Algorithms of differentiation for posets with an involution

dc.contributor.advisorBautista Ramos, Raymundo
dc.contributor.advisorMoreno Cañadas, Agustín
dc.contributor.authorCifuentes Vargas, Verónica
dc.contributor.researchgroupTerenufia-Unalspa
dc.date.accessioned2022-08-22T19:40:40Z
dc.date.available2022-08-22T19:40:40Z
dc.date.issued2021-07
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn las últimas décadas, el estudio y clasificación de álgebras de dimensión finita con respecto a su tipo de representación ha sido uno de los principales objetivos en la teoría de representaciones de álgebras. Nazarova, Roiter, Zavadskij y Bondarenko introdujeron y estudiaron distintas clases de representaciones asociadas a conjuntos parcialmente ordenados (posets). Aquí estamos interesados, de una parte, en la categoría de representaciones de conjuntos parcialmente ordenados con una relación de equivalencia, donde el conjunto de clases de equivalencia tienen a lo más dos elementos; esta clase de posets se denominan poset con involución. Damos una estructura natural exacta para la categoría de representaciones de esta clase de posets, describimos los objetos proyectivos e inyectivos y probamos la existencia de sucesiones que casi se dividen.Por otro parte, estudiamos las propiedades categóricas de los lagoritmos de diferenciación DI y DIII introducidos por Zavadskij en 1991. (Texto tomado de la fuente)spa
dc.description.abstractIn the last decades, the study and classification of finite-dimensional algebras with respect to their representation type has been one of the main aims in the theory of representations of algebras. Nazarova, Roiter, Zavadskij and Bondarenko have introduced and studied several classes of representations associated to partially ordered sets (posets). Here we are interested, on the one hand, in the category of representations of a poset with an equivalence relation, where the equivalence sets have at most two elements; these kind of posets are called posets with an involution. We give a natural exact structure for the category of representations of this kind of posets, describe the projective, injective objects and prove the existence of almost split sequences. On the other hand, we study the categorical properties of the differentiation algorithms DI and DIII introduced by Zavadskij in 1991eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.description.researchareaRepresentation theory of algebrasspa
dc.format.extentviii, 96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81993
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesD.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets. CMS Books in Mathematics. Volume 2. Springer. 2000. 244spa
dc.relation.referencesI. Assem; D. Simson; A. Skowronski. Elements of the Representation Theory of Associative Algebras. Cambridge University Press. 2006.spa
dc.relation.referencesM. Auslander, S. O. Smalo. Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics. Volume 36. Cambridge Univeristy Press. 1995.spa
dc.relation.referencesM. Auslander, I. Reiten. Representation theory of Artin algebras III. Communications in Algebra. Cambridge Univeristy Press. Volume 3. 1975.spa
dc.relation.referencesR. Bautista, R. Martinez-Villa. Representation of Partially Ordered Set and 1-Gorenstein Artin Algebras. Proceedings, Conference on Ring Theory, Antwerp.Lect. Notes. Pure Appl. Math. Volume 51. 1979.spa
dc.relation.referencesR. Bautista. On algebras of strongly unbounded type. Comm. Math. Helv. Volume 60. 1985.spa
dc.relation.referencesR. Bautista, I. Dorado. Algebraically equipped poset. Boletín de la Sociedad Matemática Mexicana. Volume 23. 2017.spa
dc.relation.referencesV.M. Bondarenko, A.G. Zavadskij. Posets with an equivalence relation of tame type and of finite growth. Can. Math. Soc. conf. Proc. Volume 11. 1991.spa
dc.relation.referencesV.M. Bondarenko, L.A. Nazarova, A.V. Roiter. Tame partially ordered sets with involution. Proc. Steklov Inst. Math. Volume 183. 1991.spa
dc.relation.referencesK. Bongartz. Indecomposables are standard. Comment. Math. Helvetici. Volume 60. 1985.spa
dc.relation.referencesA.M. Cañadas, A.G. Zavadskij. Categorical description of some differentiation algorithms. Journal of Algebra and Its Applications. Volume 5. 2006. Number 5.spa
dc.relation.referencesA.M. Cañadas, Categorical properties of the algorithm of differentiation VII for equipped posets. JPANTA. Volume 25. 2012.spa
dc.relation.referencesA.M. Cañadas, I.D.M. Gaviria, P.F.F. Espinosa. On the algorithm of differentiation D-IX for equipped posets. JPANTA. Volume 29. 2013. Number 12.spa
dc.relation.referencesA.M. Cañadas, I.D.M. Gaviria, J.S. Mora. On the Gabriel's quiver of some equipped posets. JPANTA. Volume 36. 2015. Number 1.spa
dc.relation.referencesY.A. Drozd. Matrix Problems and Categories of matrices. Zap. Nauchn. Sem. Leningrad. Otel. Math. Inst. Stelov. LOMI. Volume 28. 1972.spa
dc.relation.referencesP. Gabriel, Representations indecomposables des ensembles ordonnes. Semin. P. Dubreil, 26 annee 1972/73, Algebre, Expose. Volume 13. 1973.spa
dc.relation.referencesP. Gabriel, A.V. Roiter. Representations of Finite Dimensional Algebras. Algebra VIII, Encyclopedia of Math.Sc. Springer-Verlag. Volume 73. 1992spa
dc.relation.referencesM.M. Kleiner. Partially ordered sets of finite type. Zap. Nauchn. Semin. LOMI. Volume 28. 1972. Translation: J. Sov. Math. Volume 3. Number 5. 1975.spa
dc.relation.referencesS. Liu. Auslander-Reiten theory in a Krull-Schmidt category. Sao Paulo Journal of Mathematical Sciences. 2010.spa
dc.relation.referencesA.V. Roiter, L.A. Nazarova. Representations of partially ordered sets. Zap. Nauchn. Semin. LOMI. Kiev. (in Russian). 1972. Volume 28. Translation: {J. Sov. Math. Volume 3. 1975.spa
dc.relation.referencesL.A. Nazarova, A.V. Roiter. Categorical matrix problems and the Brauer-Thrall conjecture. Preprint Inst. Math.AN UkSSR, Ser. Mat. Volume 73. 1973. (in Russian). Translation: Mitt.Math. Semin. Giessen. Volume 115. 1975.spa
dc.relation.referencesL.A. Nazarova, A.V. Roiter. Partially ordered sets of infinite type. Izv. AN SSSR, Ser. Mat.. Volume 39. Number 5. 1975. in Russian. Translation: Math. USSR Izvestia. Volume 9. 1975.spa
dc.relation.referencesL.A. Nazarova, A.V. Roiter. Representations and forms of weakly completed partially ordered sets. Linear algebra and representation theory. Akad. Nauk Ukrain. SSR Inst. Mat., Kiev. 1977.spa
dc.relation.referencesL.A. Nazarova, A.V. Roiter. Representations of bipartite completed posets. Comment. Math. Helv. Volume 63. 1988.spa
dc.relation.referencesL.A. Nazarova, A.G. Zavadskij. Partially ordered sets of tame type. Matrix problems. Akad. Nauk Ukrain. SSR Inst. Mat., Kiev. 1977.spa
dc.relation.referencesL.A. Nazarova, {A.G. Zavadskij. Partially ordered sets of finite growth. Function. Anal. i Prilozhen. AMS. Volume 19. 1982. Number 2. (in Russian). Translation: Functional. Anal. Appl. Volume 16. 1982.spa
dc.relation.referencesC.M. Ringel. Tame Algebras and Integral Quadratic Forms. Volume 1099. Springer-Verlag.1984.spa
dc.relation.referencesA.V. Roiter. Unboundedness of dimensions of indecomposable representations of algebras having infinitely many indecomposable representations. Izv. Akad. Nauk SSSR Ser. Mat. Volume 32. 1968. (in Russian). Translation:{Math.USSR Izvestia. Volume 2. 1968.spa
dc.relation.referencesD. Simson. Linear Representations of Partially Ordered Sets and Vector Space Categories. Gordon and Breach, London. 1992.spa
dc.relation.referencesK. Spindler. Abstract Algebra with Applications. Volume I. Marcel Dekker, Inc, New York, Basel, Hong kong. 1994.spa
dc.relation.referencesA.V. Zabarilo, A.G. Zavadskij. One-parameter equipped posets and their representations. Functional. Anal.i Prilozhen. Volume 34. Number 2. 2000. (Russian). Translation: Functional Anal. Appl. Volume 34. Number 2. 2.000spa
dc.relation.referencesA.G. Zavadskij. Differentiation with respect to a pair of points. Matrix problems, Collect. sci. Works. Kiev. Collect. sci. Works. Kiev. 1977 (in Russian).spa
dc.relation.referencesA.G. Zavadskij. The Auslander-Reiten quiver for posets of finite growth. Topics in Algebra, Banach Center Publ. Collect. sci. Works. Kiev. Volume 26. 1990.spa
dc.relation.referencesA.G. Zavadskij. Tame equipped posets. Linear Algebra Appl. AMS. Volume 365. 2003.spa
dc.relation.referencesA.G. Zavadskij. Equipped posets of finite growth. Representations of Algebras and Related Topics, AMS, Fields Inst. Comm. Ser. AMS. Volume 4. 2005.spa
dc.relation.referencesA.G. Zavadskij. On two point differentiation and its generalization. Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. AMS. Volume 376.2005.spa
dc.relation.referencesA.G. Zavadskij, V.V. Kirivcenko. Torsion-free modules over primary rings. Journal of Soviet Mathematics. Volume 11. Number 4. 1979.spa
dc.relation.referencesA.G. Zavadskij. An algorithm for Poset with an Equivalence Relation. Canadian Mathematical Society. Conference Proceedings. Volume 11. 1991.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.proposalTeoría de representación de conjuntos parcialmente ordenadosspa
dc.subject.proposalTeoría de Auslander-Reitenspa
dc.subject.proposalalgoritmos de diferenciaciónspa
dc.subject.proposalRepresentation Theory of Partially Ordered Setseng
dc.subject.proposalAuslander-Reiten theoryeng
dc.subject.proposalDifferentiation algorithmseng
dc.subject.proposalProblema matricialspa
dc.subject.proposalRepresentación vectorialspa
dc.subject.proposalVector Space Representationeng
dc.subject.proposalDifferentiation algorithmseng
dc.titleAlgorithms of differentiation for posets with an involutioneng
dc.title.translatedAlgoritmos de diferención para posets con involuciónspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52242740.2021.pdf
Tamaño:
1.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: