Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV

dc.contributor.advisorHeinrich, Sophie
dc.contributor.advisorPlazas de Pinzón, María Cristina
dc.contributor.authorAvilés León, Valentina
dc.contributor.cvlacAviles, Valentina [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000128868]spa
dc.contributor.cvlacAviles, Valentina [0000128868]spa
dc.contributor.researchgroupGrupo Fisica Medica Unalbspa
dc.date.accessioned2024-07-16T19:51:58Z
dc.date.available2024-07-16T19:51:58Z
dc.date.issued2024-07-11
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEl fenómeno radiobiológico conocido como efecto FLASH ha despertado considerable interés en la comunidad científica mundial. Estudios preclínicos han resaltado su notable capacidad para mitigar los efectos colaterales en tejidos sanos mientras mantiene la eficacia en tejidos tumorales. Este procedimiento juega un papel crucial en la expansión de las posibilidades terapéuticas y en mejorar la efectividad de la radioterapia al administrar dosis altas de radiación en intervalos de tiempo extremadamente corto, con tasas de dosis promedio excepcionalmente altas que superan los 40 Gy/s. Es importante destacar que la irradiación instantánea con dosis de energía ultra alta asociada con la Radioterapia FLASH presenta desafíos significativos en la medición y cuantificación de la dosis. La escasez de literatura, protocolos y orientación en este campo es uno de los desafíos que enfrenta esta área de investigación. A pesar de numerosos estudios sobre dosimetría en radioterapia FLASH, sigue existiendo una brecha considerable en el conocimiento de física médica. Además, considerar la relación entre parámetros temporales del haz de radiación, como la tasa de dosis, dosis por pulso y tasa de dosis promedio dentro del pulso, sigue siendo un desafío significativo. En este trabajo final de maestría, se llevarán a cabo mediciones dosimétricas de haces de electrones de 5 y 7 MeV, tanto en modalidades convencionales como FLASH. Este enfoque jugará un papel crucial en la comprensión de la dosimetría en la Radioterapia FLASH. Se anticipa que procedimientos como la determinación de curvas de PDD, controles de calidad diarios tanto para modalidades FLASH como convencionales, la evaluación de la dosis por pulso [Gy/pulso] en relación con la longitud real del pulso [µs], y la determinación de los output factors, entre otras medidas dosimétricos incorporados en este estudio, contribuirán significativamente a la caracterización precisa del haz de electrones para ambas energías. Este enriquecimiento se traducirá en una comprensión más profunda de la dosimetría para haces de electrones de ultra alta energía, fortaleciendo la base de conocimientos esencial para su aplicación en protocolos de aseguramiento de calidad de haces de radiación. (Texto tomado de la fuente)spa
dc.description.abstractThe radiobiological phenomenon known as the FLASH effect has sparked considerable interest in the global scientific community. Preclinical studies have highlighted its remarkable ability to mitigate adverse effects on healthy tissues while maintaining efficacy in tumor tissues. This procedure plays a crucial role in expanding therapeutic possibilities and improving the effectiveness of radiotherapy by delivering high-energy doses in brief time intervals, with exceptionally high average dose rates exceeding 40 Gy/s. It is noteworthy that instantaneous irradiation with ultra-high energy doses associated with FLASH Radiotherapy poses significant challenges in measuring and quantifying the dose. The scarcity of literature, protocols, and guidance in this field is one of the challenges facing this research area. Despite numerous studies on dosimetry in FLASH radiotherapy, there remains a considerable gap in medical physics knowledge. Additionally, considering the relationship betweentemporal parameters of the radiation beam, such as dose rate, dose per pulse, and average dose rate within the pulse, remains a significant challenge. In this final master’s thesis proposal, dosimetric measurements of 5 and 7 MeV electron beams will be conducted, both in conventional and FLASH modes. This approach will play a crucial role in understanding dosimetry in FLASH Radiotherapy. It is anticipated that procedures such as determining PDD curves, daily quality controls for both FLASH and conventional modalities, evaluating the dose per pulse [Gy/pulse] in relation to the actual pulse length [µs], and determining output factors, among other dosimetric tests incorporated in this study, will significantly contribute to the precise characterization of the electron beam for both energies. This enrichment will translate into a deeper understanding of dosimetry for ultra-high-energy electron beams, strengthening the essential knowledge base for their application in radiation beam quality assurance protocols.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Física Médicaspa
dc.description.researchareaRadioterapia FLASHspa
dc.format.extentxv, 79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86477
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesBerry, R. J., Hall, E. J., Forster, D. W., Storr, T. H., & Goodman, M. J. (1969). Survival of mammalian cells exposed to x rays at ultra-high dose-rates. The British journal of radiology, 42(494), 102-107.spa
dc.relation.referencesHochhaus, A., Druker, B., Sawyers, C., Guilhot, F., Schiffer, C. A., Cortes, J., ... & Kantarjian, H. M. (2008). Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-α treatment. Blood, The Journal of the American Society of Hematology, 111(3), 1039-1043.spa
dc.relation.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209- 249.spa
dc.relation.referencesInstituto Nacional de Cancerología (INC). (2022). Anuario estadístico. Bogotá, D. C., 19(1)spa
dc.relation.referencesFavaudon, V., Fouillade, C., & Vozenin, M. C. (2015). La radiothérapie FLASH pour épargner les tissus sains. médecine/sciences, 31(2), 121-123.spa
dc.relation.referencesMeijer, T. W., Kaanders, J. H., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical cancer research, 18(20), 5585-5594.spa
dc.relation.referencesWu, Y., Zhu, K., Zhang, X., Du, W., Song, J., & Yang, H. (2023). Emerging Plasmonic Nanoparticles and Their Assemblies for Cancer Radiotherapy. Advanced Drug Delivery Reviews, 114710.spa
dc.relation.referencesPonette, C. Le P´echoux, E. Deniaud-Alexandre, M. Fernet, N. Giocanti, H. Tourbez, V. Favaudon, V. (2000). Hyperfast, early cell response to ionizing radiation. International journal of radiation biology, 76(9), 1233-1243.spa
dc.relation.referencesFernet, V. Ponette, E. Deniaud-Alexandre, J. M´enissier De-Murcia, G. De Murcia, N. Giocanti, F. Megnin-Chanet, V. Favaudon, M. (2000). Poly (ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation. International journal of radiation biology, 76(12), 1621-1629.spa
dc.relation.referencesSharplin, J., & Franko, A. J. (1989). A quantitative histological study of straindependent differences in the effects of irradiation on mouse lung during the early phase. Radiation research, 119(1), 1-14.spa
dc.relation.referencesFavaudon, V., Fouillade, C., & Vozenin, M. C. (2015). Radiothérapie «flash» à très haut débit de dose: un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains?. Cancer/Radiothérapie, 19(6-7), 526-531.spa
dc.relation.referencesFouillade, C., Favaudon, V., Vozenin, M. C., Romeo, P. H., Bourhis, J., Verrelle, P., ... & Dutreix, M. (2017). Les promesses du haut d´ebit de dose en radioth´erapie. Bulletin du Cancer, 104(4), 380-384.spa
dc.relation.referencesFerlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Pi˜neros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4), 778-789spa
dc.relation.referencesChhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451.spa
dc.relation.referencesGlobacan 2020, [En línea]. Available: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf [Último acceso: 02 01 2023]spa
dc.relation.referencesChandra, R. A., Keane, F. K., Voncken, F. E., & Thomas, C. R. (2021). Contemporary radiotherapy: present and future. The Lancet, 398(10295), 171-184.spa
dc.relation.referencesCitrin, D. E. (2017). Recent developments in radiotherapy. New England journal of medicine, 377(11), 1065-1075.spa
dc.relation.referencesAbbas, Z., & Rehman, S. (2018). An overview of cancer treatment modalities. Neoplasm, 1, 139-157.spa
dc.relation.referencesOjha, S., Bhusan Singh, R., Shukla, A., Chadha, H., & Mishra, S. (2024). Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment. Current Cancer Therapy Reviews, 20(1), 18-25.spa
dc.relation.referencesKim, M. M., & Zou, W. (2023). Ultra-high dose rate FLASH radiation therapy for cancer. Medical Physics.spa
dc.relation.referencesDe Kruijff, R. M. (2020). FLASH radiotherapy: ultra-high dose rates to spare healthy tissue. International journal of radiation biology, 96(4), 419-423.spa
dc.relation.referencesBos, A. J. (2011, May). Fundamentals of radiation dosimetry. In AIP Conference Proceedings (Vol. 1345, No. 1, pp. 5-23). American Institute of Physics.spa
dc.relation.referencesBrown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., & Hose, D. R. (2017). Medical Physics and Biomedical Engineering: Medical Science Series. CRC Press.spa
dc.relation.referencesSerway, R. A., & Jewett, J. W. (2009). Física para ciencias e ingeniería con física moderna. Cengage Learning Editores.spa
dc.relation.referencesdel Castillo Belmonte, A., Jiménez, C. P., & Palmero, J. R. (2008). El nacimiento de la Física Médica: orígenes y desarrollo en el siglo XX. Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas, 31(68), 209-220.spa
dc.relation.referencesKoukourakis, I. M., & Koukourakis, M. I. (2021). Combining the past and present to advance immuno-radiotherapy of cancer. International Reviews of Immunology, 1- 17.spa
dc.relation.referencesBecquerel, H., & Curie, P. (1901). Action physiologique des rayons du radium. Compt. Rend. Acad. Sci, 132, 1289-1291.spa
dc.relation.referencesBeck, C. (1904). Rontgen ray diagnosis and therapy. D. Appleton.spa
dc.relation.referencesFreund, L. (1904). Elements of general radio-therapy for practitioners. Rebman.spa
dc.relation.referencesReseña Histórica. (2020). Recuperado 7 de abril de 2022, de https://www.cancer.gov.co/somosinc/nuestra-institucion/resena-historica.spa
dc.relation.referencesPinillos, L., Pinto, J. A., & Sarria, G. (2017). History of the development of radiotherapy in Latin America. ecancermedicalscience, 11.spa
dc.relation.referencesInstituto Nacional de Cancerología. (2021). Anuario Estadístico 2021. Recuperado 20 mayo de 2023, de https://cancer.micrositios.us/conozca-sobre-cancer-1/publicaciones/anuarioestadistico-2021.spa
dc.relation.referencesMinisterio de Salud y Protección Social. (2022). Anuario Estadístico 2022. Instituto Nacional de Cancerología. Recuperado 15 de diciembre de 2023, de: https://www.cancer.gov.co/conozca-sobre-cancer-1/publicaciones/anuario-estadistico2022.spa
dc.relation.referencesDewey, D. L., & Boag, J. W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature, 183, 1450-1451.spa
dc.relation.referencesMayles, P., Nahum, A., & Rosenwald, J. C. (Eds.). (2007). Handbook of radiotherapy physics: theory and practice. CRC Press.spa
dc.relation.referencesBoyer, A. L., Goitein, M., Lomax, A. J., & Pedroni, E. S. (2002). Radiation in the treatment of cancer. Physics Today, 55(9), 34-36.spa
dc.relation.referencesAttix, F. H. (2008). Introduction to radiological physics and radiation dosimetry. John Wiley & Sons.spa
dc.relation.referencesParty, I. W., Thwaites, D. I., DuSautoy, A. R., Jordan, T., McEwen, M. R., Nisbet, A., ... & Pitchford, W. G. (2003). The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Physics in Medicine & Biology, 48(18), 2929.spa
dc.relation.referencesStelzer, H., & Voss, B. (2002). U.S. Patent No. 6,437,513. Washington, DC: U.S. Patent and Trademark Office.spa
dc.relation.referencesBoag, J. W. (1982). The recombination correction for an ionisation chamber exposed to pulsed radiation in a’swept beam’technique. I. Theory. Physics in Medicine & Biology, 27(2), 201.spa
dc.relation.referencesBurns, D. T., & McEwen, M. R. (1998). Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam. Physics in Medicine & Biology, 43(8), 2033.spa
dc.relation.referencesGotz, M., Karsch, L., & Pawelke, J. (2017). A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse. Physics in Medicine & Biology, 62(22), 8634.spa
dc.relation.referencesBrede, H. J., Greif, K. D., Hecker, O., Heeg, P., Heese, J., Jones, D. T. L., ... & Schardt, D. (2006). Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields. Physics in Medicine & Biology, 51(15), 3667.spa
dc.relation.referencesHohlfeld, K. (1988). The standard DIN 6800: Procedures for absorbed dose determination in radiology by the ionization method. In Dosimetry in radiotherapyspa
dc.relation.referencesMusolino, S. V. (2001). Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; technical reports series No. 398.spa
dc.relation.referencesKarsch, L., & Pawelke, J. (2014). Theoretische Untersuchung der S¨attigungskorrektion von Ionisationskammern in gepulsten Strahlungsfeldern bei beliebiger Pulsdauer. Zeitschrift fur Medizinische Physik, 24(3), 201-210.spa
dc.relation.referencesRossomme, S., Horn, J., Brons, S., Jakel, O., Mairani, A., Ciocca, M., ... y Palmans, H. (2017). Factor de corrección de recombinación iónica en haces de iones de luz barridos para la medición de dosis absoluta utilizando cámaras de ionización plano-paralelas. Física en Medicina y Biología, 62(13), 5365.spa
dc.relation.referencesBourhis, J., Montay-Gruel, P., Jorge, P. G., Bailat, C., Petit, B., Ollivier, J., ... & Vozenin, M. C. (2019). Clinical translation of FLASH radiotherapy: Why and how?. Radiotherapy and oncology, 139, 11-17.spa
dc.relation.referencesDewey, D. L., & Boag, J. W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature, 183(4673), 1450-1451.spa
dc.relation.referencesDewey, D. L., & Boag, J. W. (1960). INACTIVATION OF BACTERIA BY MEANS OF A SINGLE ELECTRON PULSE. Zeitschrift fuer Naturforschung (West Germany) Divided into Z. Nautrforsch., A, and Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys.,, 15.spa
dc.relation.referencesTown, C. D. (1967). Effect of high dose rates on survival of mammalian cells. Nature, 215(5103), 847-848.spa
dc.relation.referencesHendry JH, Moore J V, Hodgson BW, Keene JP. The Constant Low Oxygen Concentration in All the Target Cells for Mouse Tail Radionecrosis. Radiat Res. 1982;92(1):172- 81.spa
dc.relation.referencesEpp, E. R., Weiss, H., & Santomasso, A. (1968). The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiation research, 34(2), 320-325.spa
dc.relation.referencesField, S. B., & Bewley, D. K. (1974). Effects of dose-rate on the radiation response of rat skin. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 26(3), 259-267.spa
dc.relation.referencesHornsey, S., & Bewley, D. K. (1971). Hypoxia in mouse intestine induced by electron irradiation at high dose-rates. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 19(5), 479-483.spa
dc.relation.referencesBerry, R. J., & Stedeford, J. B. H. (1972). Reproductive survival of mammalian cells after irradiation at ultra-high dose-rates: further observations and their importance for radiotherapy. The British Journal of Radiology, 45(531), 171-177.spa
dc.relation.referencesCygler, J., Klassen, N. V., Ross, C. K., Bichay, T. J., & Raaphorst, G. P. (1994). The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates. Radiation research, 140(1), 79-84.spa
dc.relation.referencesNias, A. H. W., Swallow, A. J., Keene, J. P., & Hodgson, B. W. (1970). Survival of HeLa cells from 10 nanosecond pulses of electrons. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 17(6), 595-598.spa
dc.relation.referencesZackrisson, B., Nyström, U. H., & Östbergh, P. (1991). Biological Response, in vitro, to Pulsed High-dose Rate Electrons from a Clinical Accelerator. Acta Oncologica, 30(6), 747-751.spa
dc.relation.referencesVozenin, M. C., Bourhis, J., & Durante, M. (2022). Towards clinical translation of FLASH radiotherapy. Nature Reviews Clinical Oncology, 19(12), 791-803.spa
dc.relation.referencesFavaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., ... & Vozenin, M. C. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science translational medicine, 6(245), 245ra93-245ra93.spa
dc.relation.referencesMontay-Gruel, P., Petersson, K., Jaccard, M., Boivin, G., Germond, J. F., Petit, B., ... & Vozenin, M. C. (2017). Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherapy and Oncology, 124(3), 365-369.spa
dc.relation.referencesMontay-Gruel, P., Bouchet, A., Jaccard, M., Patin, D., Serduc, R., Aim, W., ... & Vozenin, M. C. (2018). X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology, 129(3), 582-588.spa
dc.relation.referencesWilson, J. D., Hammond, E. M., Higgins, G. S., & Petersson, K. (2020). Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold?. Frontiers in oncology, 9, 1563.spa
dc.relation.referencesSimmons, D. A., Lartey, F. M., Sch¨uler, E., Rafat, M., King, G., Kim, A., ... & Loo Jr, B. W. (2019). Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiotherapy and Oncology, 139, 4-10.spa
dc.relation.referencesEsplen, N., Mendonca, M. S., & Bazalova-Carter, M. (2020). Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine & Biology, 65(23), 23TR03spa
dc.relation.referencesMontay-Gruel, P., Acharya, M. M., Gon¸calves Jorge, P., Petit, B., Petridis, I. G., Fuchs, P., ... & Vozenin, M. C. (2021). Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clinical Cancer Research, 27(3), 775-784.spa
dc.relation.referencesChabi, S., Van To, T. H., Leavitt, R., Poglio, S., Jorge, P. G., Jaccard, M., ... & Uzan, B. (2021). Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis. International Journal of Radiation Oncology Biology Physics, 109(3), 819-829.spa
dc.relation.referencesVozenin, M. C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond, J. F., ... & Bourhis, J. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clinical Cancer Research, 25(1), 35-42.spa
dc.relation.referencesGaide, O., Herrera, F., Sozzi, W. J., Jorge, P. G., Kinj, R., Bailat, C., ... & Bourhis, J. (2022). Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiotherapy and Oncology, 174, 87-91.spa
dc.relation.referencesMascia, A. E., Daugherty, E. C., Zhang, Y., Lee, E., Xiao, Z., Sertorio, M., ... & Breneman, J. C. (2023). Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA oncology, 9(1), 62-69.spa
dc.relation.referencesBourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., ... & Vozenin, M. C. (2019). Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and oncology, 139, 18-22.spa
dc.relation.referencesMontay-Gruel P, Acharya MM, Jorge PG, Petit B, Petridis IG, Fuchs P, et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clinical Cancer Research. 2021;27(3):775-84.spa
dc.relation.referencesLansonneur, P., Favaudon, V., Heinrich, S., Fouillade, C., Verrelle, P., & De Marzi, L. (2019). Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies. Physica Medica, 60, 50-57.spa
dc.relation.referencesJaccard, M., Dur´an, M. T., Petersson, K., Germond, J. F., Liger, P., Vozenin, M. C., ... & Bailat, C. (2018). High dose-per-pulse electron beam dosimetry: commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Medical physics, 45(2), 863-874.spa
dc.relation.referencesPetersson, K., Jaccard, M., Germond, J. F., Buchillier, T., Bochud, F., Bourhis, J., ... & Bailat, C. (2017). High dose-per-pulse electron beam dosimetry-a model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical physics, 44(3), 1157-1167.spa
dc.relation.referencesSchüler, E., Trovati, S., King, G., Lartey, F., Rafat, M., Villegas, M., ... & Maxim, P. G. (2017). Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. International Journal of Radiation Oncology Biology Physics, 97(1), 195-203.spa
dc.relation.referencesLempart, M., Blad, B., Adrian, G., Bäck, S., Knöös, T., Ceberg, C., & Petersson, K. (2019). Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiotherapy and Oncology, 139, 40-45spa
dc.relation.referencesRahman, M., Ashraf, M. R., Zhang, R., Bruza, P., Dexter, C. A., Thompson, L., ... & Gladstone, D. J. (2021). Electron FLASH delivery at treatment room isocenter for efficient reversible conversion of a clinical LINAC. International Journal of Radiation Oncology Biology Physics, 110(3), 872-882.spa
dc.relation.referencesFelici, G., Barca, P., Barone, S., Bortoli, E., Borgheresi, R., De Stefano, S., ... & Di Martino, F. (2020). Transforming an IORT linac into a FLASH research machine: procedure and dosimetric characterization. Frontiers in Physics, 8, 374.spa
dc.relation.referencesDi Martino, F., Barca, P., Barone, S., Bortoli, E., Borgheresi, R., De Stefano, S., ... & Felici, G. (2020). FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam. Frontiers in Physics, 8, 570697.spa
dc.relation.referencesGiuliano, L., Franciosini, G., Palumbo, L., Aggar, L., Dutreix, M., Faillace, L., ... & Heinrich, S. (2023). Characterization of Ultra-High-Dose Rate Electron Beams with ElectronFlash Linac. Applied Sciences, 13(1), 631.spa
dc.relation.referencesMoeckli, R., Gonçalves Jorge, P., Grilj, V., Oesterle, R., Cherbuin, N., Bourhis, J., ... & Bailat, C. (2021). Commissioning of an ultra‐high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Medical physics, 48(6), 3134-3142.spa
dc.relation.referencesKonradsson, E. (2023). Radiotherapy in a FLASH: Towards clinical translation of ultra-high dose rate electron therapy.spa
dc.relation.referencesJorge, P. G., Jaccard, M., Petersson, K., Gondré, M., Durán, M. T., Desorgher, L., ... & Bailat, C. (2019). Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiotherapy and Oncology, 139, 34-39spa
dc.relation.referencesPetersson, K., Adrian, G., Butterworth, K., & McMahon, S. J. (2020). A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 107(3), 539-547.spa
dc.relation.referencesWeiss, H., Epp, E. R., Heslin, J. M., Ling, C. C., & Santomasso, A. (1974). Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 26(1), 17-29spa
dc.relation.referencesPratx, G., & Kapp, D. S. (2019). A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Physics in Medicine & Biology, 64(18), 185005.spa
dc.relation.referencesSchüller, A., Heinrich, S., Fouillade, C., Subiel, A., De Marzi, L., Romano, F., ... & Vozenin, M. C. (2020). The European Joint Research Project UHDpulse–Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 80, 134-150.spa
dc.relation.referencesPetersson, K., Jaccard, M., Germond, J. F., Buchillier, T., Bochud, F., Bourhis, J., ... & Bailat, C. (2017). High dose‐per‐pulse electron beam dosimetry—a model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical physics, 44(3), 1157-1167.spa
dc.relation.referencesRossomme, S., Horn, J., Brons, S., Jäkel, O., Mairani, A., Ciocca, M., ... & Palmans, H. (2017). Ion recombination correction factor in scanned light-ion beams for absolute dose measurement using plane-parallel ionisation chambers. Physics in Medicine & Biology, 62(13), 5365.spa
dc.relation.referencesWuensch, W. (2021, December). The CHUV-CERN facility for FLASH treatment of large, deep-seated tumors: the DEFT (Deep Electron FLASH Therapy) facility. In Proceedings of the FLASH Radiotherapy & Particle Therapy Conference, Barcelona, Spain (pp. 1-3).spa
dc.relation.referencesMaxim, P. G., Tantawi, S. G., & Loo Jr, B. W. (2019). PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiotherapy and Oncology, 139, 28-33.spa
dc.relation.referencesJohnston, J., Comello, R. J., Vealé, B. L., & Killion, J. (2010). Radiation exposure dose trends and radiation dose reduction strategies in medical imaging. Journal of Medical Imaging and Radiation Sciences, 41(3), 137-144spa
dc.relation.referencesTimins JK. 2011. Communication of benefits and risks of medical radiation: a historical perspective. Health Phys. 101(5):562–565.spa
dc.relation.referencesMuller, H. J. (1927). Artificial transmutation of the gene. Science, 66(1699), 84-87spa
dc.relation.referencesLipshutz, G. S., Brennan, T. V., & Warren, R. S. (2002). Neoplasia hepática inducida por Thorotrast: una revisión colectiva. Revista del Colegio Americano de Cirujanos, 195(5), 713-718.spa
dc.relation.referencesFolley, J. H., Borges, W., & Yamawaki, T. (1952). Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. The American journal of medicine, 13(3), 311-321spa
dc.relation.referencesHsu, W. L., Preston, D. L., Soda, M., Sugiyama, H., Funamoto, S., Kodama, K., ... & Mabuchi, K. (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiation research, 179(3), 361-382.spa
dc.relation.referencesFowler, J. F., Bewley, D. K., Morgan, R. L., Ann Silvester, J., ALPER, T., & HORNSEY, S. (1963). Dose-effect relationships for radiation damage to organized tissues. Nature (London), 199(4890).spa
dc.relation.referencesWilliams, J. P., & Newhauser, W. (2018). Normal tissue damage: its importance, history and challenges for the future. The British journal of radiology, 92(1093), 20180048spa
dc.relation.referencesMichalowski, A. (1984). A critical appraisal of clonogenic survival assays in the evaluation of radiation damage to normal tissues. Radiotherapy and Oncology, 1(3), 241-246spa
dc.relation.referencesRubin, P., & Casarett, G. W. (1968). Clinical radiation pathology as applied to curative radiotherapy. Cancer, 22(4), 767-778spa
dc.relation.referencesSpear, F. G., & Grimmett, L. G. (1933). The biological response to gamma rays of radium as a function of the intensity of radiation. The British Journal of Radiology, 6(67), 387-403.spa
dc.relation.referencesOrton, C. G. (2001). High-dose-rate brachytherapy may be radiobiologically superior to low-dose rate due to slow repair of late-responding normal tissue cells. International Journal of Radiation Oncology* Biology* Physics, 49(1), 183-189.spa
dc.relation.referencesKing, C. R. (2002). LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models. Brachytherapy, 1(4), 219-226.spa
dc.relation.referencesHornsey, S., & Alper, T. (1966). Unexpected dose-rate effect in the killing of mice by radiation. Nature, 210(5032), 212-213spa
dc.relation.referencesHendry, J. H., Moore, J. V., Hodgson, B. W., & Keene, J. P. (1982). The constant low oxygen concentration in all the target cells for mouse tail radionecrosis. Radiation research, 92(1), 172-181spa
dc.relation.referencesDisponible en línea: https://www.soiort.com/flash-rt-technology/ (accedido el 5 de octubre de 2023).spa
dc.relation.referencesDisponible en line: https://curie.fr/actualite/radiotherapie/radiotherapie-flash- leffervescence-dun-tournant-prometteur (accedido el 20 de octubre de 2023).spa
dc.relation.referencesDisponible en linea: https://www.teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=11 385 (accedido el 8 de octubre de 2023).spa
dc.relation.referencesRecommendations for a dosimetry protocol (Code of Practice) for traceable absorbed dose measurement in ultra-high pulse dose rate electron beams under reference conditionsspa
dc.relation.referencesDisponible en linea: https://www.ptwdosimetry.com/en/products/flashdiamond- detector (accedido octubre 2023).spa
dc.relation.referencesDisponible en linea: EBT-XD SPECIFICATION AND USER GUIDE, http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp. (accedido octubre 2023).spa
dc.relation.referencesPalmer, A. L., Dimitriadis, A., Nisbet, A., & Clark, C. H. (2015). Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification. Physics in Medicine & Biology, 60(22), 8741spa
dc.relation.referencesManual del Electon-Flash 4000spa
dc.relation.referencesManual del electrometro de PTWspa
dc.relation.referencesLara, R. (2001). HISTORIA DE LA RADIOTERAPIA EN LATINOAMÉRICA, 1º edición, España, ARÁN ediciones s.l..spa
dc.relation.referencesWang, Y., Easterling, S. B., & Ting, J. Y. (2012). Ion recombination corrections of ionization chambers in flattening filter‐free photon radiation. Journal of applied clinical medical physics, 13(5), 262-268.spa
dc.relation.referencesDisponible en linea: https://www- pub.iaea.org/MTCD/Publications/PDF/TRS_398s_Web.pdf (accedido septiembre de 2023).spa
dc.relation.referencesChow, J. C., & Ruda, H. E. (2023). Flash radiotherapy: Innovative cancer treatment. Encyclopedia, 3(3), 808-823.spa
dc.relation.referencesUrsino, S., Gadducci, G., Giannini, N., Gonnelli, A., Fuentes, T., Di Martino, F., & Paiar, F. (2023). Nuevos conocimientos sobre las perspectivas clínicas de la radioterapia FLASH: de baja a muy alta energía de electrones. Fronteras en Oncología, 13.spa
dc.relation.referencesDisponible en línea: www.gafchromic.com, consultado el 30 de diciembre de 2022.spa
dc.relation.references. Hornsey, S., & Alper, T. (1966). Unexpected dose-rate effect in the killing of mice by radiation. Nature, 210(5032), 212-213.spa
dc.relation.referencesFavaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., ... & Vozenin, M. C. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science translational medicine, 6(245), 245ra93-245ra93.spa
dc.relation.referencesFouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet- Boissinot S, Beddok A, Leboucher S, Karakurt HU, Bohec M, Baulande S, Vooijs M, Verrelle P, Dutreix M, LondoEœ no-Vallejo A, Favaudon V. FLASH irradiation spares lung ¨ progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res 2019. https://doi.org/10.1158/1078-0432.CCR-19-1440. clincanres.1440.2019spa
dc.relation.referencesLevy K, Natarajan S, Wang J, Chow S, Eggold J, Loo P, Manjappa R, Lartey FM, Schüler E, Skinner L, Rafat M, Ko R, Kim A, Al Rawi D, von Eyben R, Dorigo O, Casey KM, Graves EE, Bush K, Yu AS, Koong AC, Maxim PG, Loo BW, Rankin EB. FLASH irradiation enhances the therapeutic index of abdominal radiotherapy in mice 2019;bioRxiv 2019(12). https://doi.org/10.1101/2019.12.12.873414. 12.873414.spa
dc.relation.referencesMontay-Gruel P, Petersson K, Jaccard M, Boivin G, Germond J-F, Petit B, Doenlen R, Favaudon V, Bochud F, Bailat C, Bourhis J, Vozenin M-C. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother Oncol 2017;124(3):365-9. https://doi.org/10.1016/j.radonc.2017.05.003. ISSN 0167-8140.spa
dc.relation.referencesSchüler E, Trovati S, King G, Lartey F, Rafat M, Loo B, Maxim P. TU-H-CAMPUS-TeP2-02: FLASH Irradiation Improves the Therapeutic Index Following GI Tract Irradiation. Med Phys 2016;43(6Part37):3783. https://doi.org/10.1118/1.4957690. ISSN 0094-2405.spa
dc.relation.referencesVozenin, M. C., Hendry, J. H., & Limoli, C. L. (2019). Biological benefits of ultrahigh dose rate FLASH radiotherapy: sleeping beauty awoken. Clinical oncology, 31(7), 407-415.spa
dc.relation.referencesVozenin, M. C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond, J. F., ... & Bourhis, J. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clinical Cancer Research, 25(1), 35-42.spa
dc.relation.referencesBourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., ... & Vozenin, M. C. (2019). Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and oncology, 139, 18-22.spa
dc.relation.referencesSch¨uller, A., Heinrich, S., Fouillade, C., Subiel, A., De Marzi, L., Romano, F., ... & Vozenin, M. C. (2020). The European Joint Research Project UHDpulse − Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 80, 134-150.spa
dc.relation.referencesKokurewicz, K., Sch¨uller, A., Brunetti, E., Subiel, A., Kranzer, R., Hackel, T., ... & Jaroszynski, D. A. (2020). Dosimetry for new radiation therapy approaches using high energy electron accelerators. Frontiers in Physics, 8, 568302.spa
dc.relation.referencesMarinelli, M., Felici, G., Galante, F., Gasparini, A., Giuliano, L., Heinrich, S., ... & Verona Rinati, G. (2022). Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Medical Physics, 49(3), 1902- 1910.spa
dc.rightsDerechos reservados al autor, 2024spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.decsRadiometríaspa
dc.subject.decsRadiometryeng
dc.subject.proposalRadioterapia FLASHspa
dc.subject.proposalFLASH Radiotherapyeng
dc.subject.proposalradioterapia convencionalspa
dc.subject.proposalconventional radiotherapyeng
dc.subject.proposalacelerador lineal de electronesspa
dc.subject.proposalelectron linear acceleratoreng
dc.subject.proposaldosimetríaspa
dc.subject.proposaldosimetryeng
dc.subject.proposalQAspa
dc.subject.proposalQAeng
dc.subject.proposalPDDspa
dc.subject.proposalPDDspa
dc.subject.proposaloutput factorsspa
dc.subject.proposaloutput factorseng
dc.subject.unescoEfectos de las radiacionesspa
dc.subject.unescoRadiation effectseng
dc.titleDosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeVspa
dc.title.translatedDosimetry in Radiation Beams Used in FLASH Radiotherapy with 7 MeV Electron Beamseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075544942.2024.pdf
Tamaño:
10.77 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: