Detección remota para el análisis de degradación del suelo por erosión en La Tatacoa, Colombia

dc.contributor.advisorSalazar-Jaramillo, Susana
dc.contributor.authorSánchez-Ospina, Cristhian Mateo
dc.contributor.orcidSánchez-Ospina, Cristhian Mateo [0009000613700542]
dc.contributor.orcidSalazar Jaramillo, Sudana [0000000252282228]
dc.contributor.refereeKenneth Roy Cabrera Torres
dc.contributor.researchgroupCiclos Biogeoquímicos
dc.contributor.researchgroupNeoil Research
dc.date.accessioned2025-08-28T15:42:12Z
dc.date.available2025-08-28T15:42:12Z
dc.date.issued2024-10
dc.description.abstractEste proyecto de tesis analiza la erosión del suelo en La Tatacoa, un bosque seco tropical en un ambiente semiárido, utilizando técnicas de teledetección y análisis estadístico. En el Capítulo 1, se procesaron imágenes satelitales del Sentinel-1 y Sentinel-2 para cuantificar la erosión y determinar las áreas más afectadas entre 2018 y 2023 con la técnica Small Baseline Subset InSAR (SBAS InSAR). Los resultados indican que las zonas con mayor pendiente y relieve disectado son las más erosionadas, debido a la pérdida de cobertura vegetal, lo que acelera la desertificación. En el Capítulo 2, se correlacionaron los datos de erosión del suelo con los datos de precipitación mensual y semanal del IDEAM, revelando un desfase de 3 a 4 meses entre las lluvias intensas de los meses de octubre y noviembre, y los procesos erosivos. Además, se hipotetizó mediante estadística descriptiva que estos aumentos en la erosión podrían estar influenciados por el fenómeno de La Niña, especialmente entre el 2020 y 2022. La investigación propone el uso de teledetección y análisis temporal como una herramienta clave para gestionar la erosión, prevenir la desertificación y desarrollar estrategias de conservación en La Tatacoa.spa
dc.description.abstractThis thesis project analyzes soil erosion in La Tatacoa, a dry tropical forest in a semi-arid environment, using remote sensing techniques and statistical analysis. In Chapter 1, Sentinel-1 and Sentinel-2 satellite images were processed to quantify erosion and identify the most affected areas between 2018 and 2023 using the Small Baseline Subset InSAR (SBAS InSAR) method. The results indicate that areas with steeper slopes and dissected relief are the most eroded due to vegetation cover loss, which accelerates desertification. In Chapter 2, soil displacement data were correlated with monthly and weekly precipitation data from IDEAM, revealing a 3 to 4-month lag between intense rainfall of of the months of October and November, and erosive processes. Additionally, through descriptive statistics, it was hypothesized that these increases in erosion may be influenced by the La Niña phenomenon, particularly between 2020 and 2022. The research proposes the use of remote sensing and temporal analysis as a key tool to manage erosion, prevent desertification, and develop conservation strategies in La Tatacoa.eng
dc.description.curricularareaCiencias Naturales.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias – Geomorfología y Suelos
dc.description.methodsLa metodología aplicada en el Capítulo 1 se centró en el uso de métodos de teledetección para medir la erosión del suelo (i.e., erosión) y delimitar áreas degradadas por dichos procesos en La Tatacoa, utilizando datos de radar Sentinel-1 e imágenes multiespectrales del Sentinel-2, entre 2018 y 2023, como también la técnica Small Baseline Subset InSAR (SBAS InSAR). Esto permitió no solo analizar series temporales de interferogramas y cuantificar las tasas de erosión del suelo, sino también delimitar las áreas más afectadas. Las tasas de erosión se calcularon en las geoformas donde estos procesos morfodinámicos predominan, para los cuál, se utilizó el modelo de elevación digital (DEM) ALOS PALSAR. En el Capítulo 2, se emplearon datos pluviométricos mensuales de ocho estaciones meteorológicas del IDEAM para correlacionar los patrones de precipitación con el desplazamiento del suelo, utilizando correlogramas cruzados. Estos permitieron identificar la relación temporal entre las lluvias y la erosión, aplicando diferentes lags (retrasos) para estudiar el retardo entre los eventos de precipitación y el desplazamiento del suelo.
dc.description.researchareaTeledetección
dc.description.researchareaSuelos
dc.description.researchareaGeomorfología
dc.description.technicalinfoPara acceder al repositorio geoespacial de datos ingresar al siguiente enlace público: Sánchez-Ospina, C.M., Salazar-Jaramillo, S. (2024). Geospatial repository. Figshare. Journal Contribution. https://doi.org/10.6084/m9.figshare.27161865.v1
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88498
dc.language.isospa
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Geomorfología y Suelos
dc.relation.referencesAnderson, V. J., Horton, B. K., Saylor, J. E., Mora, A., Tesón, E., Breecker, D. O., & Ketcham, R. A. (2016). Andean topographic growth and basement uplift in southern Colombia: Implications for the evolution of the Magdalena, Orinoco, and Amazon River systems. Geosphere 54(12), (p. 1235-1256). https://doi.org/10.1130/ges01294.1
dc.relation.referencesBeniaich, A., Guimarães, D. V., Avanzi, J. C., Silva, B. M., Acuña-Guzman, S. F., dos Santos, W. P., & Silva, M. L. N. (2023). Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions. Agricultural Water Management, 279, (p. 108186). https://doi.org/10.1016/j.agwat.2023.108186
dc.relation.referencesBai, Z., Wang, Y., Fang, S., Liu, X., Gao, M., & Zhang, Z. (2022). Detecting seasonal and trend components in PS-InSAR displacement time series. Geocarto International 37(27), (p. 16212–16231). httpsdoi.org10.108010106049.2022.2106316
dc.relation.referencesBewket, W., & Teferi, E. (2009). Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degradation & Development 12(20), (p. 609-622).
dc.relation.referencesBraun, A. (2021). Retrieval of digital elevation models from Sentinel-1 radar data – open applications, techniques, and limitations. Open Geosciences 2(13), (p. 532-569). https://doi.org/10.1515/geo-2020-0246
dc.relation.referencesButler, K., & Schamel, S. (1988). Structure along the eastern margin of the central Cordillera, upper Magdalena Valley, Colombia. Journal of South American Earth Sciences 23(1), (p. 109-120). https://doi.org/10.1016/0895-9811(88)90019-3
dc.relation.referencesCaballero, V., Parra, M., Mora, A., López, C., Rojas, L. E., & Quintero, I. (2013). Factors controlling selective abandonment and reactivation in thick-skin orogens: a case study in the Magdalena Valley, Colombia. Geological Society Special Publication 377(8), (p. 343-367). https://doi.org/10.1144/sp377.4
dc.relation.referencesCavalié, O., Sladen, A., & Kelner, M. (2015). Detailed quantification of delta subsidence, compaction and interaction with man-made structures: the case of the NCA airport, France. Natural Hazards and Earth System Sciences 15(9), (p. 1973-1984). https://doi.org/10.5194/nhess-15-1973-2015
dc.relation.referencesCediel, F., Shaw, R. P., & Caceres, C. (2003). Tectonic assembly of the Northern Andean Block. In: C. Bartolini, R. T. Buffler, & J. Blickwede (Eds), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics (p. 815–848). Bogotá. AAPG Memoir.
dc.relation.referencesChaturvedi, R. K., Tripathi, A., Raghubanshi, A. S., & Singh, J. S. (2021). Functional traits indicate a continuum of tree drought strategies across a soil water availability gradient in a tropical dry forest. Forest Ecology and Management 482(1), (p. 118740). https://doi.org/10.1016/j.foreco.2020.118740
dc.relation.referencesChen, F., Lin, H., & Hu, X. (2014). Slope superficial displacement monitoring by small baseline SAR interferometry using data from L-band ALOS PALSAR and X-band TerraSAR: A case study of Hong Kong, China. Remote Sensing 6(1), (p. 1564-1586). https://doi.org/10.3390/rs6021564
dc.relation.referencesChen, X., Wang, Y., Chen, Y., Fu, S., & Zhou, N. (2023). NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers. Remote Sensing 3(15), (p. 2388).
dc.relation.referencesCleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics 6 (1), (p. 33-73).
dc.relation.referencesCorporación Autónoma Regional del Alto Magdalena - CAM (2015). Plan de manejo ambiental distrito regional de manejo integrado - DRMI La Tatacoa. https://www.cam.gov.co/media/filer_public/f8/fa/f8fa3418-e944-49c6-8101-cf277f0c543b/pma_drmi_tatacoa.pdf
dc.relation.referencesDill, H. G., Andrei, B., Sorin-Ionut, B., Kristian, U., Jorge, G. T., Daniel, B., & Thomas, C. (2020). The “badland trilogy” of the Desierto de la Tatacoa, upper Magdalena Valley, Colombia, a result of geodynamics and climate: With a review of badland landscapes. Catena 194(1), (p. 104696). https://doi.org/10.1016/j.catena.2020.104696
dc.relation.referencesDuarte, E. (2018). Provenance and diagenesis from two stratigraphic sections of the lower cretaceous Caballos formation in the upper Magdalena valley: Geological and reservoir quality implications. CT&F 33(8), (p. 5-29). https://doi.org/10.29047/01225383.101
dc.relation.referencesFields, R.W., 1959. Geology of the La Venta Badlands Colombia, South America. Uni. California. Pub. Geol. Sci. 6, (p. 405–444).
dc.relation.referencesFigueroa, G., & Galeano, G. (2007). Lista comentada de las plantas vasculares del enclave seco interandino de La Tatacoa (Huila, Colombia). Caldasia 29(2), (p. 263-281).
dc.relation.referencesFlanagan D.C., Gilley J.E., Franti T.G. (2007). Water erosion prediction project (WEPP): development history, model capabilities, and future enhancements. American Society of Agricultural and Biological Engineers 50(5), (p.1603-1612)
dc.relation.referencesGabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping Small Elevation Changes Over Large Areas’ Differential Radar Interferometry. Journal of Geophysical Research 94(3), (p. 9183-9191).
dc.relation.referencesGoldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters 25, (p. 4035-4038). https://doi.org/10.1029/1998gl900033
dc.relation.referencesGoudie, A. S. (2013). Arid and Semi-Arid Geomorphology. New York. Cambridge University Press. https://doi.org/10.1017/cbo9780511794261
dc.relation.referencesGuerrero, J. (1997). Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia. In: Kay, R. F., Madden, R. H., & Cifelli, R. L., Flynn J.J. (Eds), Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press. Washington DC. (p. 15-43)
dc.relation.referencesHanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Zurich. Kluwer Academic. https://doi.org/10.1007/0-306-47633-9
dc.relation.referencesHermelin, M. (2016). Landscapes and landforms of Colombia. Medellín. Springer International Publishing.
dc.relation.referencesHrysiewicz, A., Holohan, E. P., Donohue, S., & Cushnan, H. (2023). SAR and InSAR data linked to soil moisture changes on a temperate raised peatland subjected to a wildfire. Remote Sensing of Environment 291(4), (p. 113516). https://doi.org/10.1016/j.rse.2023.113516
dc.relation.referencesHuggett, R., & Shuttleworth, E. (2022). Fundamentals of geomorphology. Londres. Routledge.
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM (2015). Sistema de Información para la gestión de datos Hidrológicos y Meteorológicos – DHIME [Base de datos]. In AQUARIUS web portal. https://ideam.aqsamples.com/login
dc.relation.referencesJiang, C., Fan, W., Yu, N., & Nan, Y. (2021). A new method to predict gully head erosion in the Loess Plateau of China based on SBAS-InSAR. Remote Sensing 3(13), (p. 421). https://doi.org/10.3390/rs13030421
dc.relation.referencesJiang, Z., Huete, A. R., Chen, J., Chen, Y., Li, J., Yan, G., & Zhang, X. (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment 101(25), (p. 366-378). https://doi.org/10.1016/j.rse.2006.01.003
dc.relation.referencesKay, R. F., & Madden, R. H. (1997). Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). Journal of Human Evolution 32(3) (p. 161-199). https://doi.org/10.1006/jhev.1996.0104
dc.relation.referencesKou, P., Xu, Q., Jin, Z., Tao, Y., Yunus, A. P., Feng, J., Pu, C., Yuan, S., & Xia, Y. (2024). Analyzing gully erosion and deposition patterns in loess tableland: Insights from small baseline subset interferometric synthetic aperture radar (SBAS InSAR). The Science of the Total Environment 916, (p. 169873). https://doi.org/10.1016/j.scitotenv.2024.169873
dc.relation.referencesLi, S., Xu, W., & Li, Z. (2022). Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geodesy and Geodynamics 13, (p. 114-126). https://doi.org/10.1016/j.geog.2021.09.007
dc.relation.referencesLondono, J., Lorenzo, J. M., & Ramirez, V. (2012). Lithospheric flexure and related base-level stratigraphic cycles in continental foreland basins: An example from the Putumayo Basin, Northern Andes. Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir 100 (p. 357 – 375).
dc.relation.referencesLu, J., Qin, T., Yan, D., Lv, X., Yuan, Z., Wen, J., Xu, S., Yang, Y., Feng, J., & Li, W. (2024). Response of vegetation to drought in the source region of the Yangtze and yellow rivers based on causal analysis. Remote Sensing 16(5), (p. 630). https://doi.org/10.3390/rs16040630
dc.relation.referencesLv, Z., Li, S., Xu, X., Lei, J., & Peng, Z. (2024). Wind erosion caused by the change of Chaiwopu lake on the northern foothill of Tianshan Mountain, based on SBAS-InSAR. Catena 234(3), (p. 107575). https://doi.org/10.1016/j.catena.2023.107575
dc.relation.referencesMassonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics 36(4), (p.441–500). https://doi.org/10.1029/97rg03139
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible (2021). Programa Nacional para la Conservación y Restauración del Bosque Seco Tropical en Colombia. https://www.minambiente.gov.co/direccion-de-bosques-biodiversidad-y-servicios-ecosistemicos/bosque-seco-tropical/
dc.relation.referencesMojica, J. & Franco, R. (1990): Estructura y Evolución Tectónica del Valle Medio y Superior del Magdalena. Geología Colombiana 17(6), (p. 41-64).
dc.relation.referencesMontandon, L., & Small, E. (2008). The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment 112, (p. 1835-1845). https://doi.org/10.1016/j.rse.2007.09.007
dc.relation.referencesMontes, C., Silva, C. A., Bayona, G. A., Villamil, R., Stiles, E., Rodriguez-Corcho, A. F., Beltran-Triviño, A., Lamus, F., Muñoz-Granados, M. D., Pérez-Angel, L. C., Hoyos, N., Gomez, S., Galeano, J. J., Romero, E., Baquero, M., Cardenas-Rozo, A. L., & von Quadt, A. (2021). A middle to late Miocene trans-Andean portal: Geologic record in the Tatacoa Desert. Frontiers in Earth Science 8. https://doi.org/10.3389/feart.2020.587022
dc.relation.referencesMora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., Caballero, V., Mora, J. P., Quintero, I., Valencia, V., Ibañez, M., Horton, B. K., & Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society Special Publication 377, (p. 411-442). https://doi.org/10.1144/sp377.6
dc.relation.referencesNicholls, N. (2004). The changing nature of Australian droughts. Climatic Change 63(3), (p. 323-336). https://doi.org/10.1023/b:clim.0000018515.46344.6d
dc.relation.referencesOrtiz-Palma, N. H., & Mayor-Polania, R. (2013). Identificación y descripción del avance del proceso de desertificación en el ecosistema estratégico desierto de La Tatacoa. Periodo: 1975 a 1993. Ingeniería y Región 10(3), (p.149-158).
dc.relation.referencesPereira, P., Muñoz-Rojas, M., Bogunovic, I., & Zhao, W. (Eds.). (2023). Impact of agriculture on soil degradation I: Perspectives from Africa, Asia, America and Oceania (1st ed.). Cham. Springer International Publishing
dc.relation.referencesPoveda-Coronel, C. A., Riaño-Jiménez, D., & Cure, J. R. (2018). Diversity and phenology of wild bees in a highly disturbed tropical dry forest “desierto de la Tatacoa”, huila-Colombia. Neotropical Entomology 47(8), (p. 786-790). https://doi.org/10.1007/s13744-017-0578-z
dc.relation.referencesQi, L., Shi, P., Dvorakova, K., Van Oost, K., Sun, Q., Yu, H., & van Wesemael, B. (2023). Detection of Soil Erosion Hotspots in the Croplands of a Typical Black Soil Region in Northeast China: Insights from Sentinel-2 Multispectral Remote Sensing. Remote Sens 15(1), (p. 1402).
dc.relation.referencesRenard K.G., Foster, G.A., Weesies, D.K., McCool D.C. (1997) Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Hand-book 19 (p.3).
dc.relation.referencesRodrigues, V. S., do Valle Júnior, R. F., Sanches Fernandes, L. F., & Pacheco, F. A. L. (2019). The assessment of water erosion using Partial Least Squares-Path Modeling: A study in a legally protected area with environmental land use conflicts. The Science of the Total Environment 691(1), (p. 1225-1241). https://doi.org/10.1016/j.scitotenv.2019.07.216
dc.relation.referencesRojas-Marín, C. A., Pérez-Gómez, U., & Fernández-Méndez, F. (2019). Dinámica espaciotemporal de los procesos de desertificación y revegetalización natural en el enclave seco de La Tatacoa, Colombia. Cuadernos de Geografía Revista Colombiana de Geografía 28(1), (p. 134-151). https://doi.org/10.15446/rcdg.v28n1.63130
dc.relation.referencesSarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences 4(21), (p. 383-411). https://doi.org/10.1016/j.jsames.2006.07.003
dc.relation.referencesSarmiento Rojas, L. F. (2002). Mesozoic rifting and Cenozoic basin inversion - History of the Eastern Cordilelra, Combian Andes. Inferences from tectonic models. [PhD-Thesis - Research and graduation internal, Vrije Universiteit Amsterdam]. Netherlands Research School of Sedimentary Geology (NSG).
dc.relation.referencesServicio Geológico Colombiano (2013). Memoria explicativa del mapa geomorfológico aplicado a movimientos en masa escala 1:100.000 plancha 323 – Neiva, departamento de Huila. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=73612.
dc.relation.referencesShojaeezadeh, S. A., Al-Wardy, M., Nikoo, M. R., Mooselu, M. G., Alizadeh, M. R., Adamowski, J. F., Moradkhani, H., Alamdari, N., & Gandomi, A. H. (2024). Soil erosion in the United States: Present and future (2020–2050). Catena 242(2), (p.108074). https://doi.org/10.1016/j.catena.2024.108074
dc.relation.referencesSkidmore, E. L. (1982). Soil Loss Tolerence. In Schmidt B. L., Allmaras R. R., Mannering J. V., Papendick R. I. (Eds.), Determinants of Soil Loss Tolerance. Madison. ASA Special Publications.
dc.relation.referencesSuescún, D., Villegas, J. C., León, J. D., Flórez, C. P., García-Leoz, V., & Correa-Londoño, G. A. (2017). Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Regional Environmental Change 17, (p. 827-839). https://doi.org/10.1007/s10113-016-1071-7
dc.relation.referencesSui, X., Lin, C., & Zhou, S. (2012). Spatial Decision Analysis on Soil Erosion Control Measures Research Based on GIS [Conference paper]. Third World Congress on Software Engineering. Nanjing, China. DOI: 10.1109/WCSE.2012.29
dc.relation.referencesThe Climate Prediction Center - CPC (2024). Cold & Warm Episodes by Season [Base de datos]. In National Weather Service web portal. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
dc.relation.referencesVargas, G., León, N., Hernández, Y. (2019). Agricultural Socio-economic Effects in Colombia due to Degradation of Soils. In: Meena, R., Kumar, S., Bohra, J., Jat, M. (Eds), Sustainable Management of Soil and Environment. Singapore. Springer. https://doi.org10.1007978-981-13-8832-3
dc.relation.referencesVeloza, G. E., Mora, A., De Freitas, M., & Mantilla, M. (2008). Dislocación de facies en el tope de la secuencia Cretácica de la subcuenca de Neiva, Valle Superior del Magdalena y sus implicaciones en el modelo estratigráfico secuencial colombiano. Boletín de Geología 30(1). http://www.redalyc.org/articulo.oa?id=349632019003
dc.relation.referencesVillaroel, C., Brieva, J., & Cadena, A. (1996). La Fauna de Mamíferos Fósiles del Pleistoceno de Jutua, Municipio de Soata (Boyaca, Colombia). Geología Colombiana 21, (p. 81-87).
dc.relation.referencesWang, J., Zhen, J., Hu, W., Chen, S., Lizaga, I., Zeraatpisheh, M., & Yang, X. (2023). Remote sensing of soil degradation: Progress and perspective. International Soil and Water Conservation Research 87(11), (p.429-454). https://doi.org/10.1016/j.iswcr.2023.03.002
dc.relation.referencesWellman, S.S., 1970. Stratigraphy and Petrology of the Nonmarine Honda Group (Miocene), Upper Magdalena Valley, Colombia. GSA Bull 7(81), (p.2353–2374).
dc.relation.referencesWischmeier, W. H., & Smith, D.D. (1978). Predicting rainfall erosion losses, a guide to conservation planning. New York. U.S. Department of Agriculture, Agriculture Handbook.
dc.relation.referencesXu, J., Tang, Y., Xu, J., Chen, J., Bai, K., Shu, S., Yu, B., Wu, J., & Huang, Y. (2022). Evaluation of vegetation indexes and green-up date extraction methods on the Tibetan Plateau. Remote Sensing 125(14), (p. 3160). https://doi.org/10.3390/rs14133160
dc.relation.referencesZucca, C., Canu, A., & Della Peruta, R. (2007). Gully Erosion, Landuse and Landscape. Spatial Distribution and Morphological Features of Gullies in an Agropastoral Area. Università di Sassari.
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
dc.subject.ddc550 - Ciencias de la tierra
dc.subject.proposalerosión del suelospa
dc.subject.proposalteledetecciónspa
dc.subject.proposaldesertificaciónspa
dc.subject.proposalprecipitaciónspa
dc.subject.proposalsoil erosioneng
dc.subject.proposalremote sensingeng
dc.subject.proposaldesertificationeng
dc.subject.proposalprecipitationeng
dc.titleDetección remota para el análisis de degradación del suelo por erosión en La Tatacoa, Colombiaspa
dc.title.translatedRemote sensing for soil degradation analysis due to erosion in La Tatacoa, Colombiaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Geomorfología y Suelos
Tamaño:
4.78 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: