioenergy, vol. 119, pp. 229–236, 2018, doi: https://doi.org/10.1016/j.biombioe.2018.09.032. | spa |
dc.relation.references | S. Zhang, Y. Su, D. Xu, S. Zhu, H. Zhang, and X. Liu, “Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk,” Energy, vol. 149, pp. 804–813, 2018, doi: https://doi.org/10.1016/j.energy.2018.02.110. | spa |
dc.relation.references | S. Zhang, T. Chen, and Y. Xiong, “Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica,” Waste Biomass Valorization, vol. 9, no. 5, pp. 861–869, 2018, doi: 10.1007/s12649-017-9845-9. | spa |
dc.relation.references | D. Montgomery, Design and analysis of experiments, Ninth. Wiley, 2017. | spa |
dc.relation.references | L. S. Sutherland and G. Soares, “The effects of test parameters on the impact response of glass reinforced plastic using an experimental design approach,” Compos Sci Technol, vol. 63, pp. 1–18, 2003, [Online]. Available: www.elsevier.com/locate/compscitech | spa |
dc.relation.references | M. S. Mahmud, F. D. M. Daud, N. Sarifuddin, H. H. M. Zaki, N. H. Nordin, and N. F. Mohammed, “Characterization of silica powder prepared from acid leaching and thermal treatment of RHA,” in AIP Conference Proceedings, 2024, p. 020012. doi: 10.1063/5.0183004. | spa |
dc.relation.references | M. S. Mahmud, F. D. M. Daud, N. Sarifuddin, H. H. M. Zaki, N. H. Nordin, and N. F. Mohammad, “Size reduction via planetary milling and acid leaching effect on rice husk ash-derived nano-silica,” Mater Today Proc, vol. 66, pp. 2786–2790, 2022, doi: 10.1016/j.matpr.2022.06.516. | spa |
dc.relation.references | C. Padwal, H. D. Pham, L. T. M. Hoang, S. Mundree, and D. Dubal, “Deep eutectic solvents assisted biomass pre-treatment to derive sustainable anode materials for lithium-ion batteries,” Sustainable Materials and Technologies, vol. 35, p. e00547, 2023, doi: https://doi.org/10.1016/j.susmat.2022.e00547. | spa |
dc.relation.references | A. Singhal, J. Konttinen, and T. Joronen, “Effect of different washing parameters on the fuel properties and elemental composition of wheat straw in water-washing pre-treatment. Part 1: Effect of washing duration and biomass size,” Fuel, vol. 292, p. 120206, 2021, doi: https://doi.org/10.1016/j.fuel.2021.120206. | spa |
dc.relation.references | A. Singhal, M. Goossens, J. Konttinen, and T. Joronen, “Effect of basic washing parameters on the chemical composition of empty fruit bunches during washing pretreatment: A detailed experimental, pilot, and kinetic study,” Bioresour Technol, vol. 340, p. 125734, 2021, doi: https://doi.org/10.1016/j.biortech.2021.125734. | spa |
dc.relation.references | A. Singhal, M. Goossens, D. Fantozzi, A. Raiko, J. Konttinen, and T. Joronen, “Step washing: A modified pretreatment approach for industrial applications to improve chemical composition of agricultural residues,” Bioresour Technol, vol. 341, p. 125753, 2021, doi: https://doi.org/10.1016/j.biortech.2021.125753. | spa |
dc.relation.references | Y. Wang et al., “Leaching mechanisms of ash-forming elements during water washing of corn straw,” Biomass Convers Biorefin, vol. 14, no. 1, pp. 133–146, 2024, doi: 10.1007/s13399-021-02184-4. | spa |
dc.relation.references | X. Liu and X. T. Bi, “Removal of inorganic constituents from pine barks and switchgrass,” Fuel Processing Technology, vol. 92, no. 7, pp. 1273–1279, 2011, doi: https://doi.org/10.1016/j.fuproc.2011.01.016. | spa |
dc.relation.references | M. A. Peiris and D. S. Gunarathne, “Parametric and kinetic study of washing pretreatment for K and Cl removal from rice husk,” Heliyon, vol. 7, no. 11, 2021, doi: 10.1016/j.heliyon.2021.e08398. | spa |
dc.relation.references | Y. W. Bandara, P. Gamage, and D. S. Gunarathne, “Hot water washing of rice husk for ash removal: The effect of washing temperature, washing time and particle size,” Renew Energy, vol. 153, pp. 646–652, 2020, doi: https://doi.org/10.1016/j.renene.2020.02.038. | spa |
dc.relation.references | K. R. Rajaonarivony, C. Mayer-Laigle, B. Piriou, and X. Rouau, “Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders,” Energy, vol. 227, 2021, doi: 10.1016/j.energy.2021.120508. | spa |
dc.relation.references | C. Mayer-Laigle, R. K. Rajaonarivony, X. Rouau, and C. Fabre, “Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up,” Open Research Europe, vol. 1, 2022, doi: 10.12688/openreseurope.14017.2. | spa |
dc.relation.references | C. Mayer-Laigle et al., “DRY biorefineries: Multiscale modeling studies and innovative processing,” Innovative Food Science and Emerging Technologies, vol. 46, pp. 131–139, 2018, doi: 10.1016/j.ifset.2017.08.006. | spa |
dc.relation.references | J.-C. Motte, J.-Y. Delenne, X. Rouau, and C. Mayer-Laigle, “Mineral–vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles,” Bioresour Technol, vol. 192, pp. 703–710, 2015, doi: https://doi.org/10.1016/j.biortech.2015.06.036. | spa |
dc.relation.references | Q. Abbas et al., “Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars,” J Anal Appl Pyrolysis, vol. 134, pp. 281–292, 2018, doi: https://doi.org/10.1016/j.jaap.2018.06.018. | spa |
dc.relation.references | D. A. Ramirez-Quintero and W. A. Bizzo, “Experimental characterization of the size, shape and ash composition of solid particles from different biomasses and separated by elutriation,” Biomass Bioenergy, vol. 172, p. 106767, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106767. | spa |
dc.relation.references | D. Díaz-Tovar, R. Molina, and S. Moreno, “Towards an understanding of the correlation between the physicochemical and thermal properties of ground rice husks and particle size,” Materials Today Sustainability, p. 100862, 2024, doi: https://doi.org/10.1016/j.mtsust.2024.100862. | spa |
dc.relation.references | S. Gu, J. Zhuo, Z. Luo, Q. Wang, and M. Ni, “A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk,” Ind Crops Prod, vol. 50, pp. 540–549, Oct. 2013, doi: 10.1016/J.INDCROP.2013.08.004. | spa |
dc.relation.references | P. Priyadarshini, S. Nandi, K. Bhunia, and A. Kumar, “Modelling the extraction process parameters of amorphous silica-rich rice husk ash using hybrid RSM − BPANN − MOGA optimization technique,” Mater Chem Phys, vol. 293, no. September 2022, p. 126944, 2023, doi: 10.1016/j.matchemphys.2022.126944. | spa |
dc.relation.references | M. A. Carrillo, S. A. Staggenborg, and J. A. Pineda, “Washing sorghum biomass with water to improve its quality for combustion,” Fuel, vol. 116, pp. 427–431, 2014, doi: https://doi.org/10.1016/j.fuel.2013.08.028. | spa |
dc.relation.references | U. Aslam, N. Ramzan, T. Iqbal, M. Kazmi, and A. Ikhlaq, “Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk,” Polish Journal of Chemical Technology, vol. 18, no. 3, pp. 117–121, 2016, doi: 10.1515/pjct-2016-0057. | spa |
dc.relation.references | P. Chen, H. Bie, and R. Bie, “Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles,” Korean Journal of Chemical Engineering, vol. 35, no. 9, pp. 1911–1918, 2018, doi: 10.1007/s11814-018-0103-z. | spa |
dc.relation.references | J. Fu, G. Allen, S. Weber, S. Q. Turn, and W. Kusch, “Water leaching for improving fuel properties of pongamia Pod: Informing process design,” Fuel, vol. 305, p. 121480, 2021, doi: https://doi.org/10.1016/j.fuel.2021.121480. | spa |
dc.relation.references | J. F. Saldarriaga, R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao, “Fast characterization of biomass fuels by thermogravimetric analysis (TGA),” Fuel, vol. 140, pp. 744–751, 2015, doi: 10.1016/j.fuel.2014.10.024. | spa |
dc.relation.references | D. Díaz-Tovar, S. Moreno, and R. Molina, “Efecto del Tamaño de Partícula de Cascarilla de Arroz Sobre su Descomposición Térmica,” in Anais do 28o Congresso Ibero-americano de Catálise, 2022, Natal: CICAT, 2022, p. 6. | spa |
dc.relation.references | J. Cai, S. Wang, C. Kuang, and X. Tang, “Insight into the kinetic analysis of catalytic combustion for biomass after alkaline metals loaded pretreatment,” Fuel, vol. 203, pp. 501–513, 2017, doi: https://doi.org/10.1016/j.fuel.2017.04.137. | spa |
dc.relation.references | J. Miller, J. Miller, and R. Miller, Statistics and Chemometrics for Analytical Chemistry, 7th ed. Harlow: Pearson, 2018. | spa |
dc.relation.references | S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim Acta, vol. 520, no. 1, pp. 1–19, 2011, doi: https://doi.org/10.1016/j.tca.2011.03.034. | spa |
dc.relation.references | S. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim Acta, vol. 590, pp. 1–23, 2014, doi: https://doi.org/10.1016/j.tca.2014.05.036. | spa |
dc.relation.references | S. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics,” Thermochim Acta, vol. 689, p. 178597, 2020, doi: https://doi.org/10.1016/j.tca.2020.178597. | spa |
dc.relation.references | N. Koga et al., “ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics,” Thermochim Acta, vol. 719, p. 179384, 2023, doi: https://doi.org/10.1016/j.tca.2022.179384. | spa |
dc.relation.references | H. Gutiérrez-Pulido and R. de la Vara-Salazar, Análisis y diseño de experimentos, Tercera. Mexico D.F.: McGraw-Hill Educación, 2012. | spa |
dc.relation.references | Statgraphics Technologies Inc, “Statgraphics Centurion,” 2017, The Plains-Virginia: 18. | spa |
dc.relation.references | P. Kabaila, D. Farchione, S. Alhelli, and N. Bragg, “The effect of a Durbin–Watson pretest on confidence intervals in regression,” Stat Neerl, vol. 75, no. 1, pp. 4–23, 2021. | spa |
dc.relation.references | M. A. A. Shah, G. Özel, C. Chesneau, M. Mohsin, F. Jamal, and M. F. Bhatti, “A statistical study of the determinants of rice crop production in Pakistan,” Pakistan Journal of Agricultural Research, vol. 33, no. 1, pp. 97–105, 2020. | spa |
dc.relation.references | W. L. McCabe, J. Smith, and P. Harriot, Operaciones unitarias en ingeniería química, Séptima. México, D.F.-México: McGraw-Hill Interamericana, 2007. | spa |
dc.relation.references | J. Miller and D. Curtin, “Electrical Conductivity and Soluble Ions,” in Soil Sampling and Methods of Analysis, 2nd ed., Boca Raton: CRC Press, 2006, ch. 2, pp. 187–198. | spa |
dc.relation.references | J.-P. Simonin, “On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics,” Chemical Engineering Journal, vol. 300, pp. 254–263, 2016, doi: https://doi.org/10.1016/j.cej.2016.04.079. | spa |
dc.relation.references | H. Li, X. Xie, Q. Yan, and X. Wei, “Experimental study on occurrence of alkali metals in rice husk,” Electric Power Science and Engineering, vol. 35, no. 6, pp. 58–62, 2019, [Online]. Available: http://dspace.imech.ac.cn/handle/311007/79532 | spa |
dc.relation.references | L. Deng, T. Zhang, and D. Che, “Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass,” Fuel Processing Technology, vol. 106, pp. 712–720, 2013, doi: https://doi.org/10.1016/j.fuproc.2012.10.006. | spa |
dc.relation.references | J. López-Fidalgo, Optimal Experimental Design. Cham: Springer, 2023. | spa |
dc.relation.references | M. Herzog, G. Francis, and A. Clarke, Understanding Statistics and Experimental Design. Cham: Springer, 2019. | spa |
dc.relation.references | N. S. M. Zarib, S. A. Abdullah*, and N. H. Jamil, “Extraction Of Silica From Rice Husk Via Acid Leaching Treatment,” in The European Proceedings of Social & Behavioural Sciences, Cognitive-Crcs, May 2019, pp. 175–183. doi: 10.15405/epsbs.2019.05.02.16. | spa |
dc.relation.references | A. Mahmud, P. S. M. Megat-Yusoff, F. Ahmad, and A. A. Farezzuan, “Acid leaching as efficient chemical treatment for rice husk in production of amorphous silica nanoparticles,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 22, pp. 13384–13388, 2016, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007198760&partnerID=40&md5=35a64547faacfb973470e49211828d2a | spa |
dc.relation.references | V. P. Della, D. Hotza, J. A. Junkes, and A. P. N. De Oliveira, “Comparative study of silica obtained from acid leaching of rice husk and the silica obtained by thermal treatment of rice husk ash,” Quim Nova, vol. 29, no. 6, pp. 1175–1179, 2006, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845694142&partnerID=40&md5=bc312842b9d0ca38c281f3bd51432a14 | spa |
dc.relation.references | C. P. Faizul, D. Murizam, W. A. Rahman, and M. Z. Ruhiyuddin, “Effect of acetic acid leaching process on rice husk,” in AIP Conference Proceedings, R. R.A., A. M.M.A.B., R. S.Z.A., T. M.F.M., M. M.A.M., and J. L., Eds., Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Perlis, Kangar, 01000, Malaysia: American Institute of Physics Inc., 2021. doi: 10.1063/5.0051508. | spa |
dc.relation.references | N. H. Mohamed Muzni, N. H. Jamil, F. Che Pa, and W. M. Arif, “Effect of acid leaching on different state of rice husk,” in Materials Science Forum, 2020, pp. 532–537. doi: 10.4028/www.scientific.net/MSF.1010.532. | spa |
dc.relation.references | J. Umeda and K. Kondoh, “Process Optimization to Prepare High-Purity Amorphous Silica from Rice Husk via Citric Acid Leaching Treatment Process,” Transactions of JWR, vol. 37, no. 1, pp. 13–17, 2008. | spa |
dc.relation.references | D. Schneider, S. Wassersleben, M. Weiß, R. Denecke, A. Stark, and D. Enke, “A Generalized Procedure for the Production of High-Grade, Porous Biogenic Silica,” Waste Biomass Valorization, vol. 11, no. 1, pp. 1–15, 2020, doi: 10.1007/s12649-018-0415-6. | spa |
dc.relation.references | W. K. Setiawan and K.-Y. Chiang, “Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study,” Chemosphere, vol. 279, 2021, doi: 10.1016/j.chemosphere.2021.130541. | spa |
dc.relation.references | S. Azat, A. V Korobeinyk, K. Moustakas, and V. J. Inglezakis, “Sustainable production of pure silica from rice husk waste in Kazakhstan,” J Clean Prod, vol. 217, pp. 352–359, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.01.142. | spa |
dc.relation.references | J. R. He, W. C. Kuo, C. S. Su, and H. P. Lin, “Isolation of bio-mesoporous silica from rice husk,” Journal of the Chinese Chemical Society, vol. 61, no. 7, pp. 836–840, 2014, doi: 10.1002/jccs.201300658. | spa |
dc.relation.references | J. Umeda, K. Kondoh, and Y. Michiura, “Environmentally benign process of high-purity amorphous silica originated in rice husks of agricultural wastes,” in Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, REWAS 2008, 2008, pp. 1493–1498. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62449310430&partnerID=40&md5=7254f082dc4aa0da3af00a57155953d7 | spa |
dc.relation.references | N. S. M. Zarib and S. Abdullah, “Effect of C6H8O7 concentration on silica extraction of rice husk, rice husk ash and mixture of rice husk with rice husk ash via acid leaching process,” International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 190–195, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055591081&partnerID=40&md5=4536da998831e9f946c4780edf878949 | spa |
dc.relation.references | L. Xiong, K. Saito, E. H. Sekiya, P. Sujaridworakun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Journal of metals, materials and minerals, vol. 19, no. 2, pp. 73–77, 2009, [Online]. Available: http://www.ojs.materialsconnex.com/index.php/jmmm/article/view/239 | spa |
dc.relation.references | W. Gao, H. Li, Karnowo, B. Song, and S. Zhang, “Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids,” 2020. doi: 10.3390/en13226033. | spa |
dc.relation.references | J. Umeda and K. Kondoh, “High-purity amorphous silica originated in rice husks via carboxylic acid leaching process,” J Mater Sci, vol. 43, no. 22, pp. 7084–7090, 2008, doi: https://doi.org/10.1007/s10853-008-3060-9. | spa |
dc.relation.references | L. Y. Jaramillo, K. Arango-benítez, W. Henao, E. Vargas, G. Recio-sánchez, and M. Romero-sáez, “Synthesis of ordered mesoporous silicas from rice husk with tunable textural properties,” Mater Lett, vol. 257, p. 126749, 2019, doi: 10.1016/j.matlet.2019.126749. | spa |
dc.relation.references | D. Chen et al., “Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS,” Fuel, vol. 252, no. April, pp. 1–9, 2019, doi: 10.1016/j.fuel.2019.04.086. | spa |
dc.relation.references | P. Giudicianni et al., “Inherent Metal Elements in Biomass Pyrolysis: A Review,” Energy and Fuels, 2021, doi: 10.1021/acs.energyfuels.0c04046. | spa |
dc.relation.references | E. A. H. Pilon-Smits, C. F. Quinn, W. Tapken, M. Malagoli, and M. Schiavon, “Physiological functions of beneficial elements,” Curr Opin Plant Biol, vol. 12, no. 3, pp. 267–274, 2009, doi: https://doi.org/10.1016/j.pbi.2009.04.009. | spa |
dc.relation.references | S. C. van Lith, P. A. Jensen, F. J. Frandsen, and P. Glarborg, “Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition,” Energy & Fuels, vol. 22, no. 3, pp. 1598–1609, May 2008, doi: 10.1021/ef060613i. | spa |
dc.relation.references | E. J. Leijenhorst, W. Wolters, L. van de Beld, and W. Prins, “Inorganic element transfer from biomass to fast pyrolysis oil: Review and experiments,” Fuel Processing Technology, vol. 149, pp. 96–111, 2016, doi: https://doi.org/10.1016/j.fuproc.2016.03.026. | spa |
dc.relation.references | M. D. Villota-Enríquez and J. E. Rodríguez-Páez, “Bio-silica production from rice husk for environmental remediation: Removal of methylene blue from aqueous solutions,” Mater Chem Phys, vol. 301, p. 127671, 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.127671. | spa |
dc.relation.references | A. S. Aliyu et al., “Synthesis and characterisation of rice husk and palm fruit bunch silica: compositional, structural, and thermal analyses,” Biomass Convers Biorefin, 2024, doi: 10.1007/s13399-024-05525-1. | spa |
dc.relation.references | Z. A. S. A. Salim, H. Ismail, A. Hassan, N. H. C. Ismail, and F. Hashim, “Characterisation of high purity rice husk silica synthesised using solvent-thermal treatment with different concentration of acid leaching,” J Teknol, vol. 85, no. 2, pp. 101–110, 2023, doi: 10.11113/jurnalteknologi.v85.18631. | spa |
dc.relation.references | Y. M. Peralta, R. Molina, and S. Moreno, “Chemical and structural properties of silica obtained from rice husk and its potential as a catalytic support,” J Environ Chem Eng, vol. 12, no. 2, p. 112370, 2024, doi: 10.1016/j.jece.2024.112370. | spa |
dc.relation.references | M. R. Errera, T. A. da C. Dias, D. M. Y. Maya, and E. E. S. Lora, “Global bioenergy potentials projections for 2050,” Biomass Bioenergy, vol. 170, p. 106721, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106721. | spa |
dc.relation.references | J. Rodríguez Salcedo, L. O. González Salcedo, A. F. Rojas González, and J. A. Palacios Peñaranda, Energía y ambiente, Primera. Santiago de Cali: Universidad Nacional de Colombia, 2013. | spa |
dc.relation.references | M. Sharifzadeh et al., “The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions,” Prog Energy Combust Sci, vol. 71, pp. 1–80, 2019, doi: https://doi.org/10.1016/j.pecs.2018.10.006. | spa |
dc.relation.references | E. Ranzi, P. E. A. Debiagi, and A. Frassoldati, “Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis,” ACS Sustain Chem Eng, vol. 5, no. 4, pp. 2867–2881, Apr. 2017, doi: 10.1021/acssuschemeng.6b03096. | spa |
dc.relation.references | J. Silva, S. Teixeira, and J. Teixeira, “A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective,” Energies (Basel), vol. 16, no. 18, 2023, doi: 10.3390/en16186705. | spa |
dc.relation.references | P. Wang, G. Wang, J. Zhang, J. Y. Lee, Y. Li, and C. Wang, “Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char,” Appl Therm Eng, vol. 143, pp. 736–745, Oct. 2018, doi: 10.1016/j.applthermaleng.2018.08.009. | spa |
dc.relation.references | M. G. Grønli, G. Várhegyi, and C. Di Blasi, “Thermogravimetric Analysis and Devolatilization Kinetics of Wood,” Ind Eng Chem Res, vol. 41, no. 17, pp. 4201–4208, Aug. 2002, doi: 10.1021/ie0201157. | spa |
dc.relation.references | A. Awasthi and T. Bhaskar, “Combustion of Lignocellulosic Biomass,” in Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. B. T.-B. A. F. and C. P. for the P. of L. and G. B. (Second E. Ricke, Eds., Academic Press, 2019, ch. 11, pp. 267–284. doi: https://doi.org/10.1016/B978-0-12-816856-1.00011-7. | spa |
dc.relation.references | R. Ebrahimi-Kahrizsangi and M. H. Abbasi, “Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. 217–221, 2008, doi: https://doi.org/10.1016/S1003-6326(08)60039-4. | spa |
dc.relation.references | D. López-González, M. Fernandez-Lopez, J. L. Valverde, and L. Sanchez-Silva, “Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass,” Bioresour Technol, vol. 143, pp. 562–574, 2013, doi: https://doi.org/10.1016/j.biortech.2013.06.052. | spa |
dc.relation.references | J. Grams and A. M. Ruppert, “Development of heterogeneous catalysts for thermo-chemical conversion of lignocellulosic biomass,” Energies (Basel), vol. 10, no. 4, p. 545, 2017, doi: https://doi.org/10.3390/en10040545. | spa |
dc.relation.references | R. Svoboda, “Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses,” J Eur Ceram Soc, vol. 44, no. 1, pp. 401–407, 2024, doi: https://doi.org/10.1016/j.jeurceramsoc.2023.08.050. | spa |
dc.relation.references | H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12, pp. 1781–1788, 2007, doi: https://doi.org/10.1016/j.fuel.2006.12.013. | spa |
dc.relation.references | G. Mishra and T. Bhaskar, “Non isothermal model free kinetics for pyrolysis of rice straw,” Bioresour Technol, vol. 169, pp. 614–621, 2014, doi: https://doi.org/10.1016/j.biortech.2014.07.045. | spa |
dc.relation.references | W. Wang et al., “Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure,” Fuel, vol. 322, p. 124200, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124200. | spa |
dc.relation.references | J. L. F. Alves, J. C. G. da Silva, G. D. Mumbach, M. Di Domenico, and C. Marangoni, “Assessing the potential of the invasive grass Cenchrus echinatus for bioenergy production: A study of its physicochemical properties, pyrolysis kinetics and thermodynamics,” Thermochim Acta, vol. 724, 2023, doi: 10.1016/j.tca.2023.179500. | spa |
dc.relation.references | F. X. Collard, A. Bensakhria, M. Drobek, G. Volle, and J. Blin, “Influence of impregnated iron and nickel on the pyrolysis of cellulose,” Biomass Bioenergy, vol. 80, pp. 52–62, 2015, doi: 10.1016/j.biombioe.2015.04.032. | spa |
dc.relation.references | L. Y. Dorsch, G. H. Kloess, D. Enke, and A. Roppertz, “Catalysing the Combustion of Rice Husk and Rice Straw Towards an Energy Optimized Synthesis of Metal Modified Biogenic Silica,” SSRN, no. Iv, pp. 1–31, 2021, doi: 10.2139/ssrn.3778590. | spa |
dc.relation.references | S. Zhang, S. Zhu, H. Zhang, X. Liu, and H. Zhang, “Evaluation of pyrolysis behavior and products properties of rice husk after combined pretreatment of washing and torrefaction,” Biomass Bioenergy, vol. 127, p. 105293, 2019, doi: https://doi.org/10.1016/j.biombioe.2019.105293. | spa |
dc.relation.references | S. R. Naqvi et al., “Valorization of Wet Oily Petrochemical Sludge via Slow Pyrolysis: Thermo-Kinetics Assessment and Artificial Neural Network Modeling,” Front Energy Res, vol. 9, 2022, doi: 10.3389/fenrg.2021.782139. | spa |
dc.relation.references | H. P. Yang, R. Yan, H. P. Chen, C. G. Zheng, D. H. Lee, and D. T. Liang, “In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin,” Energy & Fuels, vol. 20, no. 1, pp. 388–393, 2006, doi: 10.1021/ef0580117. | spa |
dc.relation.references | S. Gu, J. Zhou, Z. Luo, Q. Wang, and Z. Shi, “Kinetic study on the preparation of silica from rice husk under various pretreatments,” J Therm Anal Calorim, vol. 119, no. 3, pp. 2159–2169, 2015, doi: 10.1007/s10973-014-4219-z. | spa |
dc.relation.references | B. Castells, I. Amez, L. Medic, and J. García-Torrent, “Torrefaction influence on combustion kinetics of Malaysian oil palm wastes,” Fuel Processing Technology, vol. 218, p. 106843, 2021, doi: https://doi.org/10.1016/j.fuproc.2021.106843. | spa |
dc.relation.references | A. Nawaz and P. Kumar, “A novel pseudo-multicomponent isoconversional approach for the estimation of kinetic and thermodynamic parameters of potato stalk thermal degradation,” Biresource Technology, vol. 376, 2023, doi: 10.1016/j.biortech.2023.128846. | spa |
dc.relation.references | M. Hu et al., “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method,” Energy Convers Manag, vol. 118, pp. 1–11, 2016, doi: https://doi.org/10.1016/j.enconman.2016.03.058. | spa |
dc.relation.references | L. L. Zhu and Z. P. Zhong, “Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics,” Korean Journal of Chemical Engineering, vol. 37, no. 10, pp. 1660–1668, 2020, doi: 10.1007/s11814-020-0553-y. | spa |
dc.relation.references | D. Díez, A. Urueña, R. Piñero, A. Barrio, and T. Tamminen, “Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method),” Processes, vol. 8, no. 9, 2020, doi: 10.3390/pr8091048. | spa |
dc.relation.references | G. Luo, W. Wang, Y. Zhao, X. Tao, W. Xie, and K. Wang, “Autothermal pyrolysis of lignocellulosic biomass: Experimental, kinetic, and thermodynamic studies,” J Anal Appl Pyrolysis, vol. 171, p. 105972, 2023, doi: https://doi.org/10.1016/j.jaap.2023.105972. | spa |
dc.relation.references | P. Haobin, Y. Li, Y. Li, F. Yuan, and G. Chen, “Experimental Investigation of Combustion Kinetics of Wood Powder and Pellet,” Journal of Combustion, vol. 2018, p. 5981598, 2018, doi: 10.1155/2018/5981598. | spa |
dc.relation.references | A. Sharma, A. A. Kumar, B. Mohanty, and A. N. Sawarkar, “Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis,” Renew Energy, vol. 210, pp. 321–334, 2023, doi: 10.1016/j.renene.2023.04.066. | spa |
dc.relation.references | V. B. Carmona, R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini, “Nanosilica from rice husk: Extraction and characterization,” Ind Crops Prod, vol. 43, pp. 291–296, 2013, doi: https://doi.org/10.1016/j.indcrop.2012.06.050. | spa |
dc.relation.references | Q. Wang, G. Wang, J. Zhang, J.-Y. Lee, H. Wang, and C. Wang, “Combustion behaviors and kinetics analysis of coal, biomass and plastic,” Thermochim Acta, vol. 669, pp. 140–148, 2018, doi: https://doi.org/10.1016/j.tca.2018.09.016. | spa |
dc.relation.references | W. Li et al., “Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of Bi-Gaussian as deconvolution technique,” Renew Energy, vol. 188, pp. 491–503, 2022, doi: https://doi.org/10.1016/j.renene.2022.02.024. | spa |
dc.relation.references | D. López-González et al., “Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry,” Energy, vol. 90, pp. 1626–1635, 2015, doi: https://doi.org/10.1016/j.energy.2015.06.134. | spa |
dc.relation.references | Y. J. Rueda-Ordóñez and K. Tannous, “Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air,” Bioresour Technol, vol. 211, pp. 231–239, 2016, doi: https://doi.org/10.1016/j.biortech.2016.03.035. | spa |
dc.relation.references | F. C. R. Lopes, J. C. Pereira, and K. Tannous, “Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres,” Bioresour Technol, vol. 270, pp. 294–302, 2018, doi: https://doi.org/10.1016/j.biortech.2018.09.021. | spa |
dc.relation.references | G. Luo, W. Wang, Y. Zhao, X. Tao, W. Xie, and K. Wang, “Autothermal pyrolysis of lignocellulosic biomass: Experimental, kinetic, and thermodynamic studies,” J Anal Appl Pyrolysis, vol. 171, p. 105972, 2023, doi: https://doi.org/10.1016/j.jaap.2023.105972. | spa |
dc.relation.references | O. Oladokun, A. Ahmad, T. A. T. Abdullah, B. B. Nyakuma, A. A. H. Bello, and A. H. Al-Shatri, “Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica,” Appl Therm Eng, vol. 105, pp. 931–940, Jul. 2016, doi: 10.1016/j.applthermaleng.2016.04.165. | spa |
dc.relation.references | A. E. G. K. G. Mansaray, “Determination of Reaction Kinetics of Rice Husks in Air Using Thermogravimetric Analysis,” Energy Sources, vol. 21, no. 10, pp. 899–911, Dec. 1999, doi: 10.1080/00908319950014272. | spa |
dc.relation.references | Md. Ahiduzzaman and A. K. M. S. Islam, “Thermo-gravimetric and Kinetic Analysis of Different Varieties of Rice Husk,” Procedia Eng, vol. 105, pp. 646–651, 2015, doi: https://doi.org/10.1016/j.proeng.2015.05.043. | spa |
dc.relation.references | A. E. G. K. G. Mansaray, “Kinetics of the Thermal Degradation of Rice Husks in Nitrogen Atmosphere,” Energy Sources, vol. 21, no. 9, pp. 773–784, Sep. 1999, doi: 10.1080/00908319950014335. | spa |
dc.relation.references | C.-Y. Yin and B.-M. Goh, “Thermal Degradation of Rice Husks in Air and Nitrogen: Thermogravimetric and Kinetic Analyses,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 3, pp. 246–252, Dec. 2011, doi: 10.1080/15567030903586048. | spa |
dc.relation.references | R. L. Gibson, M. J. H. Simmons, E. Hugh Stitt, J. West, S. K. Wilkinson, and R. W. Gallen, “Kinetic modelling of thermal processes using a modified Sestak-Berggren equation,” Chemical Engineering Journal, vol. 408, p. 127318, 2021, doi: https://doi.org/10.1016/j.cej.2020.127318. | spa |
dc.relation.references | J. M. Criado, J. Málek, and F. J. Gotor, “The applicability of the Šesták-Berggren kinetic equation in constant rate thermal analysis (CRTA),” Thermochim Acta, vol. 158, no. 2, pp. 205–213, 1990, doi: https://doi.org/10.1016/0040-6031(90)80068-A. | spa |
dc.relation.references | J. M. Criado, J. Malek, and F. J. Gotor, “The applicability of the Sestak-Berggren kinetic equation in constant rate thermal analysis (CRTA),” Thermochim Acta, p. 205, 1990. | spa |
dc.relation.references | M. Kumar, S. Sabbarwal, P. K. Mishra, and S. N. Upadhyay, “Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies,” Bioresour Technol, vol. 279, pp. 262–270, 2019, doi: https://doi.org/10.1016/j.biortech.2019.01.137. | spa |
dc.relation.references | E. Yaman and N. Özbay, “Effect of different pre-treatment techniques on thermogravimetric characteristics and kinetics of lignocellulosic biomass pyrolysis,” Journal of the Energy Institute, vol. 111, p. 101419, 2023, doi: https://doi.org/10.1016/j.joei.2023.101419. | spa |
dc.relation.references | K. Cen, J. Zhang, Z. Ma, D. Chen, J. Zhou, and H. Ma, “Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aqueous phase bio-oil,” Bioresour Technol, vol. 278, no. November 2018, pp. 26–33, 2019, doi: 10.1016/j.biortech.2019.01.048. | spa |
dc.relation.references | S. A. Ajeel, K. A. Sukkar, and N. K. Zedin, “Evaluation of acid leaching process and calcination temperature on the silica extraction efficiency from the sustainable sources,” in Journal of Physics: Conference Series, A.-H. W. and Z. R., Eds., Department Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq: IOP Publishing Ltd, 2021. doi: 10.1088/1742-6596/1773/1/012014. | spa |
dc.relation.references | P. Chen, H. Bie, and R. Bie, “Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles,” Korean Journal of Chemical Engineering, vol. 35, no. 9, pp. 1911–1918, 2018, doi: 10.1007/s11814-018-0103-z. | spa |
dc.relation.references | C. Primaz, O. Gil-Castell, and A. Ribes-Greus, “Strategies towards thermochemical valorisation of spent coffee grounds (SCG): Kinetic analysis of the thermal and thermo-oxidative decomposition,” Biomass Bioenergy, vol. 174, p. 106840, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106840. | spa |
dc.relation.references | W. Li et al., “Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of Bi-Gaussian as deconvolution technique,” Renew Energy, vol. 188, pp. 491–503, 2022, doi: https://doi.org/10.1016/j.renene.2022.02.024. | spa |
dc.relation.references | F. Dessì et al., “Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion,” Energy, vol. 217, p. 119394, 2021, doi: https://doi.org/10.1016/j.energy.2020.119394. | spa |
dc.relation.references | S. Hidayat et al., “Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics,” J Anal Appl Pyrolysis, vol. 156, p. 105133, 2021, doi: https://doi.org/10.1016/j.jaap.2021.105133. | spa |
dc.relation.references | W. Hu et al., “Thermodegradation of naturally decomposed forest logging residues: Characteristics, kinetics, and thermodynamics,” Bioresour Technol, vol. 376, p. 128821, 2023, doi: https://doi.org/10.1016/j.biortech.2023.128821. | spa |
dc.relation.references | V. A. Yiga, M. Katamba, M. Lubwama, K. H. Adolfsson, M. Hakkarainen, and E. Kamalha, “Combustion, kinetics and thermodynamic characteristics of rice husks and rice husk-biocomposites using thermogravimetric analysis,” J Therm Anal Calorim, 2023, doi: 10.1007/s10973-023-12458-w. | spa |
dc.relation.references | N. Gaur, S. Sharma, and N. Yadav, “Environmental pollution,” in Green Chemistry Approaches to Environmental Sustainability: Status, Challenges and Prospective, V. K. Garg, A. Yadav, C. Mohan, S. Yadav, and N. B. T. Kumari, Eds., Amsterdam: Elsevier, 2024, ch. 2, pp. 23–41. doi: https://doi.org/10.1016/B978-0-443-18959-3.00010-0. | spa |
dc.relation.references | C. Mohan, J. Robinson, L. Vodwal, and N. Kumari, “Sustainable Development Goals for addressing environmental challenges,” in Green Chemistry Approaches to Environmental Sustainability: Status, Challenges and Prospective, V. K. Garg, A. Yadav, C. Mohan, S. Yadav, and N. B. T. Kumari, Eds., Amsterdam: Elsevier, 2024, ch. 16, pp. 357–374. doi: https://doi.org/10.1016/B978-0-443-18959-3.00007-0. | spa |
dc.relation.references | G. Kumar et al., “A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels,” Fuel, vol. 251, pp. 352–367, 2019, doi: https://doi.org/10.1016/j.fuel.2019.04.049. | spa |
dc.relation.references | R. Liu, G. Liu, B. Yousaf, Z. Niu, and Q. Abbas, “Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix,” Renewable and Sustainable Energy Reviews, vol. 153, p. 111761, 2022, doi: https://doi.org/10.1016/j.rser.2021.111761. | spa |
dc.relation.references | J. L. F. Alves, J. C. G. da Silva, G. D. Mumbach, M. Di Domenico, and C. Marangoni, “Assessing the potential of the invasive grass Cenchrus echinatus for bioenergy production: A study of its physicochemical properties, pyrolysis kinetics and thermodynamics,” Thermochim Acta, vol. 724, p. 179500, 2023, doi: https://doi.org/10.1016/j.tca.2023.179500. | spa |
dc.relation.references | J. Umeda and K. Kondoh, “Polysaccharide Hydrolysis and Metallic Impurities Removal Behavior of Rice Husks in Citric Acid Leaching Treatment,” Transactions of JWRI, vol. 38, no. 2, pp. 13–18, 2009. | spa |
dc.relation.references | J. Ge et al., “Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus,” Bioresour Technol, vol. 307, p. 123246, 2020, doi: https://doi.org/10.1016/j.biortech.2020.123246. | spa |
dc.relation.references | C. Yu et al., “Influence of leaching pretreatment on fuel properties of biomass,” Fuel Processing Technology, vol. 128, pp. 43–53, 2014, doi: 10.1016/j.fuproc.2014.06.030. | spa |
dc.relation.references | L. Attanatho, A. Suemanotham, N. Prasongthum, Z. Czégény, and Y. Thanmongkhon, “The thermal behavior during the co-combustion of bituminous coal and oil palm trunk hydrochars,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 46, no. 1, pp. 706–718, 2024, doi: 10.1080/15567036.2023.2289556. | spa |
dc.relation.references | E. M. de Paiva et al., “Pyrolysis of cashew nutshell residues for bioenergy and renewable chemicals: Kinetics, thermodynamics, and volatile products,” J Anal Appl Pyrolysis, vol. 177, Jan. 2024, doi: 10.1016/j.jaap.2023.106303. | spa |
dc.relation.references | Y. Zou and T. Yang, “Chapter 9 - Rice Husk, Rice Husk Ash and Their Applications,” L.-Z. Cheong and X. B. T.-R. B. and R. B. O. Xu, Eds., AOCS Press, 2019, pp. 207–246. doi: https://doi.org/10.1016/B978-0-12-812828-2.00009-3. | spa |
dc.relation.references | D. A. Mortari, D. Perondi, G. B. Rossi, J. L. Bonato, M. Godinho, and F. M. Pereira, “The influence of water-soluble inorganic matter on combustion of grape pomace and its chars produced by slow and fast pyrolysis,” Fuel, vol. 284, no. May 2020, p. 118880, 2021, doi: 10.1016/j.fuel.2020.118880. | spa |
dc.relation.references | L. Jiang et al., “Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass,” Bioresour Technol, vol. 146, pp. 254–260, 2013, doi: https://doi.org/10.1016/j.biortech.2013.07.063. | spa |
dc.relation.references | W. Gao, H. Li, Karnowo, B. Song, and S. Zhang, “Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids,” 2020. doi: 10.3390/en13226033. | spa |
dc.relation.references | S. Gu, J. Zhuo, C. Yu, Z. Luo, Q. Wang, and Z. Shi, “A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination,” Ind Crops Prod, vol. 65, pp. 1–6, Mar. 2015, doi: 10.1016/J.INDCROP.2014.11.045. | spa |
dc.relation.references | D. Chen, K. Cen, F. Chen, Z. Ma, J. Zhou, and M. Li, “Are the typical organic components in biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species (AAEMs) from biomass?,” Fuel, vol. 260, p. 116347, 2020, doi: https://doi.org/10.1016/j.fuel.2019.116347. | spa |
dc.relation.references | M. Matusiak, R. Sle̜zak, and S. Ledakowicz, “Thermogravimetric kinetics of selected energy crops pyrolysis,” Energies (Basel), vol. 13, no. 15, Aug. 2020, doi: 10.3390/en13153977. | spa |
dc.relation.references | X. Chen et al., “Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield,” Fuel Processing Technology, vol. 196, no. August, p. 106180, 2019, doi: 10.1016/j.fuproc.2019.106180. | spa |
dc.relation.references | K. Cen, X. Cao, D. Chen, J. Zhou, F. Chen, and M. Li, “Leaching of alkali and alkaline earth metallic species (AAEMs) with phenolic substances in bio-oil and its effect on pyrolysis characteristics of moso bamboo,” Fuel Processing Technology, vol. 200, no. November 2019, p. 106332, 2020, doi: 10.1016/j.fuproc.2019.106332. | spa |
dc.relation.references | Q. Wang, C. X. Jia, and H. P. Liu, “Pyrolysis Characteristics of Rice Husk Using TG-DTG Analysis,” Applied Mechanics and Materials, vol. 291–294, no. International Conference on Sustainable Energy and Environmental Engineering (ICSEEE 2012), pp. 351–354, 2013, doi: 10.4028/www.scientific.net/AMM.291-294.351. | spa |
dc.relation.references | A. Anca-Couce, A. Berger, and N. Zobel, “How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme,” Fuel, vol. 123, pp. 230–240, May 2014, doi: 10.1016/j.fuel.2014.01.014. | spa |
dc.relation.references | O. Oladokun, A. Ahmad, T. A. T. Abdullah, B. B. Nyakuma, A. A. H. Bello, and A. H. Al-Shatri, “Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica,” Appl Therm Eng, vol. 105, pp. 931–940, Jul. 2016, doi: 10.1016/j.applthermaleng.2016.04.165. | spa |
dc.relation.references | O. Oladokun, A. Ahmad, T. A. T. Abdullah, B. B. Nyakuma, A. H. Al-Shatri, and A. A. Bello, “Modelling Multicomponent Devolatilization Kinetics of Imperata Cylindrica,” in Pres15: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, P. S. Varbanov, J. J. Klemes, S. R. W. Alwi, J. Y. Yong, and X. Liu, Eds., 2015, pp. 919–924. doi: 10.3303/CET1545154. | spa |
dc.relation.references | H. Kim, S. Yu, M. Kim, and C. Ryu, “Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model,” Energy, vol. 254, p. 124446, 2022, doi: https://doi.org/10.1016/j.energy.2022.124446. | spa |
dc.relation.references | J. L. F. Alves et al., “Exploring Acai Seed (Euterpe oleracea) Pyrolysis Using Multi-component Kinetics and Thermodynamics Assessment Towards Its Bioenergy Potential,” Bioenergy Res, vol. 14, no. 1, pp. 209–225, 2021, doi: 10.1007/s12155-020-10175-y. | spa |
dc.relation.references | T. Chen, W. Wu, J. Wu, J. Cai, and J. Wu, “Determination of the pseudocomponents and kinetic analysis of selected combustible solid wastes pyrolysis based on Weibull model,” J Therm Anal Calorim, vol. 126, no. 3, pp. 1899–1909, 2016, doi: 10.1007/s10973-016-5649-6. | spa |
dc.relation.references | J. Zou et al., “Exploring kinetic mechanisms of biomass pyrolysis using generalized logistic mixture model,” Energy Convers Manag, vol. 258, Apr. 2022, doi: 10.1016/j.enconman.2022.115522. | spa |
dc.relation.references | K. R. G. Burra and A. K. Gupta, “Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model,” Fuel, vol. 237, pp. 1057–1067, 2019, doi: https://doi.org/10.1016/j.fuel.2018.09.097. | spa |
dc.relation.references | A. I. Ferreiro, M. Rabaçal, and M. Costa, “A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues,” Energy Convers Manag, vol. 125, pp. 290–300, 2016, doi: https://doi.org/10.1016/j.enconman.2016.04.104. | spa |
dc.relation.references | Y. Cao et al., “Insight into the pyrolysis of bamboo flour, polylactic acid and their composite: Pyrolysis behavior, kinetic triplets, and thermodynamic parameters based on Fraser-Suzuki deconvolution procedure,” Bioresour Technol, vol. 391, p. 129932, 2024, doi: https://doi.org/10.1016/j.biortech.2023.129932. | spa |
dc.relation.references | Y. Patil and X. Ku, “Pyrolysis kinetics and thermodynamic behavior of pseudo components of raw and torrefied maple wood,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 46, no. 1, pp. 462–474, 2024, doi: 10.1080/15567036.2023.2285406. | spa |
dc.relation.references | Y. Wang, S. Yang, G. Bao, and H. Wang, “Pyrolysis of macadamia nut peel using multicomponent Gaussian kinetic modeling and ANN analysis,” Biomass Bioenergy, vol. 183, p. 107170, 2024, doi: https://doi.org/10.1016/j.biombioe.2024.107170. | spa |
dc.relation.references | J. C. G. da Silva, J. G. de Albuquerque, W. V. de A. Galdino, R. F. de Sena, and S. L. F. Andersen, “Single-step and multi-step thermokinetic study – Deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion,” Energy Convers Manag, vol. 209, p. 112653, 2020, doi: https://doi.org/10.1016/j.enconman.2020.112653. | spa |
dc.relation.references | S. Suárez, J. G. Rosas, M. E. Sánchez, R. López, N. Gómez, and J. Cara-Jiménez, “Parametrization of a Modified Friedman Kinetic Method to Assess Vine Wood Pyrolysis Using Thermogravimetric Analysis,” 2019. doi: 10.3390/en12132599. | spa |
dc.relation.references | C.-Y. Yin and B.-M. Goh, “Thermal Degradation of Rice Husks in Air and Nitrogen: Thermogravimetric and Kinetic Analyses,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 3, pp. 246–252, Dec. 2011, doi: 10.1080/15567030903586048. | spa |
dc.relation.references | A. C. M. Loy et al., “Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst,” Bioresour Technol, vol. 261, pp. 213–222, 2018, doi: https://doi.org/10.1016/j.biortech.2018.04.020. | spa |
dc.relation.references | D. K. W. Gan et al., “Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts,” Bioresour Technol, vol. 265, no. June, pp. 180–190, 2018, doi: 10.1016/j.biortech.2018.06.003. | spa |
dc.relation.references | V. Balasundram et al., “Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil,” J Clean Prod, vol. 167, pp. 218–228, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.08.173. | spa |
dc.relation.references | A. C. Minh Loy et al., “Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis,” J Clean Prod, vol. 197, pp. 1231–1243, 2018, doi: 10.1016/j.jclepro.2018.06.245. | spa |
dc.relation.references | L. A. Pérez-Maqueda, J. M. Criado, and P. E. Sánchez-Jiménez, “Combined Kinetic Analysis of Solid-State Reactions: A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism,” J Phys Chem A, vol. 110, no. 45, pp. 12456–12462, Nov. 2006, doi: 10.1021/jp064792g. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.ddc | 540 - Química y ciencias afines::546 - Química inorgánica | spa |
dc.subject.lemb | MOLIENDA DE GRANOS | spa |
dc.subject.lemb | Grain - milling | eng |
dc.subject.lemb | CASCARILLA DE ARROZ | spa |
dc.subject.lemb | Rice hulls | eng |
dc.subject.lemb | RESIDUOS AGRICOLAS | spa |
dc.subject.lemb | Agricultural wastes | eng |
dc.subject.lemb | LIXIVIACION | spa |
dc.subject.lemb | Leaching | eng |
dc.subject.lemb | SILICE | spa |
dc.subject.lemb | Silica | eng |
dc.subject.lemb | PROPIEDADES FISICOQUIMICAS | spa |
dc.subject.lemb | Chemicophysical properties | eng |
dc.subject.proposal | Cascarilla de arroz | spa |
dc.subject.proposal | Anisotropía | spa |
dc.subject.proposal | Lixiviación | spa |
dc.subject.proposal | Biosílice | spa |
dc.subject.proposal | Mesoporosa | spa |
dc.subject.proposal | Pirólisis | spa |
dc.subject.proposal | Triplete cinético | spa |
dc.subject.proposal | Rice husk | eng |
dc.subject.proposal | Anisotropy | eng |
dc.subject.proposal | Leaching | eng |
dc.subject.proposal | Biosilica | eng |
dc.subject.proposal | Mesoporous | eng |
dc.subject.proposal | Pyrolysis | eng |
dc.subject.proposal | Kinetic triplet | eng |
dc.title | Valorización de cascarilla de arroz mediante transformación termocatalítica para la obtención de sílice amorfa mesoporosa | spa |
dc.title.translated | Valorization of rice husk through thermocatalytic transformation to produce mesoporous amorphous silica | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Beca del Bicentenario de Excelencia Doctoral de Colciencias - corte I | spa |
oaire.fundername | MInciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80811242_2024.pdf
- Tamaño:
- 13.3 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: