Valorización de cascarilla de arroz mediante transformación termocatalítica para la obtención de sílice amorfa mesoporosa

dc.contributor.advisorMoreno Guáqueta, Soniaspa
dc.contributor.advisorCenteno Gallego, Miguel Ángelspa
dc.contributor.authorDíaz Tovar, Dairospa
dc.contributor.orcidDíaz Tovar, Dairo [0000000300357977]spa
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.date.accessioned2025-03-18T14:47:40Z
dc.date.available2025-03-18T14:47:40Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa siguiente investigación se centró en el estudio sistemático de los efectos de los tratamientos de molienda, tamizado, lixiviación y descomposición térmica de cascarilla de arroz para la obtención de biosílice amorfa mesoporosa. Para ello, se evaluó como los factores experimentales de los anteriores tratamientos, determinan las propiedades fisicoquímicas y térmicas de la cascarilla de arroz tratada, así como las propiedades fisicoquímicas y texturales de la biosílice obtenida. Se establecieron los tripletes cinéticos de la combustión y la pirólisis de la cascarilla cruda y tratada, y se evaluó el efecto de un catalizador en el proceso de pirólisis. Se determinó que el tamaño de partícula de la cascarilla de arroz molida y tamizada afecta significativamente las propiedades fisicoquímicas y térmicas de la cascarilla tratada, haciendo posible clasificar algunas fracciones granulométricas en grupos homogéneos. Se sintetizó biosílice mesoporosa de 99,45 ± 0.04 % de pureza, 318 ± 10 m2 g-1 de área superficial y 0,46 ± 0.01 cm3 g-1 de volumen de poro, a partir de la lixiviación de cascarilla en HCl a pH 1,5. El estudio cinético permitió establecer que la descomposición térmica puede ser descrita por un modelo de reacción en multipasos. Se propuso un método novedoso basado en la modificación de la regresión lineal múltiple para la determinación simultánea del factor pre-exponencial y el modelo de reacción de la ley de velocidad. Los resultados obtenidos son consistentes con los reportados en la literatura para biomasa lignocelulósica (Texto tomado de la fuente).spa
dc.description.abstractThe following research focused on systematically studying the effects of milling, sieving, leaching, and thermal decomposition treatments on rice husks to obtain mesoporous amorphous biosilica. So, it was evaluated how the experimental factors of the previous treatments determine the physicochemical and thermal properties of the treated rice husk and how they affect the physicochemical and textural properties of the biosilica. The kinetic triplets of combustion and pyrolysis of the raw and treated husk were determined; in the same way, the effect of a catalyst in the pyrolysis process was evaluated. It was found that the particle size of the milled and sieved rice husk significantly affects the physicochemical and thermal properties of the treated husk. It is possible to classify some granulometric fractions into homogeneous groups. Mesoporous biosilica of 99.45 ± 0.04 % of purity, 318 ± 10 m2 g-1 surface area and 0.46 ± 0.01 cm3 g-1pore volume, was synthesized from rice husk leaching in HCl at pH 1.5. The kinetic study showed that a multistep reaction model could describe the thermal decomposition, and a novel method based on modifying the multiple linear regression for the simultaneous determination of the pre-exponential factor and the rate law reaction model was proposed. The results obtained were consistent with those reported in the literature for lignocellulosic biomass.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.methodsInvestigación cuantitativaspa
dc.description.researchareaMateriales y energíaspa
dc.description.sponsorshipColfuturo Universidad Internacional del Trópico Americanospa
dc.format.extentxiv, 206 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87682
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisherUniversidad de Sevillaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesM. Quinlan, “Five challenges to humanity: Learning from pattern/repeat failures in past disasters?,” The Economic and Labour Relations Review, vol. 31, no. 3, pp. 444–466, 2020.spa
dc.relation.referencesM. Mishra et al., “A bibliometric analysis of sustainable development goals (SDGs): a review of progress, challenges, and opportunities,” Environ Dev Sustain, vol. 26, no. 5, pp. 11101–11143, 2024, doi: 10.1007/s10668-023-03225-w.spa
dc.relation.referencesM. Antar, D. Lyu, M. Nazari, A. Shah, X. Zhou, and D. L. Smith, “Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization,” Renewable and Sustainable Energy Reviews, vol. 139, p. 110691, 2021, doi: https://doi.org/10.1016/j.rser.2020.110691.spa
dc.relation.referencesJ. Escalante et al., “Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach,” Renewable and Sustainable Energy Reviews, vol. 169, no. August, p. 112914, 2022, doi: 10.1016/j.rser.2022.112914.spa
dc.relation.referencesR. Kumar et al., “Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels,” Renewable and Sustainable Energy Reviews, vol. 123, no. May 2019, 2020, doi: 10.1016/j.rser.2020.109763.spa
dc.relation.referencesM. Joshi and S. Manjare, “Chemical approaches for the biomass valorisation: a comprehensive review of pretreatment strategies,” Environmental Science and Pollution Research, vol. 31, no. 36, pp. 48928–48954, 2024, doi: 10.1007/s11356-024-34473-6.spa
dc.relation.referencesM. A. Abbas, W. H. Kwan, M. H. Samsudin, and T. K. Hai, “Optimising Factors for the Production of Amorphous Rice Husk Ash via Combustion Process for Sustainable Construction: A Review,” Journal of Advanced Research in Applied Mechanics, vol. 120, no. 1, pp. 50–61, 2024, doi: 10.37934/aram.120.1.5061.spa
dc.relation.referencesA. Bin Rahman, Rubaiyath, and J. Zhang, “Trends in rice research: 2030 and beyond,” Food Energy Secur, vol. 12, no. 2, p. e390, Mar. 2023, doi: https://doi.org/10.1002/fes3.390.spa
dc.relation.referencesH. Beidaghy Dizaji et al., “Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review,” Applied Sciences, vol. 9, no. 6, 2019, doi: 10.3390/app9061083.spa
dc.relation.referencesN. Soltani, A. Bahrami, M. I. Pech-Canul, and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chemical Engineering Journal, vol. 264, pp. 899–935, 2015.spa
dc.relation.referencesH. Moayedi, B. Aghel, M. M. Abdullahi, H. Nguyen, and A. Safuan A Rashid, “Applications of rice husk ash as green and sustainable biomass,” J Clean Prod, vol. 237, p. 117851, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.117851.spa
dc.relation.referencesJ. Chun and J. H. Lee, “Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk,” Sustainability, vol. 12, no. 24, 2020, doi: 10.3390/su122410683.spa
dc.relation.referencesM. Choudhary et al., “Sustainable valorization of rice husk: thermal behavior and kinetics after chemical treatments,” Biomass Convers Biorefin, 2023, doi: 10.1007/s13399-023-04774-w.spa
dc.relation.referencesR. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247–255, 2017, doi: https://doi.org/10.1016/j.fuproc.2017.01.046.spa
dc.relation.referencesI. Quispe, R. Navia, and R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolysis: A review,” Waste Management, vol. 59, pp. 200–210, 2017, doi: https://doi.org/10.1016/j.wasman.2016.10.001.spa
dc.relation.referencesG. Sharma, M. Kaur, S. Punj, and K. Singh, “Biomass as a sustainable resource for value‐added modern materials: a review,” Biofuels, Bioproducts and Biorefining, vol. 14, no. 3, pp. 673–695, 2020.spa
dc.relation.referencesS. Zhang and Y. Xiong, “Washing pretreatment with light bio-oil and its effect on pyrolysis products of bio-oil and biochar,” RSC Adv, vol. 6, pp. 5270–5277, 2016, doi: 10.1039/C5RA22350D.spa
dc.relation.referencesS. Steven, E. Restiawaty, and Y. Bindar, “Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect,” Renewable and Sustainable Energy Reviews, vol. 149, 2021, doi: 10.1016/j.rser.2021.111329.spa
dc.relation.referencesL. Escaño, E. Federico, M. Rivero, L. Barett, and C. Merchand, “Guía práctica y estudio de casos Producción más limpia,” Programa Buenos Aires produce más limpio. pág, vol. 250, 2011.spa
dc.relation.referencesI. Quispe, R. Navia, and R. Kahhat, “Life Cycle Assessment of rice husk as an energy source. A Peruvian case study,” J Clean Prod, vol. 209, pp. 1235–1244, 2019, doi: https://doi.org/10.1016/j.jclepro.2018.10.312.spa
dc.relation.referencesD. Díaz Tovar, “Transformación tecnológica sustentable de cascarilla de arroz producida en los principales molinos del Departamento de Casanare,” Tesis de maestría, Universidad Internacional Iberoaméricana, 2020. doi: 10.13140/RG.2.2.16223.06565.spa
dc.relation.referencesM. Kumar, P. K. Mishra, and S. N. Upadhyay, “Thermal degradation of rice husk: Effect of pre-treatment on kinetic and thermodynamic parameters,” Fuel, vol. 268, p. 117164, 2020, doi: https://doi.org/10.1016/j.fuel.2020.117164.spa
dc.relation.referencesW. Xu et al., “Comparative study of water-leaching and acid-leaching pretreatment on the thermal stability and reactivity of biomass silica for viability as a pozzolanic additive in cement,” Materials, vol. 11, no. 9, 2018, doi: 10.3390/ma11091697.spa
dc.relation.referencesS. Chandrasekhar, P. N. Pramada, and L. Praveen, “Effect of organic acid treatment on the properties of rice husk silica,” J Mater Sci, vol. 40, no. 24, pp. 6535–6544, 2005, doi: 10.1007/s10853-005-1816-z.spa
dc.relation.referencesJ. Kong, D. Wei, P. Xing, Y. Zhuang, X. Jin, and K. Ye, “Clean Preparation of High-Purity Silicon from Rice Husk Ash by a Modified Metallurgical Method,” JOM, vol. 73, no. 6, pp. 1919–1927, 2021, doi: 10.1007/s11837-021-04674-2.spa
dc.relation.referencesH. Beidaghy, T. Zeng, and D. Enke, “New fuel indexes to predict ash behavior for biogenic silica production,” Fuel, no. September, p. 122345, 2021, doi: 10.1016/j.fuel.2021.122345.spa
dc.relation.referencesS. H. Chang, “Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: a Review,” Bioenergy Res, pp. 1–20, 2019, doi: https://doi.org/10.1007/s12155-019-10059-w.spa
dc.relation.referencesL. Brewer, U.S. Rice industry, elements and global competitiveness, 1 st. New York: Nova Publishers, 2015.spa
dc.relation.referencesL. Benassi et al., “Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator,” J Environ Manage, vol. 159, pp. 128–134, 2015, doi: https://doi.org/10.1016/j.jenvman.2015.05.015.spa
dc.relation.referencesD. Díaz Tovar, “Usos potenciales de cascarilla de arroz en el departamento de Casanare,” Monografía, Universidad Nacional Abierta y a Distancia, 2019. doi: 10.13140/RG.2.2.29644.83848.spa
dc.relation.referencesA. Zielonka, E. Żymańczyk-Duda, M. Brzezińska-Rodak, M. Duda, J. Grzesiak, and M. Klimek-Ochab, “Nanosilica synthesis mediated by Aspergillus parasiticus strain,” Fungal Biol, vol. 122, no. 5, pp. 333–344, 2018, doi: https://doi.org/10.1016/j.funbio.2018.02.004.spa
dc.relation.referencesD. Quiceno Villada and M. Y. Mosquera Gutierrez, “Alternativas Tecnológicas para el uso de la cascarilla de arroz como combustible,” Universidad Autonoma de Occidente, 2010.spa
dc.relation.referencesG. Marrugo, C. F. Valdés, and F. Chejne, “Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources,” Energy & Fuels, vol. 30, no. 10, pp. 8386–8398, Oct. 2016, doi: 10.1021/acs.energyfuels.6b01596.spa
dc.relation.referencesG. Marrugo, C. F. Valdés, and F. Chejne, “Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed,” Energy and Fuels, vol. 31, no. 9, pp. 9408–9421, 2017, doi: 10.1021/acs.energyfuels.7b00665.spa
dc.relation.referencesC. He et al., “Evidence for ‘silicon’within the cell walls of suspension‐cultured rice cells,” New Phytologist, vol. 200, no. 3, pp. 700–709, 2013.spa
dc.relation.referencesR. V Krishnarao and M. M. Godkhindi, “Distribution of silica in rice husks and its effect on the formation of silicon carbide,” Ceram Int, vol. 18, no. 4, pp. 243–249, 1992, doi: https://doi.org/10.1016/0272-8842(92)90102-J.spa
dc.relation.referencesP. Kolar and H. Jin, “Baseline characterization data for raw rice husk,” Data Brief, vol. 25, p. 104219, 2019, doi: 10.1016/j.dib.2019.104219.spa
dc.relation.referencesM. A. Salam, K. Ahmed, T. Hossain, Md. S. Habib, Md. S. Uddin, and N. Papri, “Prospect of Molecular Sieves Production using Rice Husk in Bangladesh: A Review,” International Journal of Chemistry, Mathematics and Physics, vol. 3, no. 6, pp. 105–134, 2019, doi: 10.22161/ijcmp.3.6.2.spa
dc.relation.referencesL. A. Zemnukhova and Yu. M. Nikolenko, “Study by X-ray photoelectron spectroscopy of rice husk and the products of its processing,” Russ J Gen Chem, vol. 81, no. 4, p. 694, 2011, doi: 10.1134/S1070363211040128.spa
dc.relation.referencesH. Marsmann, “29Si NMR,” in Encyclopedia of spectroscopy and spectrometry, Segunda., J. Lindon, G. Tranter, and D. Koppenaal, Eds., San Diego: Academic Press, 2010, p. 3233.spa
dc.relation.referencesH. Hamdan, M. N. M. Muhid, S. Endud, E. Listiorini, and Z. Ramli, “29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites,” J Non Cryst Solids, vol. 211, no. 1–2, pp. 126–131, 1997, doi: 10.1016/S0022-3093(96)00611-4.spa
dc.relation.referencesK. Mochidzuki, A. Sakoda, M. Suzuki, and J. Izumi, “Structural Behavior of Rice Husk Silica in Pressurized Hot-Water,” Ind. Eng. Chem., vol. 40, pp. 5705–5709, 2001.spa
dc.relation.referencesB. D. Park, S. Gon Wi, K. Ho Lee, A. P. Singh, T. H. Yoon, and Y. Soo Kim, “Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques,” Biomass Bioenergy, vol. 25, no. 3, pp. 319–327, 2003, doi: 10.1016/S0961-9534(03)00014-X.spa
dc.relation.referencesS. C. Byun et al., “Morphology of the cross section of silica layer in rice husk,” J Nanosci Nanotechnol, vol. 11, no. 2, pp. 1305–1309, 2011, doi: 10.1166/jnn.2011.3338.spa
dc.relation.referencesH. Ehrlich, K. D. Demadis, O. S. Pokrovsky, and P. G. Koutsoukos, “Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments,” Chem Rev, vol. 110, no. 8, pp. 4656–4689, Aug. 2010, doi: 10.1021/cr900334y.spa
dc.relation.referencesW. J. Lee, S. L. Bernasek, and C. S. Han, “Interpretation on Nanoporous Network Structure in Rice Husk Silica Layer: A Graph Model,” ACS Omega, vol. 3, no. 9, pp. 11544–11549, 2018, doi: 10.1021/acsomega.8b01453.spa
dc.relation.referencesA. I. Zakharov, A. V Belyakov, and A. N. Tsvigunov, “Forms of extraction of silicon compounds in rice husks,” Glass and Ceramics, vol. 50, no. 9, pp. 420–425, 1993, doi: 10.1007/BF00683590.spa
dc.relation.referencesB. Luh, “Rice hulls,” in Rice production, 2nd ed., B. Luh, Ed., Boston: Springer, 1991, ch. 12, pp. 688–713.spa
dc.relation.referencesW. Simmler, “Silicon Compounds, Inorganic,” in Ullmann’s Encyclopedia of Industrial Chemistry, 2000, pp. 615–635. doi: https://doi.org/10.1002/14356007.a24_001.spa
dc.relation.referencesN. Cardona Uribe, C. Arenas Echeverri, M. Batancur, L. Jaramillo, and J. Martínez, “Posibilidades de usar la ceniza de cascarilla de arroz como reforzante en el sector de polímeros – una revisión,” Revista UIS Ingenierías, vol. 17, no. 1, pp. 127–142, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018012.spa
dc.relation.referencesF. Adam, J. N. Appaturi, and A. Iqbal, “The utilization of rice husk silica as a catalyst: Review and recent progress,” Catal Today, vol. 190, no. 1, pp. 2–14, 2012, doi: https://doi.org/10.1016/j.cattod.2012.04.056.spa
dc.relation.referencesV. Swamy, S. K. Saxena, B. Sundman, and J. Zhang, “A thermodynamic assessment of silica phase diagram,” J Geophys Res Solid Earth, vol. 99, no. B6, pp. 11787–11794, 1994.spa
dc.relation.referencesW. Cai, R. Liu, Y. He, M. Chai, and J. Cai, “Bio-oil production from fast pyrolysis of rice husk in a commercial-scale plant with a downdraft circulating fluidized bed reactor,” Fuel Processing Technology, vol. 171, no. November 2017, pp. 308–317, 2018, doi: 10.1016/j.fuproc.2017.12.001.spa
dc.relation.referencesR. A. Bakar, R. Yahya, and S. N. Gan, “Production of High Purity Amorphous Silica from Rice Husk,” Procedia Chem, vol. 19, pp. 189–195, 2016, doi: https://doi.org/10.1016/j.proche.2016.03.092.spa
dc.relation.referencesH. Beidaghy-Dizaji, T. Zeng, and D. Enke, “Mitigation of ash-melting behaviour during combustion of silica-rich biomass assortments to enhance porosity of biogenic silica,” 29th European Biomass Conference and Exhibition, p. 5, 2021, doi: 10.5071/29thEUBCE2021-3AO.9.4.spa
dc.relation.referencesC. Klein and B. Dutrow, The 23rd Edition of the Manual of Mineral Science: (after James D. Dana). John Wiley & Sons, 2008.spa
dc.relation.referencesR. V Krishnarao, J. Subrahmanyam, and T. Jagadish Kumar, “Studies on the formation of black particles in rice husk silica ash,” J Eur Ceram Soc, vol. 21, no. 1, pp. 99–104, 2001, doi: https://doi.org/10.1016/S0955-2219(00)00170-9.spa
dc.relation.referencesA. Anca-Couce, P. Sommersacher, C. Hochenauer, and R. Scharler, “Multi-stage model for the release of potassium in single particle biomass combustion,” Fuel, vol. 280, no. June, p. 118569, 2020, doi: 10.1016/j.fuel.2020.118569.spa
dc.relation.referencesC. Yu et al., “Influence of leaching pretreatment on fuel properties of biomass,” Fuel Processing Technology, vol. 128, pp. 43–53, 2014, doi: 10.1016/j.fuproc.2014.06.030.spa
dc.relation.referencesY. W. Bandara, P. Gamage, and D. S. Gunarathne, “Hot water washing of rice husk for ash removal: The effect of washing temperature, washing time and particle size,” Renew Energy, vol. 153, pp. 646–652, 2020, doi: https://doi.org/10.1016/j.renene.2020.02.038.spa
dc.relation.referencesS. Gu, J. Zhuo, Z. Luo, Q. Wang, and M. Ni, “A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk,” Ind Crops Prod, vol. 50, pp. 540–549, Oct. 2013, doi: 10.1016/J.INDCROP.2013.08.004.spa
dc.relation.referencesJ. Ge et al., “Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus,” Bioresour Technol, vol. 307, p. 123246, 2020, doi: https://doi.org/10.1016/j.biortech.2020.123246.spa
dc.relation.referencesQ. Guo, Z. Cheng, G. Chen, B. Yan, L. Hou, and F. Ronsse, “Optimal strategy for clean and efficient biomass combustion based on ash deposition tendency and kinetic analysis,” J Clean Prod, vol. 271, p. 122529, 2020, doi: 10.1016/j.jclepro.2020.122529.spa
dc.relation.referencesL. Xiong, K. Saito, E. H. Sekiya, P. Sujaridworakun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Journal of metals, materials and minerals, vol. 19, no. 2, pp. 73–77, 2009.spa
dc.relation.referencesL. Xiong, E. H. Sekiya, P. Sujaridworakun, S. Wada, and K. Saito, “Burning temperature dependence of rice husk ashes in structure and property,” Journal of metals, materials and minerals, vol. 19, no. 2, pp. 95–99, 2009.spa
dc.relation.referencesT.-H. Liou, “Evolution of chemistry and morphology during the carbonization and combustion of rice husk,” Carbon N Y, vol. 42, no. 4, pp. 785–794, 2004, doi: https://doi.org/10.1016/j.carbon.2004.01.050.spa
dc.relation.referencesJ. Shen, X. Liu, S. Zhu, H. Zhang, and J. Tan, “Effects of calcination parameters on the silica phase of original and leached rice husk ash,” Mater Lett, vol. 65, no. 8, pp. 1179–1183, 2011, doi: 10.1016/j.matlet.2011.01.034.spa
dc.relation.referencesC. Arce and L. Kratky, “Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization,” iScience, vol. 25, no. 7, 2022, doi: 10.1016/j.isci.2022.104610.spa
dc.relation.referencesY. Shen, “Biomass pretreatment for steam gasification toward H2-rich syngas production – An overview,” Int J Hydrogen Energy, vol. 66, no. April, pp. 90–102, 2024.spa
dc.relation.referencesC. Mayer-Laigle, A. Bourmaud, D. U. Shah, N. Follain, and J. Beaugrand, “Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibre,” Powder Technol, vol. 360, pp. 129–140, 2020, doi: 10.1016/j.powtec.2019.10.024.spa
dc.relation.referencesG. Guo et al., “Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics,” Bioresour Technol, vol. 301, no. November 2019, 2020, doi: 10.1016/j.biortech.2020.122732.spa
dc.relation.referencesC. Mayer-Laigle, N. Blanc, R. K. Rajaonarivony, and X. Rouau, “Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour,” Bioengineering, vol. 5, no. 2, 2018, doi: 10.3390/bioengineering5020041.spa
dc.relation.referencesQ. Guo, X. Chen, and H. Liu, “Experimental research on shape and size distribution of biomass particle,” Fuel, vol. 94, pp. 551–555, 2012, doi: https://doi.org/10.1016/j.fuel.2011.11.041.spa
dc.relation.referencesH.-J. Kim and Y.-G. Eom, “Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites,” Journal of the Korean Wood Science and Technology, vol. 29, no. 3, pp. 59–67, 2001.spa
dc.relation.referencesM. Estevez, S. Vargas, V. M. Castaño, and R. Rodriguez, “Silica nano-particles produced by worms through a bio-digestion process of rice husk,” J Non Cryst Solids, vol. 355, no. 14, pp. 844–850, 2009, doi: https://doi.org/10.1016/j.jnoncrysol.2009.04.011.spa
dc.relation.referencesV. K. Gupta and M. G. Tuohy, Mycodegradation of lignocelluloses. Suiza: Springer, 2019.spa
dc.relation.referencesT. N. Ang, “Production of laccase ezyme using rice husk as substrate in fungal solid-state fermentation,” University of Malaya, 2013.spa
dc.relation.referencesK. Rohatgi, S. V Prasad, and P. K. Rohatgi, “Release of silica-rich particles from rice husk by microbial fermentation,” J Mater Sci Lett, vol. 6, no. 7, pp. 829–831, 1987, doi: 10.1007/BF01729027.spa
dc.relation.referencesR. Potumarthi, R. Raju, P. Nayak, and A. Jetty, “Bioresource Technology Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars,” Bioresour Technol, vol. 128, pp. 113–117, 2013, doi: 10.1016/j.biortech.2012.10.030.spa
dc.relation.referencesV. Bansal, A. Ahmad, and M. Sastry, “Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica,” J Am Chem Soc, vol. 128, no. 43, pp. 14059–14066, 2006.spa
dc.relation.referencesH. Chen et al., “Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass,” ACS Sustain Chem Eng, vol. 1, no. 2, pp. 254–259, Feb. 2013, doi: 10.1021/sc300115r.spa
dc.relation.referencesS. Zhang, T. Chen, and Y. Xiong, “Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica,” Waste Biomass Valorization, vol. 9, no. 5, pp. 861–869, 2018, doi: 10.1007/s12649-017-9845-9.spa
dc.relation.referencesT.-H. Liou and C.-C. Yang, “Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash,” Materials Science and Engineering: B, vol. 176, no. 7, pp. 521–529, 2011, doi: https://doi.org/10.1016/j.mseb.2011.01.007.spa
dc.relation.referencesT. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1126–1140, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.185.spa
dc.relation.referencesA. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica,” J Mater Sci, vol. 23, no. 1, pp. 21–24, 1988, doi: 10.1007/BF01174029.spa
dc.relation.referencesV. B. Carmona, R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini, “Nanosilica from rice husk: Extraction and characterization,” Ind Crops Prod, vol. 43, pp. 291–296, 2013, doi: https://doi.org/10.1016/j.indcrop.2012.06.050.spa
dc.relation.referencesJ. H. Lee, J. H. Kwon, J.-W. Lee, H. Lee, J. H. Chang, and B.-I. Sang, “Preparation of high purity silica originated from rice husks by chemically removing metallic impurities,” Journal of Industrial and Engineering Chemistry, vol. 50, pp. 79–85, 2017, doi: https://doi.org/10.1016/j.jiec.2017.01.033.spa
dc.relation.referencesJ. R. He, W. C. Kuo, C. S. Su, and H. P. Lin, “Isolation of bio-mesoporous silica from rice husk,” Journal of the Chinese Chemical Society, vol. 61, no. 7, pp. 836–840, 2014, doi: 10.1002/jccs.201300658.spa
dc.relation.referencesP. Chen, H. Bie, and R. Bie, “Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles,” Korean Journal of Chemical Engineering, vol. 35, no. 9, pp. 1911–1918, 2018, doi: 10.1007/s11814-018-0103-z.spa
dc.relation.referencesJ. Umeda and K. Kondoh, “High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal,” Ind Crops Prod, vol. 32, no. 3, pp. 539–544, Nov. 2010, doi: 10.1016/J.INDCROP.2010.07.002.spa
dc.relation.referencesN. Yalçin and V. Sevinç, “Studies on silica obtained from rice husk,” Ceram Int, vol. 27, no. 2, pp. 219–224, 2001, doi: 10.1016/S0272-8842(00)00068-7.spa
dc.relation.referencesS. Chandrasekhar, P. N. Pramada, and J. Majeed, “Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash,” J Mater Sci, vol. 41, no. 23, pp. 7926–7933, 2006.spa
dc.relation.referencesQ. Feng, H. Yamamichi, M. Shoya, and S. Sugita, “Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment,” Cem Concr Res, vol. 34, no. 3, pp. 521–526, 2004, doi: 10.1016/j.cemconres.2003.09.005.spa
dc.relation.referencesL. Xiong, E. H. Sekiya, S. Wada, and K. Saito, “Facile Catalytic Combustion of Rice Husk and Burning Temperature Dependence of the Ashes,” ACS Appl Mater Interfaces, vol. 1, no. 11, pp. 2509–2518, Nov. 2009, doi: 10.1021/am9004623.spa
dc.relation.referencesD. Schneider, S. Wassersleben, M. Weiß, R. Denecke, A. Stark, and D. Enke, “A Generalized Procedure for the Production of High-Grade, Porous Biogenic Silica,” Waste Biomass Valorization, vol. 11, no. 1, pp. 1–15, 2020, doi: 10.1007/s12649-018-0415-6.spa
dc.relation.referencesA. Zareihassangheshlaghi et al., “Behavior of Metal Impurities on Surface and Bulk of Biogenic Silica from Rice Husk Combustion and the Impact on Ash-Melting Tendency,” ACS Sustain Chem Eng, vol. 8, no. 28, pp. 10369–10379, Jul. 2020, doi: 10.1021/acssuschemeng.0c01484.spa
dc.relation.referencesD. Feng, Y. Zhang, Y. Zhao, and S. Sun, “Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties,” Energy, vol. 152, pp. 166–177, Jun. 2018, doi: 10.1016/J.ENERGY.2018.03.119.spa
dc.relation.referencesT. N. Ang, G. C. Ngoh, and A. S. May Chua, “Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk,” Bioresour Technol, vol. 135, pp. 116–119, May 2012, doi: 10.1016/J.BIORTECH.2012.09.045.spa
dc.relation.referencesM. K. Islam et al., “Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery,” Bioresour Technol, vol. 298, no. December 2019, p. 122558, 2020, doi: 10.1016/j.biortech.2019.122558.spa
dc.relation.referencesT. Hardianto, A. A. Wenas, and F. B. Juangsa, “Upgrading process of palm empty fruit bunches as alternative solid fuel: a review,” Clean Energy, vol. 7, no. 6, pp. 1173–1188, 2023, doi: 10.1093/ce/zkad059.spa
dc.relation.referencesL. Xiong, K. Saito, E. Sekita, P. Sujaridworaun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Metals, Materials and Minerals, vol. 19, no. 2, pp. 73–77, 2009.spa
dc.relation.referencesS. K. S. Hossain and P. K. R. Lakshya Mathur, “Rice husk/rice husk ash as an alternative source of silica in ceramics: A review,” Journal of Asian Ceramic Societies, 2018, doi: 10.1080/21870764.2018.1539210.spa
dc.relation.referencesX. Liu et al., “Catalytic effects of ion-exchangeable potassium ion on combustion behavior of Loy Yang lignite,” Thermochim Acta, vol. 687, no. March, p. 178582, 2020, doi: 10.1016/j.tca.2020.178582.spa
dc.relation.referencesJ. Hu, Y. Yan, Y. Song, J. Liu, F. Evrendilek, and M. Buyukada, “Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: Bioenergy, emission and ash deposition improvements,” J Clean Prod, vol. 270, p. 122418, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122418.spa
dc.relation.referencesL. Wang et al., “Investigation on catalyzed combustion of wheat straw by thermal analysis,” Thermochim Acta, vol. 512, no. 1–2, pp. 254–257, 2011, doi: 10.1016/j.tca.2010.11.006.spa
dc.relation.referencesJ. Cai, S. Wang, C. Kuang, and X. Tang, “Insight into the kinetic analysis of catalytic combustion for biomass after alkaline metals loaded pretreatment,” Fuel, vol. 203, pp. 501–513, 2017, doi: https://doi.org/10.1016/j.fuel.2017.04.137.spa
dc.relation.referencesR. Yuan, S. Yu, and Y. Shen, “Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues,” Waste Management, vol. 87, pp. 86–96, 2019, doi: https://doi.org/10.1016/j.wasman.2019.02.009.spa
dc.relation.referencesK. Aldebrecht, M. Olarte, and H. Wang, “Upgrading Fast Pyrolysis Liquids,” in Thermochemical processing of biomass, R. Brown, Ed., Iowa: Wiley, 2019, ch. 7, p. 400.spa
dc.relation.referencesM. Sharifzadeh et al., “The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions,” Prog Energy Combust Sci, vol. 71, pp. 1–80, 2019, doi: https://doi.org/10.1016/j.pecs.2018.10.006.spa
dc.relation.referencesS. Eibner, F. Broust, J. Blin, and A. Julbe, “Catalytic effect of metal nitrate salts during pyrolysis of impregnated biomass,” J Anal Appl Pyrolysis, vol. 113, pp. 143–152, 2015, doi: 10.1016/j.jaap.2014.11.024.spa
dc.relation.referencesA. Awasthi and T. Bhaskar, “Chapter 11 - Combustion of Lignocellulosic Biomass,” in Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. B. T.-B. A. F. and C. P. for the P. of L. and G. B. (Second E. Ricke, Eds., Academic Press, 2019, pp. 267–284. doi: https://doi.org/10.1016/B978-0-12-816856-1.00011-7.spa
dc.relation.referencesO. Senneca, R. Chirone, and P. Salatino, “Oxidative pyrolysis of solid fuels,” J Anal Appl Pyrolysis, vol. 71, no. 2, pp. 959–970, 2004, doi: https://doi.org/10.1016/j.jaap.2003.12.006.spa
dc.relation.referencesS. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim Acta, vol. 520, no. 1, pp. 1–19, 2011, doi: https://doi.org/10.1016/j.tca.2011.03spa
dc.relation.referencesS. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim Acta, vol. 590, pp. 1–23, 2014, doi: https://doi.org/10.1016/j.tca.2014.05.036.spa
dc.relation.referencesS. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics,” Thermochim Acta, vol. 689, p. 178597, 2020, doi: https://doi.org/10.1016/j.tca.2020.178597.spa
dc.relation.referencesN. Koga et al., “ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics,” Thermochim Acta, vol. 719, p. 179384, 2023, doi: https://doi.org/10.1016/j.tca.2022.179384.spa
dc.relation.referencesJ. Grams and A. M. Ruppert, “Development of heterogeneous catalysts for thermo-chemical conversion of lignocellulosic biomass,” Energies (Basel), vol. 10, no. 4, p. 545, 2017, doi: https://doi.org/10.3390/en10040545.spa
dc.relation.referencesR. Svoboda, “Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses,” J Eur Ceram Soc, vol. 44, no. 1, pp. 401–407, 2024, doi: https://doi.org/10.1016/j.jeurceramsoc.2023.08.050.spa
dc.relation.referencesH. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12, pp. 1781–1788, 2007, doi: https://doi.org/10.1016/j.fuel.2006.12.013.spa
dc.relation.referencesO. Senneca, R. Chirone, and P. Salatino, “Oxidative pyrolysis of solid fuels,” J Anal Appl Pyrolysis, vol. 71, no. 2, pp. 959–970, 2004, doi: https://doi.org/10.1016/j.jaap.2003.12.006.spa
dc.relation.referencesG. Mishra and T. Bhaskar, “Non isothermal model free kinetics for pyrolysis of rice straw,” Bioresour Technol, vol. 169, pp. 614–621, 2014, doi: https://doi.org/10.1016/j.biortech.2014.07.045.spa
dc.relation.referencesW. Wang et al., “Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure,” Fuel, vol. 322, p. 124200, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124200.spa
dc.relation.referencesM. E. Mostafa, R. A. Alsulami, and Y. M. Khedr, “Chemical kinetic models, reaction mechanism estimation and thermodynamic parameters for the thermochemical conversion of solid wastes: Review,” J Anal Appl Pyrolysis, vol. 179, p. 106431, 2024, doi: https://doi.org/10.1016/j.jaap.2024.106431.spa
dc.relation.referencesY. Zhong, T. Zhou, S. Wei, Z. Tang, C. Li, and Y. Ding, “Kinetic reaction mechanism of lignocellulosic biomass oxidative pyrolysis based on combined kinetics,” J Environ Manage, vol. 352, p. 120055, 2024, doi: https://doi.org/10.1016/j.jenvman.2024.120055.spa
dc.relation.referencesO. Senneca and F. Cerciello, “Kinetics of combustion of lignocellulosic biomass: recent research and critical issues,” Fuel, vol. 347, p. 128310, 2023, doi: https://doi.org/10.1016/j.fuel.2023.128310.spa
dc.relation.referencesS. Steven et al., “Transformation method in determining kinetic parameters of biomass thermal decomposition from solid-state approach to volatile state approach,” Biomass Bioenergy, vol. 183, p. 107171, 2024, doi: https://doi.org/10.1016/j.biombioe.2024.107171.spa
dc.relation.referencesI. Rovenţa, L. A. Perez-Maqueda, and A. Rotaru, “Advancements in the integration and understanding of the Sestak–Berggren generalized conversion function for heterogeneous kinetics,” J Therm Anal Calorim, 2023, doi: 10.1007/s10973-023-12727-8.spa
dc.relation.referencesR. Aniza, W.-H. Chen, E. E. Kwon, Q.-V. Bach, and A. T. Hoang, “Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review,” Energy Conversion and Management: X, vol. 22, p. 100538, 2024, doi: https://doi.org/10.1016/j.ecmx.2024.100538.spa
dc.relation.referencesZ. Zhang et al., “Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis,” Renew Energy, vol. 202, pp. 154–171, 2023, doi: https://doi.org/10.1016/j.renene.2022.11.072.spa
dc.relation.referencesM. G. Grønli, G. Várhegyi, and C. Di Blasi, “Thermogravimetric Analysis and Devolatilization Kinetics of Wood,” Ind Eng Chem Res, vol. 41, no. 17, pp. 4201–4208, Aug. 2002, doi: 10.1021/ie0201157.spa
dc.relation.referencesP. Ma, B. Li, R. Diao, X. Liu, Z. Cheng, and F. Qi, “Demineralization effects on physicochemical and combustion characteristics of biomass: Insights into distributed kinetics, flue gas evolution, and slag formation,” Fuel, vol. 370, Aug. 2024, doi: 10.1016/j.fuel.2024.131836.spa
dc.relation.referencesA. Bin Rahman, Rubaiyath, and J. Zhang, “Trends in rice research: 2030 and beyond,” Food Energy Secur, vol. 12, no. 2, p. e390, Mar. 2023, doi: https://doi.org/10.1002/fes3.390.spa
dc.relation.referencesF. and A. O. of the U. N. FAO, “FAOSTAT.” [Online]. Available: https://www.fao.org/faostat/en/#data/QCLspa
dc.relation.referencesG. Jyothsna, A. Bahurudeen, and P. Sahu, “Sustainable utilization of rice husk for cleaner energy: A circular economy between agricultural, energy and construction sectors,” Materials Today Sustainability, vol. 25, p. 100667, 2024, doi: https://doi.org/10.1016/j.mtsust.2024.100667.spa
dc.relation.referencesN. Soltani, A. Bahrami, M. I. Pech-Canul, and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chemical Engineering Journal, vol. 264, pp. 899–935, 2015.spa
dc.relation.referencesA. Kumar, B. Sengupta, D. Dasgupta, T. Mandal, and S. Datta, “Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Rev Environ Sci Biotechnol, vol. 15, no. 1, pp. 47–65, 2016, doi: 10.1007/s11157-015-9388-0.spa
dc.relation.referencesH. Beidaghy Dizaji et al., “Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review,” 2019. doi: 10.3390/app9061083.spa
dc.relation.referencesM. A. Mosaberpanah and S. A. Umar, “Utilizing Rice Husk Ash as Supplement to Cementitious Materials on Performance of Ultra High Performance Concrete: – A review,” Materials Today Sustainability, vol. 7–8, p. 100030, 2020, doi: https://doi.org/10.1016/j.mtsust.2019.100030.spa
dc.relation.referencesW. K. Setiawan and K.-Y. Chiang, “Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study,” Chemosphere, vol. 279, 2021, doi: 10.1016/j.chemosphere.2021.130541.spa
dc.relation.referencesR. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247–255, 2017, doi: https://doi.org/10.1016/j.fuproc.2017.01.046.spa
dc.relation.referencesR. Taurino, F. Bondioli, and M. Messori, “Use of different kinds of waste in the construction of new polymer composites: review,” Materials Today Sustainability, vol. 21, p. 100298, 2023, doi: https://doi.org/10.1016/j.mtsust.2022.100298.spa
dc.relation.referencesS. Yu, L. Wang, Q. Li, Y. Zhang, and H. Zhou, “Sustainable carbon materials from the pyrolysis of lignocellulosic biomass,” Materials Today Sustainability, vol. 19, p. 100209, 2022, doi: https://doi.org/10.1016/j.mtsust.2022.100209.spa
dc.relation.referencesW. J. Lee, S. L. Bernasek, and C. S. Han, “Interpretation on Nanoporous Network Structure in Rice Husk Silica Layer: A Graph Model,” ACS Omega, vol. 3, no. 9, pp. 11544–11549, 2018, doi: 10.1021/acsomega.8b01453.spa
dc.relation.referencesS. C. Byun et al., “Morphology of the cross section of silica layer in rice husk,” J Nanosci Nanotechnol, vol. 11, no. 2, pp. 1305–1309, 2011, doi: 10.1166/jnn.2011.3338.spa
dc.relation.referencesQ. Guo, X. Chen, and H. Liu, “Experimental research on shape and size distribution of biomass particle,” Fuel, vol. 94, pp. 551–555, 2012, doi: https://doi.org/10.1016/j.fuel.2011.11.041.spa
dc.relation.referencesM. Gil and I. Arauzo, “Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels,” Fuel Processing Technology, vol. 127, pp. 80–87, 2014, doi: https://doi.org/10.1016/j.fuproc.2014.06.016.spa
dc.relation.referencesK. Chen et al., “Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010,” Chemosphere, vol. 287, no. P2, p. 132222, 2022, doi: 10.1016/j.chemosphere.2021.132222.spa
dc.relation.referencesQ. Zhang et al., “Biochar filled high-density polyethylene composites with excellent properties: Towards maximizing the utilization of agricultural wastes,” Ind Crops Prod, vol. 146, p. 112185, 2020, doi: https://doi.org/10.1016/j.indcrop.2020.112185.spa
dc.relation.referencesJ.-C. Motte, J.-Y. Delenne, X. Rouau, and C. Mayer-Laigle, “Mineral–vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles,” Bioresour Technol, vol. 192, pp. 703–710, 2015, doi: https://doi.org/10.1016/j.biortech.2015.06.036.spa
dc.relation.referencesT. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1126–1140, 2016, doi: https://doi.org/10.1016/j.rser.2015.12.185.spa
dc.relation.referencesS. Wang, G. Dai, H. Yang, and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review,” Prog Energy Combust Sci, vol. 62, pp. 33–86, 2017, doi: 10.1016/j.pecs.2017.05.004.spa
dc.relation.referencesS. S. Shukla, R. Chava, S. Appari, B. A, and B. V. R. Kuncharam, “Sustainable use of rice husk for the cleaner production of value-added products,” J Environ Chem Eng, vol. 10, no. 1, p. 106899, 2022, doi: 10.1016/j.jece.2021.106899.spa
dc.relation.referencesJ. Shen, X.-S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes, and C.-Z. Li, “Effects of particle size on the fast pyrolysis of oil mallee woody biomass,” Fuel, vol. 88, no. 10, pp. 1810–1817, 2009, doi: https://doi.org/10.1016/j.fuel.2009.05.001.spa
dc.relation.referencesC. Mayer-Laigle, A. Bourmaud, D. U. Shah, N. Follain, and J. Beaugrand, “Unravelling the consequences of ultra-fine milling on physical and chemical characteristics of flax fibre,” Powder Technol, vol. 360, pp. 129–140, 2020, doi: 10.1016/j.powtec.2019.10.024.spa
dc.relation.referencesI. Nasir, N. Ameram, A. Ali, S. R. Hassan, N. A. C. Zaudin, and J. M. Sapari, “A review of rice husk silica as a heterogeneous catalyst support,” Journal of Metals, Materials and Minerals, vol. 31, no. 4, pp. 1–12, 2021, doi: 10.14456/jmmm.2021.51.spa
dc.relation.referencesS. Raja, M. Ravichandran, R. S. R. Isaac, and N. Abilash, “A review: Sources of silica from agro waste and its extraction methods,” Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 8 Special Issue, pp. 765–772, 2019.spa
dc.relation.referencesS. Nawaz, F. Jamil, P. Akhter, M. Hussain, H. Jang, and Y.-K. Park, “Valorization of lignocellulosic rice husk producing biosilica and biofuels—a review,” JPhys Energy, vol. 5, no. 1, 2023, doi: 10.1088/2515-7655/aca5b4.spa
dc.relation.referencesV. Branco and M. Costa, “Effect of particle size on the burnout and emissions of particulate matter from the combustion of pulverized agricultural residues in a drop tube furnace,” Energy Convers Manag, vol. 149, pp. 774–780, 2017, doi: https://doi.org/10.1016/j.enconman.2017.03.012.spa
dc.relation.referencesJ. F. Saldarriaga, R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao, “Fast characterization of biomass fuels by thermogravimetric analysis (TGA),” Fuel, vol. 140, pp. 744–751, 2015, doi: 10.1016/j.fuel.2014.10.024.spa
dc.relation.referencesJ. Parikh, S. A. Channiwala, and G. K. Ghosal, “A correlation for calculating elemental composition from proximate analysis of biomass materials,” Fuel, vol. 86, no. 12–13, pp. 1710–1719, 2007, doi: 10.1016/j.fuel.2006.12.029.spa
dc.relation.referencesJ. F. Saldarriaga Elorza, “Avances en el modelado de la combustión de biomasa en spouted bed cónico,” Universidad del País Vasco, 2015.spa
dc.relation.referencesC. Wang, X. Zhang, Y. Liu, and D. Che, “Pyrolysis and combustion characteristics of coals in oxyfuel combustion,” Appl Energy, vol. 97, pp. 264–273, 2012, doi: 10.1016/j.apenergy.2012.02.011.spa
dc.relation.referencesC. Liu, J. Liu, F. Evrendilek, W. Xie, J. Kuo, and M. Buyukada, “Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS,” Renew Energy, vol. 148, pp. 1074–1093, 2020, doi: 10.1016/j.renene.2019.09.133.spa
dc.relation.referencesY. Y. Isworo, G.-M. Kim, J.-W. Jeong, and C.-H. Jeon, “Evaluation of Torrefied Empty Fruit Bunch (EFB) and Kenaf Combustion Characteristics: Comparison Study between EFB and Kenaf Based on Microstructure Analysis and Thermogravimetric Methods,” Energy & Fuels, vol. 34, no. 6, pp. 7094–7104, Jun. 2020, doi: 10.1021/acs.energyfuels.9b04380.spa
dc.relation.referencesC. Mayer-Laigle et al., “DRY biorefineries: Multiscale modeling studies and innovative processing,” Innovative Food Science and Emerging Technologies, vol. 46, pp. 131–139, 2018, doi: 10.1016/j.ifset.2017.08.006.spa
dc.relation.referencesT. G. Bridgeman et al., “Influence of particle size on the analytical and chemical properties of two energy crops,” Fuel, vol. 86, no. 1, pp. 60–72, 2007, doi: https://doi.org/10.1016/j.fuel.2006.06.022.spa
dc.relation.referencesD. A. Ramirez-Quintero and W. A. Bizzo, “Experimental characterization of the size, shape and ash composition of solid particles from different biomasses and separated by elutriation,” Biomass Bioenergy, vol. 172, p. 106767, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106767.spa
dc.relation.referencesC. Arce and L. Kratky, “Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization,” iScience, vol. 25, no. 7, 2022, doi: 10.1016/j.isci.2022.104610.spa
dc.relation.referencesG. Guo et al., “Comparative investigation on thermal decomposition of powdered and pelletized biomasses: Thermal conversion characteristics and apparent kinetics,” Bioresour Technol, vol. 301, no. December 2019, 2020, doi: 10.1016/j.biortech.2020.122732.spa
dc.relation.referencesM. Alhinai, A. Azad, M. Abu-Bakar, and N. Phusunti, “Characterisation and thermochemical conversion of rice husk for biochar production,” International Journal of Renewable Energy Research, vol. 8, no. 3, pp. 1648–1656, 2018.spa
dc.relation.referencesH.-J. Kim and Y.-G. Eom, “Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiber-thermoplastic polymer composites,” Journal of the Korean Wood Science and Technology, vol. 29, no. 3, pp. 59–67, 2001.spa
dc.relation.referencesX. Chen et al., “Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield,” Fuel Processing Technology, vol. 196, no. August, p. 106180, 2019, doi: 10.1016/j.fuproc.2019.106180.spa
dc.relation.referencesS. V Vassilev, D. Baxter, and C. G. Vassileva, “An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types,” Fuel, vol. 117, pp. 152–183, 2014, doi: https://doi.org/10.1016/j.fuel.2013.09.024.spa
dc.relation.referencesT. Ma, C. Fan, L. Hao, S. Li, W. Song, and W. Lin, “Fusion characterization of biomass ash,” Thermochim Acta, vol. 638, pp. 1–9, 2016, doi: 10.1016/j.tca.2016.06.008.spa
dc.relation.referencesF. He, X. Li, F. Behrendt, T. Schliermann, J. Shi, and Y. Liu, “Critical changes of inorganics during combustion of herbaceous biomass displayed in its water soluble fractions,” Fuel Processing Technology, vol. 198, no. October 2019, p. 106231, 2020, doi: 10.1016/j.fuproc.2019.106231.spa
dc.relation.referencesI. J. Fernandes et al., “Characterization of rice husk ash produced using different biomass combustion techniques for energy,” Fuel, vol. 165, pp. 351–359, 2016, doi: https://doi.org/10.1016/j.fuel.2015.10.086.spa
dc.relation.referencesX. Bai, G. Wang, Y. Yu, D. Wang, and Z. Wang, “Changes in the physicochemical structure and pyrolysis characteristics of wheat straw after rod-milling pretreatment,” Bioresour Technol, vol. 250, pp. 770–776, 2018, doi: https://doi.org/10.1016/j.biortech.2017.11.085.spa
dc.relation.referencesC. Mayer-Laigle, N. Blanc, R. K. Rajaonarivony, and X. Rouau, “Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour,” 2018. doi: 10.3390/bioengineering5020041.spa
dc.relation.referencesP. Boonsuk et al., “Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites,” Int J Biol Macromol, vol. 167, pp. 130–140, 2021, doi: 10.1016/j.ijbiomac.2020.11.157.spa
dc.relation.referencesS. El-Sayed, “Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA,” Engineering in Agriculture, Environment and Food, vol. 12, no. 4, pp. 460–469, 2019, doi: 10.1016/j.eaef.2019.08.002.spa
dc.relation.referencesP. He, Y. Liu, L. Shao, H. Zhang, and F. Lü, “Particle size dependence of the physicochemical properties of biochar,” Chemosphere, vol. 212, pp. 385–392, 2018, doi: https://doi.org/10.1016/j.chemosphere.2018.08.106.spa
dc.relation.referencesT. CaliŃski, “Dendrogram,” Wiley StatsRef: Statistics Reference Online, pp. 1–3, 2014.spa
dc.relation.referencesM. Forina, C. Armanino, and V. Raggio, “Clustering with dendrograms on interpretation variables,” Anal Chim Acta, vol. 454, no. 1, pp. 13–19, 2002, doi: 10.1016/S0003-2670(01)01517-3.spa
dc.relation.referencesS. M. Al-Amsyar, “Sulfonated-silica/carbon composites from rice husk as heterogeneous catalysts in fructose conversion: The effect of controlling carbonization temperature of rice husk on its physicochemical properties and catalytic activities,” Microporous and Mesoporous Materials, vol. 336, 2022, doi: 10.1016/j.micromeso.2022.111896.spa
dc.relation.referencesA. M. Grimm, L. Y. Dorsch, G. H. Kloess, D. Enke, and A. Roppertz, “Transition metal promoted combustion of rice husk and rice straw towards an energy optimized synthesis of biogenic silica,” Biomass Bioenergy, vol. 155, no. September, p. 106282, 2021, doi: 10.1016/j.biombioe.2021.106282.spa
dc.relation.referencesC. Mayer-Laigle, R. K. Rajaonarivony, X. Rouau, and C. Fabre, “Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up,” Open Research Europe, vol. 1, 2022, doi: 10.12688/openreseurope.14017.2.spa
dc.relation.referencesG. Kumar et al., “A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels,” Fuel, vol. 251, pp. 352–367, 2019, doi: https://doi.org/10.1016/j.fuel.2019.04.049.spa
dc.relation.referencesM. Choudhary et al., “Sustainable valorization of rice husk: thermal behavior and kinetics after chemical treatments,” Biomass Convers Biorefin, 2023, doi: 10.1007/s13399-023-04774-w.spa
dc.relation.referencesP. Giudicianni et al., “Inherent Metal Elements in Biomass Pyrolysis: A Review,” Energy and Fuels, vol. 35, 2021, doi: 10.1021/acs.energyfuels.0c04046.spa
dc.relation.referencesS. Rajamani, S. S. N. Kolla, R. Gudivada, R. Raghunath, K. Ramesh, and S. A. Jadhav, “Valorization of Rice Husk to Value-Added Chemicals and Functional Materials,” Int J Environ Res, vol. 17, no. 1, p. 22, 2023, doi: 10.1007/s41742-023-00512-2.spa
dc.relation.referencesR. Madrid, F. Margarido, and C. A. Nogueira, “Valorisation of rice husk by chemical and thermal treatments,” in Materials Science Forum, P. A.M.P., C. for M. and M. T. CT2M University of Minho, Campus de Azurém, Guimarães, 4800-058, P. A.S., and U. of M. Institute for Polymers and Composites/I3N Campus de Azurém, Guimarães, 4800-058, Eds., Instituto Superior Técnico, Technical University of Lisbon (TULisbon), 1049-001 Lisboa, Av. Rovisco Pais, Portugal: Trans Tech Publications Ltd, 2013, pp. 659–664. doi: 10.4028/www.scientific.net/MSF.730-732.659.spa
dc.relation.referencesA. R. Capelo, G. Mármol, and J. A. Rossignolo, “Optimization of the rice husk ash production process for the manufacture of magnesium silicate hydrate cements,” J Clean Prod, vol. 425, p. 138891, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138891.spa
dc.relation.referencesF. I. Gómez-Castro and C. Gutiérrez-Antonio, Biomass: The driver for sustainable development. Elsevier, 2022. doi: https://doi.org/10.1016/B978-0-12-824116-5.00008-8.spa
dc.relation.referencesS. Rajamani, S. S. N. Kolla, R. Gudivada, R. Raghunath, K. Ramesh, and S. A. Jadhav, “Valorization of Rice Husk to Value-Added Chemicals and Functional Materials,” Int J Environ Res, vol. 17, no. 1, p. 22, 2023, doi: 10.1007/s41742-023-00512-2.spa
dc.relation.referencesW. H. Kwan and Y. S. Wong, “Acid leached rice husk ash (ARHA) in concrete: A review,” Mater Sci Energy Technol, vol. 3, pp. 501–507, 2020, doi: 10.1016/j.mset.2020.05.001.spa
dc.relation.referencesY. S. Wong, W. H. Kwan, and M. Lim, “Enhancing pozzolanic properties of rice husk ash using acid leaching treatment,” in AIP Conference Proceedings, 2019. doi: 10.1063/1.5126562.spa
dc.relation.referencesA. Anca-Couce, P. Sommersacher, C. Hochenauer, and R. Scharler, “Multi-stage model for the release of potassium in single particle biomass combustion,” Fuel, vol. 280, no. June, p. 118569, 2020, doi: 10.1016/j.fuel.2020.118569.spa
dc.relation.referencesZ. Wang and Y. Xiong, “Simultaneous improvement in qualities of bio-oil and syngas from catalytic pyrolysis of rice husk by demineralization,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, pp. 1–14, 2020, doi: 10.1080/15567036.2020.1824038.spa
dc.relation.referencesL. Xiong, K. Saito, S. Wada, and E. H. Sekiya, “Utilization of rice husk to synthesize high-performance phosphors,” Journal of Metals, Materials and Minerals, vol. 19, no. 2, pp. 39–43, 2009.spa
dc.relation.referencesY. Shen, P. Zhao, and Q. Shao, “Porous silica and carbon derived materials from rice husk pyrolysis char,” Microporous and Mesoporous Materials, vol. 188, pp. 46–76, 2014, doi: https://doi.org/10.1016/j.micromeso.2014.01.005.spa
dc.relation.referencesY. Shen, “Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review,” J Agric Food Chem, vol. 65, no. 5, pp. 995–1004, Feb. 2017, doi: 10.1021/acs.jafc.6b04777.spa
dc.relation.referencesA. Chakraverty, H. D. Banerjee, and P. Mishra, “Production of amorphous silica from rice husk in a vertical furnace,” AMA, Agricultural Mechanization in Asia, Africa and Latin America, vol. 21, no. 4, pp. 69–75, 1990, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025498665&partnerID=40&md5=1cb1e47bbd4d36662aad8de51f3499a5spa
dc.relation.referencesA. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of thermal decomposition of rice husk,” Thermochim Acta, vol. 94, no. 2, pp. 267–275, 1985, doi: https://doi.org/10.1016/0040-6031(85)85270-9.spa
dc.relation.referencesA. Chakraverty, P. Mishra, and H. D. Banerjee, “Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica,” J Mater Sci, vol. 23, no. 1, pp. 21–24, 1988, doi: 10.1007/BF01174029.spa
dc.relation.referencesN. Surayah Osman and N. Sapawe, “Waste Material As an Alternative Source of Silica Precursor in Silica Nanoparticle Synthesis-A Review,” Mater Today Proc, vol. 19, pp. 1267–1272, 2019, doi: 10.1016/j.matpr.2019.11.132.spa
dc.relation.referencesJ. Umeda and K. Kondoh, “High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal,” Ind Crops Prod, vol. 32, no. 3, pp. 539–544, 2010, doi: 10.1016/j.indcrop.2010.07.002.spa
dc.relation.referencesA. Kumar, B. Sengupta, D. Dasgupta, T. Mandal, and S. Datta, “Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Rev Environ Sci Biotechnol, vol. 15, no. 1, pp. 47–65, 2016, doi: 10.1007/s11157-015-9388-0.spa
dc.relation.referencesS. Sohni, N. A. N. Norulaini, R. Hashim, S. B. Khan, W. Fadhullah, and A. K. Mohd Omar, “Physicochemical characterization of Malaysian crop and agro-industrial biomass residues as renewable energy resources,” Ind Crops Prod, vol. 111, pp. 642–650, 2018, doi: https://doi.org/10.1016/j.indcrop.2017.11.031.spa
dc.relation.referencesS. Zhang, H. Zhang, X. Liu, S. Zhu, L. Hu, and Q. Zhang, “Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst,” Fuel Processing Technology, vol. 175, pp. 17–25, 2018, doi: https://doi.org/10.1016/j.fuproc.2018.03.002.spa
dc.relation.referencesS. Zhang, S. Zhu, H. Zhang, T. Chen, and Y. Xiong, “Catalytic fast pyrolysis of rice husk: Effect of coupling leaching with torrefaction pretreatment,” J Anal Appl Pyrolysis, vol. 133, pp. 91–96, 2018, doi: https://doi.org/10.1016/j.jaap.2018.04.016.spa
dc.relation.referencesQ. Dong, S. Zhang, K. Ding, S. Zhu, H. Zhang, and X. Liu, “Pyrolysis behavior of raw/torrefied rice straw after different demineralization processes,” Biomass Bioenergy, vol. 119, pp. 229–236, 2018, doi: https://doi.org/10.1016/j.biombioe.2018.09.032.spa
dc.relation.referencesS. Zhang, Y. Su, D. Xu, S. Zhu, H. Zhang, and X. Liu, “Effects of torrefaction and organic-acid leaching pretreatment on the pyrolysis behavior of rice husk,” Energy, vol. 149, pp. 804–813, 2018, doi: https://doi.org/10.1016/j.energy.2018.02.110.spa
dc.relation.referencesS. Zhang, T. Chen, and Y. Xiong, “Effect of Washing Pretreatment with Aqueous Fraction of Bio-Oil on Pyrolysis Characteristic of Rice Husk and Preparation of Amorphous Silica,” Waste Biomass Valorization, vol. 9, no. 5, pp. 861–869, 2018, doi: 10.1007/s12649-017-9845-9.spa
dc.relation.referencesD. Montgomery, Design and analysis of experiments, Ninth. Wiley, 2017.spa
dc.relation.referencesL. S. Sutherland and G. Soares, “The effects of test parameters on the impact response of glass reinforced plastic using an experimental design approach,” Compos Sci Technol, vol. 63, pp. 1–18, 2003, [Online]. Available: www.elsevier.com/locate/compscitechspa
dc.relation.referencesM. S. Mahmud, F. D. M. Daud, N. Sarifuddin, H. H. M. Zaki, N. H. Nordin, and N. F. Mohammed, “Characterization of silica powder prepared from acid leaching and thermal treatment of RHA,” in AIP Conference Proceedings, 2024, p. 020012. doi: 10.1063/5.0183004.spa
dc.relation.referencesM. S. Mahmud, F. D. M. Daud, N. Sarifuddin, H. H. M. Zaki, N. H. Nordin, and N. F. Mohammad, “Size reduction via planetary milling and acid leaching effect on rice husk ash-derived nano-silica,” Mater Today Proc, vol. 66, pp. 2786–2790, 2022, doi: 10.1016/j.matpr.2022.06.516.spa
dc.relation.referencesC. Padwal, H. D. Pham, L. T. M. Hoang, S. Mundree, and D. Dubal, “Deep eutectic solvents assisted biomass pre-treatment to derive sustainable anode materials for lithium-ion batteries,” Sustainable Materials and Technologies, vol. 35, p. e00547, 2023, doi: https://doi.org/10.1016/j.susmat.2022.e00547.spa
dc.relation.referencesA. Singhal, J. Konttinen, and T. Joronen, “Effect of different washing parameters on the fuel properties and elemental composition of wheat straw in water-washing pre-treatment. Part 1: Effect of washing duration and biomass size,” Fuel, vol. 292, p. 120206, 2021, doi: https://doi.org/10.1016/j.fuel.2021.120206.spa
dc.relation.referencesA. Singhal, M. Goossens, J. Konttinen, and T. Joronen, “Effect of basic washing parameters on the chemical composition of empty fruit bunches during washing pretreatment: A detailed experimental, pilot, and kinetic study,” Bioresour Technol, vol. 340, p. 125734, 2021, doi: https://doi.org/10.1016/j.biortech.2021.125734.spa
dc.relation.referencesA. Singhal, M. Goossens, D. Fantozzi, A. Raiko, J. Konttinen, and T. Joronen, “Step washing: A modified pretreatment approach for industrial applications to improve chemical composition of agricultural residues,” Bioresour Technol, vol. 341, p. 125753, 2021, doi: https://doi.org/10.1016/j.biortech.2021.125753.spa
dc.relation.referencesY. Wang et al., “Leaching mechanisms of ash-forming elements during water washing of corn straw,” Biomass Convers Biorefin, vol. 14, no. 1, pp. 133–146, 2024, doi: 10.1007/s13399-021-02184-4.spa
dc.relation.referencesX. Liu and X. T. Bi, “Removal of inorganic constituents from pine barks and switchgrass,” Fuel Processing Technology, vol. 92, no. 7, pp. 1273–1279, 2011, doi: https://doi.org/10.1016/j.fuproc.2011.01.016.spa
dc.relation.referencesM. A. Peiris and D. S. Gunarathne, “Parametric and kinetic study of washing pretreatment for K and Cl removal from rice husk,” Heliyon, vol. 7, no. 11, 2021, doi: 10.1016/j.heliyon.2021.e08398.spa
dc.relation.referencesY. W. Bandara, P. Gamage, and D. S. Gunarathne, “Hot water washing of rice husk for ash removal: The effect of washing temperature, washing time and particle size,” Renew Energy, vol. 153, pp. 646–652, 2020, doi: https://doi.org/10.1016/j.renene.2020.02.038.spa
dc.relation.referencesK. R. Rajaonarivony, C. Mayer-Laigle, B. Piriou, and X. Rouau, “Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders,” Energy, vol. 227, 2021, doi: 10.1016/j.energy.2021.120508.spa
dc.relation.referencesC. Mayer-Laigle, R. K. Rajaonarivony, X. Rouau, and C. Fabre, “Properties of biomass powders resulting from the fine comminution of lignocellulosic feedstocks by three types of ball-mill set-up,” Open Research Europe, vol. 1, 2022, doi: 10.12688/openreseurope.14017.2.spa
dc.relation.referencesC. Mayer-Laigle et al., “DRY biorefineries: Multiscale modeling studies and innovative processing,” Innovative Food Science and Emerging Technologies, vol. 46, pp. 131–139, 2018, doi: 10.1016/j.ifset.2017.08.006.spa
dc.relation.referencesJ.-C. Motte, J.-Y. Delenne, X. Rouau, and C. Mayer-Laigle, “Mineral–vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles,” Bioresour Technol, vol. 192, pp. 703–710, 2015, doi: https://doi.org/10.1016/j.biortech.2015.06.036.spa
dc.relation.referencesQ. Abbas et al., “Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars,” J Anal Appl Pyrolysis, vol. 134, pp. 281–292, 2018, doi: https://doi.org/10.1016/j.jaap.2018.06.018.spa
dc.relation.referencesD. A. Ramirez-Quintero and W. A. Bizzo, “Experimental characterization of the size, shape and ash composition of solid particles from different biomasses and separated by elutriation,” Biomass Bioenergy, vol. 172, p. 106767, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106767.spa
dc.relation.referencesD. Díaz-Tovar, R. Molina, and S. Moreno, “Towards an understanding of the correlation between the physicochemical and thermal properties of ground rice husks and particle size,” Materials Today Sustainability, p. 100862, 2024, doi: https://doi.org/10.1016/j.mtsust.2024.100862.spa
dc.relation.referencesS. Gu, J. Zhuo, Z. Luo, Q. Wang, and M. Ni, “A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk,” Ind Crops Prod, vol. 50, pp. 540–549, Oct. 2013, doi: 10.1016/J.INDCROP.2013.08.004.spa
dc.relation.referencesP. Priyadarshini, S. Nandi, K. Bhunia, and A. Kumar, “Modelling the extraction process parameters of amorphous silica-rich rice husk ash using hybrid RSM − BPANN − MOGA optimization technique,” Mater Chem Phys, vol. 293, no. September 2022, p. 126944, 2023, doi: 10.1016/j.matchemphys.2022.126944.spa
dc.relation.referencesM. A. Carrillo, S. A. Staggenborg, and J. A. Pineda, “Washing sorghum biomass with water to improve its quality for combustion,” Fuel, vol. 116, pp. 427–431, 2014, doi: https://doi.org/10.1016/j.fuel.2013.08.028.spa
dc.relation.referencesU. Aslam, N. Ramzan, T. Iqbal, M. Kazmi, and A. Ikhlaq, “Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk,” Polish Journal of Chemical Technology, vol. 18, no. 3, pp. 117–121, 2016, doi: 10.1515/pjct-2016-0057.spa
dc.relation.referencesP. Chen, H. Bie, and R. Bie, “Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles,” Korean Journal of Chemical Engineering, vol. 35, no. 9, pp. 1911–1918, 2018, doi: 10.1007/s11814-018-0103-z.spa
dc.relation.referencesJ. Fu, G. Allen, S. Weber, S. Q. Turn, and W. Kusch, “Water leaching for improving fuel properties of pongamia Pod: Informing process design,” Fuel, vol. 305, p. 121480, 2021, doi: https://doi.org/10.1016/j.fuel.2021.121480.spa
dc.relation.referencesJ. F. Saldarriaga, R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao, “Fast characterization of biomass fuels by thermogravimetric analysis (TGA),” Fuel, vol. 140, pp. 744–751, 2015, doi: 10.1016/j.fuel.2014.10.024.spa
dc.relation.referencesD. Díaz-Tovar, S. Moreno, and R. Molina, “Efecto del Tamaño de Partícula de Cascarilla de Arroz Sobre su Descomposición Térmica,” in Anais do 28o Congresso Ibero-americano de Catálise, 2022, Natal: CICAT, 2022, p. 6.spa
dc.relation.referencesJ. Cai, S. Wang, C. Kuang, and X. Tang, “Insight into the kinetic analysis of catalytic combustion for biomass after alkaline metals loaded pretreatment,” Fuel, vol. 203, pp. 501–513, 2017, doi: https://doi.org/10.1016/j.fuel.2017.04.137.spa
dc.relation.referencesJ. Miller, J. Miller, and R. Miller, Statistics and Chemometrics for Analytical Chemistry, 7th ed. Harlow: Pearson, 2018.spa
dc.relation.referencesS. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, “ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data,” Thermochim Acta, vol. 520, no. 1, pp. 1–19, 2011, doi: https://doi.org/10.1016/j.tca.2011.03.034.spa
dc.relation.referencesS. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations,” Thermochim Acta, vol. 590, pp. 1–23, 2014, doi: https://doi.org/10.1016/j.tca.2014.05.036.spa
dc.relation.referencesS. Vyazovkin et al., “ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics,” Thermochim Acta, vol. 689, p. 178597, 2020, doi: https://doi.org/10.1016/j.tca.2020.178597.spa
dc.relation.referencesN. Koga et al., “ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics,” Thermochim Acta, vol. 719, p. 179384, 2023, doi: https://doi.org/10.1016/j.tca.2022.179384.spa
dc.relation.referencesH. Gutiérrez-Pulido and R. de la Vara-Salazar, Análisis y diseño de experimentos, Tercera. Mexico D.F.: McGraw-Hill Educación, 2012.spa
dc.relation.referencesStatgraphics Technologies Inc, “Statgraphics Centurion,” 2017, The Plains-Virginia: 18.spa
dc.relation.referencesP. Kabaila, D. Farchione, S. Alhelli, and N. Bragg, “The effect of a Durbin–Watson pretest on confidence intervals in regression,” Stat Neerl, vol. 75, no. 1, pp. 4–23, 2021.spa
dc.relation.referencesM. A. A. Shah, G. Özel, C. Chesneau, M. Mohsin, F. Jamal, and M. F. Bhatti, “A statistical study of the determinants of rice crop production in Pakistan,” Pakistan Journal of Agricultural Research, vol. 33, no. 1, pp. 97–105, 2020.spa
dc.relation.referencesW. L. McCabe, J. Smith, and P. Harriot, Operaciones unitarias en ingeniería química, Séptima. México, D.F.-México: McGraw-Hill Interamericana, 2007.spa
dc.relation.referencesJ. Miller and D. Curtin, “Electrical Conductivity and Soluble Ions,” in Soil Sampling and Methods of Analysis, 2nd ed., Boca Raton: CRC Press, 2006, ch. 2, pp. 187–198.spa
dc.relation.referencesJ.-P. Simonin, “On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics,” Chemical Engineering Journal, vol. 300, pp. 254–263, 2016, doi: https://doi.org/10.1016/j.cej.2016.04.079.spa
dc.relation.referencesH. Li, X. Xie, Q. Yan, and X. Wei, “Experimental study on occurrence of alkali metals in rice husk,” Electric Power Science and Engineering, vol. 35, no. 6, pp. 58–62, 2019, [Online]. Available: http://dspace.imech.ac.cn/handle/311007/79532spa
dc.relation.referencesL. Deng, T. Zhang, and D. Che, “Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass,” Fuel Processing Technology, vol. 106, pp. 712–720, 2013, doi: https://doi.org/10.1016/j.fuproc.2012.10.006.spa
dc.relation.referencesJ. López-Fidalgo, Optimal Experimental Design. Cham: Springer, 2023.spa
dc.relation.referencesM. Herzog, G. Francis, and A. Clarke, Understanding Statistics and Experimental Design. Cham: Springer, 2019.spa
dc.relation.referencesN. S. M. Zarib, S. A. Abdullah*, and N. H. Jamil, “Extraction Of Silica From Rice Husk Via Acid Leaching Treatment,” in The European Proceedings of Social & Behavioural Sciences, Cognitive-Crcs, May 2019, pp. 175–183. doi: 10.15405/epsbs.2019.05.02.16.spa
dc.relation.referencesA. Mahmud, P. S. M. Megat-Yusoff, F. Ahmad, and A. A. Farezzuan, “Acid leaching as efficient chemical treatment for rice husk in production of amorphous silica nanoparticles,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 22, pp. 13384–13388, 2016, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007198760&partnerID=40&md5=35a64547faacfb973470e49211828d2aspa
dc.relation.referencesV. P. Della, D. Hotza, J. A. Junkes, and A. P. N. De Oliveira, “Comparative study of silica obtained from acid leaching of rice husk and the silica obtained by thermal treatment of rice husk ash,” Quim Nova, vol. 29, no. 6, pp. 1175–1179, 2006, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845694142&partnerID=40&md5=bc312842b9d0ca38c281f3bd51432a14spa
dc.relation.referencesC. P. Faizul, D. Murizam, W. A. Rahman, and M. Z. Ruhiyuddin, “Effect of acetic acid leaching process on rice husk,” in AIP Conference Proceedings, R. R.A., A. M.M.A.B., R. S.Z.A., T. M.F.M., M. M.A.M., and J. L., Eds., Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Perlis, Kangar, 01000, Malaysia: American Institute of Physics Inc., 2021. doi: 10.1063/5.0051508.spa
dc.relation.referencesN. H. Mohamed Muzni, N. H. Jamil, F. Che Pa, and W. M. Arif, “Effect of acid leaching on different state of rice husk,” in Materials Science Forum, 2020, pp. 532–537. doi: 10.4028/www.scientific.net/MSF.1010.532.spa
dc.relation.referencesJ. Umeda and K. Kondoh, “Process Optimization to Prepare High-Purity Amorphous Silica from Rice Husk via Citric Acid Leaching Treatment Process,” Transactions of JWR, vol. 37, no. 1, pp. 13–17, 2008.spa
dc.relation.referencesD. Schneider, S. Wassersleben, M. Weiß, R. Denecke, A. Stark, and D. Enke, “A Generalized Procedure for the Production of High-Grade, Porous Biogenic Silica,” Waste Biomass Valorization, vol. 11, no. 1, pp. 1–15, 2020, doi: 10.1007/s12649-018-0415-6.spa
dc.relation.referencesW. K. Setiawan and K.-Y. Chiang, “Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study,” Chemosphere, vol. 279, 2021, doi: 10.1016/j.chemosphere.2021.130541.spa
dc.relation.referencesS. Azat, A. V Korobeinyk, K. Moustakas, and V. J. Inglezakis, “Sustainable production of pure silica from rice husk waste in Kazakhstan,” J Clean Prod, vol. 217, pp. 352–359, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.01.142.spa
dc.relation.referencesJ. R. He, W. C. Kuo, C. S. Su, and H. P. Lin, “Isolation of bio-mesoporous silica from rice husk,” Journal of the Chinese Chemical Society, vol. 61, no. 7, pp. 836–840, 2014, doi: 10.1002/jccs.201300658.spa
dc.relation.referencesJ. Umeda, K. Kondoh, and Y. Michiura, “Environmentally benign process of high-purity amorphous silica originated in rice husks of agricultural wastes,” in Proceedings of the 2008 Global Symposium on Recycling, Waste Treatment and Clean Technology, REWAS 2008, 2008, pp. 1493–1498. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-62449310430&partnerID=40&md5=7254f082dc4aa0da3af00a57155953d7spa
dc.relation.referencesN. S. M. Zarib and S. Abdullah, “Effect of C6H8O7 concentration on silica extraction of rice husk, rice husk ash and mixture of rice husk with rice husk ash via acid leaching process,” International Journal of Engineering and Technology(UAE), vol. 7, no. 4, pp. 190–195, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055591081&partnerID=40&md5=4536da998831e9f946c4780edf878949spa
dc.relation.referencesL. Xiong, K. Saito, E. H. Sekiya, P. Sujaridworakun, and S. Wada, “Influence of Impurity Ions on Rice Husk Combustion,” Journal of metals, materials and minerals, vol. 19, no. 2, pp. 73–77, 2009, [Online]. Available: http://www.ojs.materialsconnex.com/index.php/jmmm/article/view/239spa
dc.relation.referencesW. Gao, H. Li, Karnowo, B. Song, and S. Zhang, “Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids,” 2020. doi: 10.3390/en13226033.spa
dc.relation.referencesJ. Umeda and K. Kondoh, “High-purity amorphous silica originated in rice husks via carboxylic acid leaching process,” J Mater Sci, vol. 43, no. 22, pp. 7084–7090, 2008, doi: https://doi.org/10.1007/s10853-008-3060-9.spa
dc.relation.referencesL. Y. Jaramillo, K. Arango-benítez, W. Henao, E. Vargas, G. Recio-sánchez, and M. Romero-sáez, “Synthesis of ordered mesoporous silicas from rice husk with tunable textural properties,” Mater Lett, vol. 257, p. 126749, 2019, doi: 10.1016/j.matlet.2019.126749.spa
dc.relation.referencesD. Chen et al., “Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS,” Fuel, vol. 252, no. April, pp. 1–9, 2019, doi: 10.1016/j.fuel.2019.04.086.spa
dc.relation.referencesP. Giudicianni et al., “Inherent Metal Elements in Biomass Pyrolysis: A Review,” Energy and Fuels, 2021, doi: 10.1021/acs.energyfuels.0c04046.spa
dc.relation.referencesE. A. H. Pilon-Smits, C. F. Quinn, W. Tapken, M. Malagoli, and M. Schiavon, “Physiological functions of beneficial elements,” Curr Opin Plant Biol, vol. 12, no. 3, pp. 267–274, 2009, doi: https://doi.org/10.1016/j.pbi.2009.04.009.spa
dc.relation.referencesS. C. van Lith, P. A. Jensen, F. J. Frandsen, and P. Glarborg, “Release to the Gas Phase of Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition,” Energy & Fuels, vol. 22, no. 3, pp. 1598–1609, May 2008, doi: 10.1021/ef060613i.spa
dc.relation.referencesE. J. Leijenhorst, W. Wolters, L. van de Beld, and W. Prins, “Inorganic element transfer from biomass to fast pyrolysis oil: Review and experiments,” Fuel Processing Technology, vol. 149, pp. 96–111, 2016, doi: https://doi.org/10.1016/j.fuproc.2016.03.026.spa
dc.relation.referencesM. D. Villota-Enríquez and J. E. Rodríguez-Páez, “Bio-silica production from rice husk for environmental remediation: Removal of methylene blue from aqueous solutions,” Mater Chem Phys, vol. 301, p. 127671, 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.127671.spa
dc.relation.referencesA. S. Aliyu et al., “Synthesis and characterisation of rice husk and palm fruit bunch silica: compositional, structural, and thermal analyses,” Biomass Convers Biorefin, 2024, doi: 10.1007/s13399-024-05525-1.spa
dc.relation.referencesZ. A. S. A. Salim, H. Ismail, A. Hassan, N. H. C. Ismail, and F. Hashim, “Characterisation of high purity rice husk silica synthesised using solvent-thermal treatment with different concentration of acid leaching,” J Teknol, vol. 85, no. 2, pp. 101–110, 2023, doi: 10.11113/jurnalteknologi.v85.18631.spa
dc.relation.referencesY. M. Peralta, R. Molina, and S. Moreno, “Chemical and structural properties of silica obtained from rice husk and its potential as a catalytic support,” J Environ Chem Eng, vol. 12, no. 2, p. 112370, 2024, doi: 10.1016/j.jece.2024.112370.spa
dc.relation.referencesM. R. Errera, T. A. da C. Dias, D. M. Y. Maya, and E. E. S. Lora, “Global bioenergy potentials projections for 2050,” Biomass Bioenergy, vol. 170, p. 106721, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106721.spa
dc.relation.referencesJ. Rodríguez Salcedo, L. O. González Salcedo, A. F. Rojas González, and J. A. Palacios Peñaranda, Energía y ambiente, Primera. Santiago de Cali: Universidad Nacional de Colombia, 2013.spa
dc.relation.referencesM. Sharifzadeh et al., “The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions,” Prog Energy Combust Sci, vol. 71, pp. 1–80, 2019, doi: https://doi.org/10.1016/j.pecs.2018.10.006.spa
dc.relation.referencesE. Ranzi, P. E. A. Debiagi, and A. Frassoldati, “Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis,” ACS Sustain Chem Eng, vol. 5, no. 4, pp. 2867–2881, Apr. 2017, doi: 10.1021/acssuschemeng.6b03096.spa
dc.relation.referencesJ. Silva, S. Teixeira, and J. Teixeira, “A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective,” Energies (Basel), vol. 16, no. 18, 2023, doi: 10.3390/en16186705.spa
dc.relation.referencesP. Wang, G. Wang, J. Zhang, J. Y. Lee, Y. Li, and C. Wang, “Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char,” Appl Therm Eng, vol. 143, pp. 736–745, Oct. 2018, doi: 10.1016/j.applthermaleng.2018.08.009.spa
dc.relation.referencesM. G. Grønli, G. Várhegyi, and C. Di Blasi, “Thermogravimetric Analysis and Devolatilization Kinetics of Wood,” Ind Eng Chem Res, vol. 41, no. 17, pp. 4201–4208, Aug. 2002, doi: 10.1021/ie0201157.spa
dc.relation.referencesA. Awasthi and T. Bhaskar, “Combustion of Lignocellulosic Biomass,” in Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. B. T.-B. A. F. and C. P. for the P. of L. and G. B. (Second E. Ricke, Eds., Academic Press, 2019, ch. 11, pp. 267–284. doi: https://doi.org/10.1016/B978-0-12-816856-1.00011-7.spa
dc.relation.referencesR. Ebrahimi-Kahrizsangi and M. H. Abbasi, “Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA,” Transactions of Nonferrous Metals Society of China, vol. 18, no. 1, pp. 217–221, 2008, doi: https://doi.org/10.1016/S1003-6326(08)60039-4.spa
dc.relation.referencesD. López-González, M. Fernandez-Lopez, J. L. Valverde, and L. Sanchez-Silva, “Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass,” Bioresour Technol, vol. 143, pp. 562–574, 2013, doi: https://doi.org/10.1016/j.biortech.2013.06.052.spa
dc.relation.referencesJ. Grams and A. M. Ruppert, “Development of heterogeneous catalysts for thermo-chemical conversion of lignocellulosic biomass,” Energies (Basel), vol. 10, no. 4, p. 545, 2017, doi: https://doi.org/10.3390/en10040545.spa
dc.relation.referencesR. Svoboda, “Fraser-Suzuki function as an essential tool for mathematical modeling of crystallization in glasses,” J Eur Ceram Soc, vol. 44, no. 1, pp. 401–407, 2024, doi: https://doi.org/10.1016/j.jeurceramsoc.2023.08.050.spa
dc.relation.referencesH. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12, pp. 1781–1788, 2007, doi: https://doi.org/10.1016/j.fuel.2006.12.013.spa
dc.relation.referencesG. Mishra and T. Bhaskar, “Non isothermal model free kinetics for pyrolysis of rice straw,” Bioresour Technol, vol. 169, pp. 614–621, 2014, doi: https://doi.org/10.1016/j.biortech.2014.07.045.spa
dc.relation.referencesW. Wang et al., “Kinetic and thermodynamic analyses of co-pyrolysis of pine wood and polyethylene plastic based on Fraser-Suzuki deconvolution procedure,” Fuel, vol. 322, p. 124200, 2022, doi: https://doi.org/10.1016/j.fuel.2022.124200.spa
dc.relation.referencesJ. L. F. Alves, J. C. G. da Silva, G. D. Mumbach, M. Di Domenico, and C. Marangoni, “Assessing the potential of the invasive grass Cenchrus echinatus for bioenergy production: A study of its physicochemical properties, pyrolysis kinetics and thermodynamics,” Thermochim Acta, vol. 724, 2023, doi: 10.1016/j.tca.2023.179500.spa
dc.relation.referencesF. X. Collard, A. Bensakhria, M. Drobek, G. Volle, and J. Blin, “Influence of impregnated iron and nickel on the pyrolysis of cellulose,” Biomass Bioenergy, vol. 80, pp. 52–62, 2015, doi: 10.1016/j.biombioe.2015.04.032.spa
dc.relation.referencesL. Y. Dorsch, G. H. Kloess, D. Enke, and A. Roppertz, “Catalysing the Combustion of Rice Husk and Rice Straw Towards an Energy Optimized Synthesis of Metal Modified Biogenic Silica,” SSRN, no. Iv, pp. 1–31, 2021, doi: 10.2139/ssrn.3778590.spa
dc.relation.referencesS. Zhang, S. Zhu, H. Zhang, X. Liu, and H. Zhang, “Evaluation of pyrolysis behavior and products properties of rice husk after combined pretreatment of washing and torrefaction,” Biomass Bioenergy, vol. 127, p. 105293, 2019, doi: https://doi.org/10.1016/j.biombioe.2019.105293.spa
dc.relation.referencesS. R. Naqvi et al., “Valorization of Wet Oily Petrochemical Sludge via Slow Pyrolysis: Thermo-Kinetics Assessment and Artificial Neural Network Modeling,” Front Energy Res, vol. 9, 2022, doi: 10.3389/fenrg.2021.782139.spa
dc.relation.referencesH. P. Yang, R. Yan, H. P. Chen, C. G. Zheng, D. H. Lee, and D. T. Liang, “In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin,” Energy & Fuels, vol. 20, no. 1, pp. 388–393, 2006, doi: 10.1021/ef0580117.spa
dc.relation.referencesS. Gu, J. Zhou, Z. Luo, Q. Wang, and Z. Shi, “Kinetic study on the preparation of silica from rice husk under various pretreatments,” J Therm Anal Calorim, vol. 119, no. 3, pp. 2159–2169, 2015, doi: 10.1007/s10973-014-4219-z.spa
dc.relation.referencesB. Castells, I. Amez, L. Medic, and J. García-Torrent, “Torrefaction influence on combustion kinetics of Malaysian oil palm wastes,” Fuel Processing Technology, vol. 218, p. 106843, 2021, doi: https://doi.org/10.1016/j.fuproc.2021.106843.spa
dc.relation.referencesA. Nawaz and P. Kumar, “A novel pseudo-multicomponent isoconversional approach for the estimation of kinetic and thermodynamic parameters of potato stalk thermal degradation,” Biresource Technology, vol. 376, 2023, doi: 10.1016/j.biortech.2023.128846.spa
dc.relation.referencesM. Hu et al., “Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method,” Energy Convers Manag, vol. 118, pp. 1–11, 2016, doi: https://doi.org/10.1016/j.enconman.2016.03.058.spa
dc.relation.referencesL. L. Zhu and Z. P. Zhong, “Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics,” Korean Journal of Chemical Engineering, vol. 37, no. 10, pp. 1660–1668, 2020, doi: 10.1007/s11814-020-0553-y.spa
dc.relation.referencesD. Díez, A. Urueña, R. Piñero, A. Barrio, and T. Tamminen, “Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method),” Processes, vol. 8, no. 9, 2020, doi: 10.3390/pr8091048.spa
dc.relation.referencesG. Luo, W. Wang, Y. Zhao, X. Tao, W. Xie, and K. Wang, “Autothermal pyrolysis of lignocellulosic biomass: Experimental, kinetic, and thermodynamic studies,” J Anal Appl Pyrolysis, vol. 171, p. 105972, 2023, doi: https://doi.org/10.1016/j.jaap.2023.105972.spa
dc.relation.referencesP. Haobin, Y. Li, Y. Li, F. Yuan, and G. Chen, “Experimental Investigation of Combustion Kinetics of Wood Powder and Pellet,” Journal of Combustion, vol. 2018, p. 5981598, 2018, doi: 10.1155/2018/5981598.spa
dc.relation.referencesA. Sharma, A. A. Kumar, B. Mohanty, and A. N. Sawarkar, “Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis,” Renew Energy, vol. 210, pp. 321–334, 2023, doi: 10.1016/j.renene.2023.04.066.spa
dc.relation.referencesV. B. Carmona, R. M. Oliveira, W. T. L. Silva, L. H. C. Mattoso, and J. M. Marconcini, “Nanosilica from rice husk: Extraction and characterization,” Ind Crops Prod, vol. 43, pp. 291–296, 2013, doi: https://doi.org/10.1016/j.indcrop.2012.06.050.spa
dc.relation.referencesQ. Wang, G. Wang, J. Zhang, J.-Y. Lee, H. Wang, and C. Wang, “Combustion behaviors and kinetics analysis of coal, biomass and plastic,” Thermochim Acta, vol. 669, pp. 140–148, 2018, doi: https://doi.org/10.1016/j.tca.2018.09.016.spa
dc.relation.referencesW. Li et al., “Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of Bi-Gaussian as deconvolution technique,” Renew Energy, vol. 188, pp. 491–503, 2022, doi: https://doi.org/10.1016/j.renene.2022.02.024.spa
dc.relation.referencesD. López-González et al., “Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry,” Energy, vol. 90, pp. 1626–1635, 2015, doi: https://doi.org/10.1016/j.energy.2015.06.134.spa
dc.relation.referencesY. J. Rueda-Ordóñez and K. Tannous, “Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air,” Bioresour Technol, vol. 211, pp. 231–239, 2016, doi: https://doi.org/10.1016/j.biortech.2016.03.035.spa
dc.relation.referencesF. C. R. Lopes, J. C. Pereira, and K. Tannous, “Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres,” Bioresour Technol, vol. 270, pp. 294–302, 2018, doi: https://doi.org/10.1016/j.biortech.2018.09.021.spa
dc.relation.referencesG. Luo, W. Wang, Y. Zhao, X. Tao, W. Xie, and K. Wang, “Autothermal pyrolysis of lignocellulosic biomass: Experimental, kinetic, and thermodynamic studies,” J Anal Appl Pyrolysis, vol. 171, p. 105972, 2023, doi: https://doi.org/10.1016/j.jaap.2023.105972.spa
dc.relation.referencesO. Oladokun, A. Ahmad, T. A. T. Abdullah, B. B. Nyakuma, A. A. H. Bello, and A. H. Al-Shatri, “Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica,” Appl Therm Eng, vol. 105, pp. 931–940, Jul. 2016, doi: 10.1016/j.applthermaleng.2016.04.165.spa
dc.relation.referencesA. E. G. K. G. Mansaray, “Determination of Reaction Kinetics of Rice Husks in Air Using Thermogravimetric Analysis,” Energy Sources, vol. 21, no. 10, pp. 899–911, Dec. 1999, doi: 10.1080/00908319950014272.spa
dc.relation.referencesMd. Ahiduzzaman and A. K. M. S. Islam, “Thermo-gravimetric and Kinetic Analysis of Different Varieties of Rice Husk,” Procedia Eng, vol. 105, pp. 646–651, 2015, doi: https://doi.org/10.1016/j.proeng.2015.05.043.spa
dc.relation.referencesA. E. G. K. G. Mansaray, “Kinetics of the Thermal Degradation of Rice Husks in Nitrogen Atmosphere,” Energy Sources, vol. 21, no. 9, pp. 773–784, Sep. 1999, doi: 10.1080/00908319950014335.spa
dc.relation.referencesC.-Y. Yin and B.-M. Goh, “Thermal Degradation of Rice Husks in Air and Nitrogen: Thermogravimetric and Kinetic Analyses,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 3, pp. 246–252, Dec. 2011, doi: 10.1080/15567030903586048.spa
dc.relation.referencesR. L. Gibson, M. J. H. Simmons, E. Hugh Stitt, J. West, S. K. Wilkinson, and R. W. Gallen, “Kinetic modelling of thermal processes using a modified Sestak-Berggren equation,” Chemical Engineering Journal, vol. 408, p. 127318, 2021, doi: https://doi.org/10.1016/j.cej.2020.127318.spa
dc.relation.referencesJ. M. Criado, J. Málek, and F. J. Gotor, “The applicability of the Šesták-Berggren kinetic equation in constant rate thermal analysis (CRTA),” Thermochim Acta, vol. 158, no. 2, pp. 205–213, 1990, doi: https://doi.org/10.1016/0040-6031(90)80068-A.spa
dc.relation.referencesJ. M. Criado, J. Malek, and F. J. Gotor, “The applicability of the Sestak-Berggren kinetic equation in constant rate thermal analysis (CRTA),” Thermochim Acta, p. 205, 1990.spa
dc.relation.referencesM. Kumar, S. Sabbarwal, P. K. Mishra, and S. N. Upadhyay, “Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies,” Bioresour Technol, vol. 279, pp. 262–270, 2019, doi: https://doi.org/10.1016/j.biortech.2019.01.137.spa
dc.relation.referencesE. Yaman and N. Özbay, “Effect of different pre-treatment techniques on thermogravimetric characteristics and kinetics of lignocellulosic biomass pyrolysis,” Journal of the Energy Institute, vol. 111, p. 101419, 2023, doi: https://doi.org/10.1016/j.joei.2023.101419.spa
dc.relation.referencesK. Cen, J. Zhang, Z. Ma, D. Chen, J. Zhou, and H. Ma, “Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aqueous phase bio-oil,” Bioresour Technol, vol. 278, no. November 2018, pp. 26–33, 2019, doi: 10.1016/j.biortech.2019.01.048.spa
dc.relation.referencesS. A. Ajeel, K. A. Sukkar, and N. K. Zedin, “Evaluation of acid leaching process and calcination temperature on the silica extraction efficiency from the sustainable sources,” in Journal of Physics: Conference Series, A.-H. W. and Z. R., Eds., Department Production Engineering and Metallurgy, University of Technology, Baghdad, Iraq: IOP Publishing Ltd, 2021. doi: 10.1088/1742-6596/1773/1/012014.spa
dc.relation.referencesP. Chen, H. Bie, and R. Bie, “Leaching characteristics and kinetics of the metal impurities present in rice husk during pretreatment for the production of nanosilica particles,” Korean Journal of Chemical Engineering, vol. 35, no. 9, pp. 1911–1918, 2018, doi: 10.1007/s11814-018-0103-z.spa
dc.relation.referencesC. Primaz, O. Gil-Castell, and A. Ribes-Greus, “Strategies towards thermochemical valorisation of spent coffee grounds (SCG): Kinetic analysis of the thermal and thermo-oxidative decomposition,” Biomass Bioenergy, vol. 174, p. 106840, 2023, doi: https://doi.org/10.1016/j.biombioe.2023.106840.spa
dc.relation.referencesW. Li et al., “Kinetic and thermodynamic studies of biomass pseudo-components under thermo-oxidative degradation conditions using asymmetric function of Bi-Gaussian as deconvolution technique,” Renew Energy, vol. 188, pp. 491–503, 2022, doi: https://doi.org/10.1016/j.renene.2022.02.024.spa
dc.relation.referencesF. Dessì et al., “Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion,” Energy, vol. 217, p. 119394, 2021, doi: https://doi.org/10.1016/j.energy.2020.119394.spa
dc.relation.referencesS. Hidayat et al., “Comprehensive kinetic study of Imperata Cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics,” J Anal Appl Pyrolysis, vol. 156, p. 105133, 2021, doi: https://doi.org/10.1016/j.jaap.2021.105133.spa
dc.relation.referencesW. Hu et al., “Thermodegradation of naturally decomposed forest logging residues: Characteristics, kinetics, and thermodynamics,” Bioresour Technol, vol. 376, p. 128821, 2023, doi: https://doi.org/10.1016/j.biortech.2023.128821.spa
dc.relation.referencesV. A. Yiga, M. Katamba, M. Lubwama, K. H. Adolfsson, M. Hakkarainen, and E. Kamalha, “Combustion, kinetics and thermodynamic characteristics of rice husks and rice husk-biocomposites using thermogravimetric analysis,” J Therm Anal Calorim, 2023, doi: 10.1007/s10973-023-12458-w.spa
dc.relation.referencesN. Gaur, S. Sharma, and N. Yadav, “Environmental pollution,” in Green Chemistry Approaches to Environmental Sustainability: Status, Challenges and Prospective, V. K. Garg, A. Yadav, C. Mohan, S. Yadav, and N. B. T. Kumari, Eds., Amsterdam: Elsevier, 2024, ch. 2, pp. 23–41. doi: https://doi.org/10.1016/B978-0-443-18959-3.00010-0.spa
dc.relation.referencesC. Mohan, J. Robinson, L. Vodwal, and N. Kumari, “Sustainable Development Goals for addressing environmental challenges,” in Green Chemistry Approaches to Environmental Sustainability: Status, Challenges and Prospective, V. K. Garg, A. Yadav, C. Mohan, S. Yadav, and N. B. T. Kumari, Eds., Amsterdam: Elsevier, 2024, ch. 16, pp. 357–374. doi: https://doi.org/10.1016/B978-0-443-18959-3.00007-0.spa
dc.relation.referencesG. Kumar et al., “A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels,” Fuel, vol. 251, pp. 352–367, 2019, doi: https://doi.org/10.1016/j.fuel.2019.04.049.spa
dc.relation.referencesR. Liu, G. Liu, B. Yousaf, Z. Niu, and Q. Abbas, “Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix,” Renewable and Sustainable Energy Reviews, vol. 153, p. 111761, 2022, doi: https://doi.org/10.1016/j.rser.2021.111761.spa
dc.relation.referencesJ. L. F. Alves, J. C. G. da Silva, G. D. Mumbach, M. Di Domenico, and C. Marangoni, “Assessing the potential of the invasive grass Cenchrus echinatus for bioenergy production: A study of its physicochemical properties, pyrolysis kinetics and thermodynamics,” Thermochim Acta, vol. 724, p. 179500, 2023, doi: https://doi.org/10.1016/j.tca.2023.179500.spa
dc.relation.referencesJ. Umeda and K. Kondoh, “Polysaccharide Hydrolysis and Metallic Impurities Removal Behavior of Rice Husks in Citric Acid Leaching Treatment,” Transactions of JWRI, vol. 38, no. 2, pp. 13–18, 2009.spa
dc.relation.referencesJ. Ge et al., “Effect of hydrothermal pretreatment on the demineralization and thermal degradation behavior of eucalyptus,” Bioresour Technol, vol. 307, p. 123246, 2020, doi: https://doi.org/10.1016/j.biortech.2020.123246.spa
dc.relation.referencesC. Yu et al., “Influence of leaching pretreatment on fuel properties of biomass,” Fuel Processing Technology, vol. 128, pp. 43–53, 2014, doi: 10.1016/j.fuproc.2014.06.030.spa
dc.relation.referencesL. Attanatho, A. Suemanotham, N. Prasongthum, Z. Czégény, and Y. Thanmongkhon, “The thermal behavior during the co-combustion of bituminous coal and oil palm trunk hydrochars,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 46, no. 1, pp. 706–718, 2024, doi: 10.1080/15567036.2023.2289556.spa
dc.relation.referencesE. M. de Paiva et al., “Pyrolysis of cashew nutshell residues for bioenergy and renewable chemicals: Kinetics, thermodynamics, and volatile products,” J Anal Appl Pyrolysis, vol. 177, Jan. 2024, doi: 10.1016/j.jaap.2023.106303.spa
dc.relation.referencesY. Zou and T. Yang, “Chapter 9 - Rice Husk, Rice Husk Ash and Their Applications,” L.-Z. Cheong and X. B. T.-R. B. and R. B. O. Xu, Eds., AOCS Press, 2019, pp. 207–246. doi: https://doi.org/10.1016/B978-0-12-812828-2.00009-3.spa
dc.relation.referencesD. A. Mortari, D. Perondi, G. B. Rossi, J. L. Bonato, M. Godinho, and F. M. Pereira, “The influence of water-soluble inorganic matter on combustion of grape pomace and its chars produced by slow and fast pyrolysis,” Fuel, vol. 284, no. May 2020, p. 118880, 2021, doi: 10.1016/j.fuel.2020.118880.spa
dc.relation.referencesL. Jiang et al., “Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass,” Bioresour Technol, vol. 146, pp. 254–260, 2013, doi: https://doi.org/10.1016/j.biortech.2013.07.063.spa
dc.relation.referencesW. Gao, H. Li, Karnowo, B. Song, and S. Zhang, “Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids,” 2020. doi: 10.3390/en13226033.spa
dc.relation.referencesS. Gu, J. Zhuo, C. Yu, Z. Luo, Q. Wang, and Z. Shi, “A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination,” Ind Crops Prod, vol. 65, pp. 1–6, Mar. 2015, doi: 10.1016/J.INDCROP.2014.11.045.spa
dc.relation.referencesD. Chen, K. Cen, F. Chen, Z. Ma, J. Zhou, and M. Li, “Are the typical organic components in biomass pyrolyzed bio-oil available for leaching of alkali and alkaline earth metallic species (AAEMs) from biomass?,” Fuel, vol. 260, p. 116347, 2020, doi: https://doi.org/10.1016/j.fuel.2019.116347.spa
dc.relation.referencesM. Matusiak, R. Sle̜zak, and S. Ledakowicz, “Thermogravimetric kinetics of selected energy crops pyrolysis,” Energies (Basel), vol. 13, no. 15, Aug. 2020, doi: 10.3390/en13153977.spa
dc.relation.referencesX. Chen et al., “Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield,” Fuel Processing Technology, vol. 196, no. August, p. 106180, 2019, doi: 10.1016/j.fuproc.2019.106180.spa
dc.relation.referencesK. Cen, X. Cao, D. Chen, J. Zhou, F. Chen, and M. Li, “Leaching of alkali and alkaline earth metallic species (AAEMs) with phenolic substances in bio-oil and its effect on pyrolysis characteristics of moso bamboo,” Fuel Processing Technology, vol. 200, no. November 2019, p. 106332, 2020, doi: 10.1016/j.fuproc.2019.106332.spa
dc.relation.referencesQ. Wang, C. X. Jia, and H. P. Liu, “Pyrolysis Characteristics of Rice Husk Using TG-DTG Analysis,” Applied Mechanics and Materials, vol. 291–294, no. International Conference on Sustainable Energy and Environmental Engineering (ICSEEE 2012), pp. 351–354, 2013, doi: 10.4028/www.scientific.net/AMM.291-294.351.spa
dc.relation.referencesA. Anca-Couce, A. Berger, and N. Zobel, “How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme,” Fuel, vol. 123, pp. 230–240, May 2014, doi: 10.1016/j.fuel.2014.01.014.spa
dc.relation.referencesO. Oladokun, A. Ahmad, T. A. T. Abdullah, B. B. Nyakuma, A. A. H. Bello, and A. H. Al-Shatri, “Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica,” Appl Therm Eng, vol. 105, pp. 931–940, Jul. 2016, doi: 10.1016/j.applthermaleng.2016.04.165.spa
dc.relation.referencesO. Oladokun, A. Ahmad, T. A. T. Abdullah, B. B. Nyakuma, A. H. Al-Shatri, and A. A. Bello, “Modelling Multicomponent Devolatilization Kinetics of Imperata Cylindrica,” in Pres15: Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, P. S. Varbanov, J. J. Klemes, S. R. W. Alwi, J. Y. Yong, and X. Liu, Eds., 2015, pp. 919–924. doi: 10.3303/CET1545154.spa
dc.relation.referencesH. Kim, S. Yu, M. Kim, and C. Ryu, “Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model,” Energy, vol. 254, p. 124446, 2022, doi: https://doi.org/10.1016/j.energy.2022.124446.spa
dc.relation.referencesJ. L. F. Alves et al., “Exploring Acai Seed (Euterpe oleracea) Pyrolysis Using Multi-component Kinetics and Thermodynamics Assessment Towards Its Bioenergy Potential,” Bioenergy Res, vol. 14, no. 1, pp. 209–225, 2021, doi: 10.1007/s12155-020-10175-y.spa
dc.relation.referencesT. Chen, W. Wu, J. Wu, J. Cai, and J. Wu, “Determination of the pseudocomponents and kinetic analysis of selected combustible solid wastes pyrolysis based on Weibull model,” J Therm Anal Calorim, vol. 126, no. 3, pp. 1899–1909, 2016, doi: 10.1007/s10973-016-5649-6.spa
dc.relation.referencesJ. Zou et al., “Exploring kinetic mechanisms of biomass pyrolysis using generalized logistic mixture model,” Energy Convers Manag, vol. 258, Apr. 2022, doi: 10.1016/j.enconman.2022.115522.spa
dc.relation.referencesK. R. G. Burra and A. K. Gupta, “Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model,” Fuel, vol. 237, pp. 1057–1067, 2019, doi: https://doi.org/10.1016/j.fuel.2018.09.097.spa
dc.relation.referencesA. I. Ferreiro, M. Rabaçal, and M. Costa, “A combined genetic algorithm and least squares fitting procedure for the estimation of the kinetic parameters of the pyrolysis of agricultural residues,” Energy Convers Manag, vol. 125, pp. 290–300, 2016, doi: https://doi.org/10.1016/j.enconman.2016.04.104.spa
dc.relation.referencesY. Cao et al., “Insight into the pyrolysis of bamboo flour, polylactic acid and their composite: Pyrolysis behavior, kinetic triplets, and thermodynamic parameters based on Fraser-Suzuki deconvolution procedure,” Bioresour Technol, vol. 391, p. 129932, 2024, doi: https://doi.org/10.1016/j.biortech.2023.129932.spa
dc.relation.referencesY. Patil and X. Ku, “Pyrolysis kinetics and thermodynamic behavior of pseudo components of raw and torrefied maple wood,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 46, no. 1, pp. 462–474, 2024, doi: 10.1080/15567036.2023.2285406.spa
dc.relation.referencesY. Wang, S. Yang, G. Bao, and H. Wang, “Pyrolysis of macadamia nut peel using multicomponent Gaussian kinetic modeling and ANN analysis,” Biomass Bioenergy, vol. 183, p. 107170, 2024, doi: https://doi.org/10.1016/j.biombioe.2024.107170.spa
dc.relation.referencesJ. C. G. da Silva, J. G. de Albuquerque, W. V. de A. Galdino, R. F. de Sena, and S. L. F. Andersen, “Single-step and multi-step thermokinetic study – Deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion,” Energy Convers Manag, vol. 209, p. 112653, 2020, doi: https://doi.org/10.1016/j.enconman.2020.112653.spa
dc.relation.referencesS. Suárez, J. G. Rosas, M. E. Sánchez, R. López, N. Gómez, and J. Cara-Jiménez, “Parametrization of a Modified Friedman Kinetic Method to Assess Vine Wood Pyrolysis Using Thermogravimetric Analysis,” 2019. doi: 10.3390/en12132599.spa
dc.relation.referencesC.-Y. Yin and B.-M. Goh, “Thermal Degradation of Rice Husks in Air and Nitrogen: Thermogravimetric and Kinetic Analyses,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 34, no. 3, pp. 246–252, Dec. 2011, doi: 10.1080/15567030903586048.spa
dc.relation.referencesA. C. M. Loy et al., “Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst,” Bioresour Technol, vol. 261, pp. 213–222, 2018, doi: https://doi.org/10.1016/j.biortech.2018.04.020.spa
dc.relation.referencesD. K. W. Gan et al., “Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts,” Bioresour Technol, vol. 265, no. June, pp. 180–190, 2018, doi: 10.1016/j.biortech.2018.06.003.spa
dc.relation.referencesV. Balasundram et al., “Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil,” J Clean Prod, vol. 167, pp. 218–228, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.08.173.spa
dc.relation.referencesA. C. Minh Loy et al., “Comparative study of in-situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis,” J Clean Prod, vol. 197, pp. 1231–1243, 2018, doi: 10.1016/j.jclepro.2018.06.245.spa
dc.relation.referencesL. A. Pérez-Maqueda, J. M. Criado, and P. E. Sánchez-Jiménez, “Combined Kinetic Analysis of Solid-State Reactions: A Powerful Tool for the Simultaneous Determination of Kinetic Parameters and the Kinetic Model without Previous Assumptions on the Reaction Mechanism,” J Phys Chem A, vol. 110, no. 45, pp. 12456–12462, Nov. 2006, doi: 10.1021/jp064792g.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.lembMOLIENDA DE GRANOSspa
dc.subject.lembGrain - millingeng
dc.subject.lembCASCARILLA DE ARROZspa
dc.subject.lembRice hullseng
dc.subject.lembRESIDUOS AGRICOLASspa
dc.subject.lembAgricultural wasteseng
dc.subject.lembLIXIVIACIONspa
dc.subject.lembLeachingeng
dc.subject.lembSILICEspa
dc.subject.lembSilicaeng
dc.subject.lembPROPIEDADES FISICOQUIMICASspa
dc.subject.lembChemicophysical propertieseng
dc.subject.proposalCascarilla de arrozspa
dc.subject.proposalAnisotropíaspa
dc.subject.proposalLixiviaciónspa
dc.subject.proposalBiosílicespa
dc.subject.proposalMesoporosaspa
dc.subject.proposalPirólisisspa
dc.subject.proposalTriplete cinéticospa
dc.subject.proposalRice huskeng
dc.subject.proposalAnisotropyeng
dc.subject.proposalLeachingeng
dc.subject.proposalBiosilicaeng
dc.subject.proposalMesoporouseng
dc.subject.proposalPyrolysiseng
dc.subject.proposalKinetic tripleteng
dc.titleValorización de cascarilla de arroz mediante transformación termocatalítica para la obtención de sílice amorfa mesoporosaspa
dc.title.translatedValorization of rice husk through thermocatalytic transformation to produce mesoporous amorphous silicaeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBeca del Bicentenario de Excelencia Doctoral de Colciencias - corte Ispa
oaire.fundernameMIncienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80811242_2024.pdf
Tamaño:
13.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: