Influencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0

dc.contributor.advisorColmenares Montañez, Julio Esteban
dc.contributor.authorOrjuela Garzón, Angélica Marcela
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genkispa
dc.date.accessioned2022-02-14T16:26:32Z
dc.date.available2022-02-14T16:26:32Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEl control del potencial de colapso, inducido por humedecimiento, en suelos compactados, es primordial para evitar la formación de grietas y fallas dentro los rellenos que podrían derivar en el daño de las estructuras. Se realizó una investigación de tipo experimental que evaluó el potencial de cambio volumétrico por inundación de mezclas compactadas de arena y caolín bajo dos niveles de esfuerzo vertical constante. Se encontró que las mezclas compactadas a pesos unitarios secos cercanos al máximo de la compactación normal y esfuerzos verticales de 47 kPa y 86 kPa presentaron un comportamiento volumétricamente estable, mientras que mezclas compactadas a pesos unitarios secos por debajo de 16 kN/m3 y contenidos de agua menores al óptimo, desarrollaron porcentajes de colapso hasta de 12%. Durante la investigación, se desarrolló y construyó un equipo de consolidación con control de succión que permite la medición de esfuerzos radiales y el control de la succión. Lo anterior permitió estudiar la influencia de trayectorias de humedecimiento y secado en el potencial de colapso de una mezcla de arena y caolín. Para dicha mezcla se halló que el cambio volumétrico es estable una vez se desarrolló la trayectoria de humedecimiento. (Texto tomado de la fuente)spa
dc.description.abstractThe control of wetting-induced collapse potential in compacted soils is essential to prevent the formation of cracks and faults within the fills that may later result in damage to the engineering structures. An experimental research was conducted to study the volumetric change potential of compacted mixtures of sand and kaolin by flooding the samples under two levels of constant vertical stress. Mixtures compacted at dry unit weights close to the maximum of normal compaction and vertical forces of 47 kPa and 86 kPa were found to have volumetrically stable behaviour, while mixtures compacted at dry unit weights below 16 kN/m3 and water contents below optimal, developed collapse percentages up to 12%. During the research, a suction-controlled equipment was developed and built that allows the measurement of radial stress and the control of suction, which allowed us to study the influence of wetting and drying paths on the collapse potential of a mixture of sand and kaolin. For this mixture, it was found that the volumetric change is stable once the wetting path was developed.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaRelaciones constitutivas de suelos, rocas y materiales afinesspa
dc.format.extent197 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80974
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAjdari, M., Monghassem, M., & Reza Lari, H. (2016). A modified osmotic diaphragmatic oedometer for investigating the hydro-mechanical response of unsaturated soils. Geotechnical Testing Journal, 39(6), 906–921. https://doi.org/10.1520/GTJ20150142spa
dc.relation.referencesAlonso, Gens, A., & Hight, D. W. (1987). Special problems soils. General Report, proceedings of the 9th European Conference on Soil Mechanics. Dublin Vol 3: 1087–1146.spa
dc.relation.referencesAlonso, Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3), 405–430. https://doi.org/10.1680/geot.1990.40.3.405spa
dc.relation.referencesAlshameri, B. (2020). Maximum dry density of sand – kaolin mixtures predicted by using fine content and specific gravity. SN Applied Sciences, 2(10), 1–7. https://doi.org/10.1007/s42452-020-03481-9spa
dc.relation.referencesBardanis, M., & Grifiza, S. (2016). Swelling and collapse of compacted soils to be used as earth dam cores. Proc. of the 3rd European Conference on Unsaturated Soils, 9. https://doi.org/10.1051/e3sconf/20160919003spa
dc.relation.referencesBhaskar, P., Boluk, B., Mosadegh, L., Banerjee, A., & Puppala, A. J. (2020). Effect of fines on hysteretic hydraulic conductivity of unsaturated soil. Geo-Congress, 60–69.spa
dc.relation.referencesBishop, A.W. (1959). The principle of effective stress. Teknik Ukebland, 39: 859-863.spa
dc.relation.referencesBlatz, J. A., Cui, Y. J., & Oldecop, L. (2008). Vapour Equilibrium and Osmotic Technique for Suction Control. Geotechnical and Geological Engineering, 26(6), 661–673. https://doi.org/10.1007/s10706-008-9196-1spa
dc.relation.referencesBurland, J. B., & Ridley, A. M. (1994). Discussion A new instrument for the measurement of soil moisture suction. Géotechnique, Vol. 44, pp. 551–556. https://doi.org/10.1680/geot.1994.44.3.551spa
dc.relation.referencesChiu, T.-F., & Shackelford, C. D. (1998). Unsaturated Hydraulic Conductivity of Compacted Sand-Kaolin Mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 124(February), 160–170.spa
dc.relation.referencesColmenares, J. E. (2002). Suction and volume change of compacted sand-bentonite mixtures. University of London.spa
dc.relation.referencesDelage, P., Howat, M. D., & Cui, Y. J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay. 50, 31–48.spa
dc.relation.referencesDineen, & Burland. (1995). A new approach to osmotically controlled oedometer testing. Proceedings of the First International Conference on Unsaturated Soils. Alonso E.E: And Delage P., 2, 459–465.spa
dc.relation.referencesDineen, K. (1997). The influnce of soil suction on compressibility and swelling. Phd Thesis, (August).spa
dc.relation.referencesEl-Ehwany, M., & Houston, S. (1989). Settlement and moisture movement in collapsible soils. 116(10), 1521–1535.spa
dc.relation.referencesEscario V, and Sáez J (1986). The shear strenght of partly saturated soils. Geotechnique, 36(3), 453–456.spa
dc.relation.referencesFredlund, D. G. (2002). Use of the soil-water characteristic curve in the implementation of unsaturated soil mechanics. Procc. Third International Conference on Unsaturated Soils. Recife, Brazil.spa
dc.relation.referencesFredlund, D. G., Rahadjo, H., & Fredlund, M. G. (2012). Unsaturated Soil Mechanics in Engineering Practice (I. John Wiley & Sons, Ed.). https://doi.org/10.1002/9781118280492spa
dc.relation.referencesFuentes, W. M., Hurtado, C., & Lascarro, C. (2018). On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures. Earth Sciences Research Journal, 22(4), 239–249. https://doi.org/10.15446/esrj.v22n4.69332spa
dc.relation.referencesGallipoli, D., Gens, A., Sharma, R., & Vaunat, J. (2003). An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique, 53(1), 123–136. https://doi.org/10.1680/geot.53.1.123.37251spa
dc.relation.referencesGalvis Castro, A. C. (2018). Estudio del comportamiento esfuerzo – deformación – tiempo de un suelo derivado de ceniza volcánica. Universidad Nacional de Colombia.spa
dc.relation.referencesGarcia, J. C. (2003). Efectos de los cambios de humedad en la resistencia de un suelo parcialmente saturado derivado de ceniza volcánica. Universidad Nacional de Colombia.spa
dc.relation.referencesGareau, L. F., Molenkamp, F., & Sharma, J. (2006). An improved oedometer apparatus to measure lateral stress during testing. Geotechnical Testing Journal, 29(3), 200–206. https://doi.org/10.1520/GTJ12341spa
dc.relation.referencesGens, A. (2010). Soil-environment interactions in geotechnical engineering. Geotechnique, 60(1), 3–74. https://doi.org/10.1680/geot.9.P.109spa
dc.relation.referencesGeorgiadis, K. (2003). Development, Implementation and Application of Partially Saturated Soil Models in Finite Element Analysis.spa
dc.relation.referencesGeorgiadis, K., Potts, D. M., & Zdravkovic, L. (2005). Three-dimensional constitutive model for partially and fully saturated soils. International Journal of Geomechanics, 5(3), 244–255. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:3(244)spa
dc.relation.referencesGonzález, N. A. (2005). Influencia de la succión en el comportamiento volumétrico de suelos compactados. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesHead, K. H. (2006). Manual of Soil Laboratory Testing: Soil Classification and Compaction Tests (3rd ed.). Scotland: Whittles Publishing.spa
dc.relation.referencesHeibrock, G., König, D., Datcheva, M., Pourzargar, A., Alabdullah, J., & Schanz, T. (2018). Prediction of effective stress in partially saturated sand–kaolin mixtures. Geomechanics for Energy and the Environment, 15, 85–94. https://doi.org/10.1016/j.gete.2018.06.001spa
dc.relation.referencesJosa, A. (1988). Un modelo elastoplastico para suelos no saturados. Universidad Politécnica de Cataliña.spa
dc.relation.referencesJosa, Balmaceda, A., Gens, A., & Alonso, E. E. (1992). An elastoplastic model for partially saturated soils exhibiting a maximum of collapse. Proc. 3rd Int. Computational Plasticity. Barcelona, España.spa
dc.relation.referencesJotisankasa, A. (2005). Collapse Behaviour of a Compacted Silty Clay.spa
dc.relation.referencesKikumoto, M., Kyokawa, H., Nakai, T., & Shahin, H. (2010). A simple elasto-plastic model for unsaturated soils and interpretations of collapse and compaction behaviours. In E. Alonso & A. Gens (Eds.), Proc. of the 5th International Conference on Unsaturated Soils (pp. 849–855). Barcelona, España.spa
dc.relation.referencesLawton, E., Fragaszy, J., & Hardcastle, J. (1989). Collapse of compacted clayey sands. Journal of Geotechnical Engineering, 115(9), 1252–1267.spa
dc.relation.referencesLawton, E., Fragaszy, J., & Hetherington, M. (1992). Review of the wetting-induced collapse in compacted soils. Journal of Geotechnical Engineering, 118(9), 1376–1394.spa
dc.relation.referencesLi, P., Vanapalli, S., & Li, T. (2016). Review of collapse triggering mechanism of collapsible soils due to wetting. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 256–274. https://doi.org/10.1016/j.jrmge.2015.12.002spa
dc.relation.referencesLu, N., & Likos, W. . (2004). Unsaturated soil mechanics (Wiley, Ed.). New York.spa
dc.relation.referencesMelgarejo Corredor, M. L. (2004). Laboratory and numerical investigations of soil retention curves. University of London.spa
dc.relation.referencesMendes, J., & Buzzi, O. (2014). Performance of the University of Newcastle high capacity tensiometer. Proceedings of the Sixth International Conference on Unsaturated Soils, 2, 1611–1616.spa
dc.relation.referencesMitchell, J. K. (1976). Fundamentals of Soil Behavior. New York: John Wiley & Sons.spa
dc.relation.referencesMonroy, R., Ridley, a., Dineen, K., & Zdravkovic, L. (2007). The suitability of the osmotic technique for the long-term testing of partly saturated soils. Geotechnical Testing Journal, 30(3), 220–226. https://doi.org/10.1520/GTJ100731spa
dc.relation.referencesPeck, A., & Rabbidge, R. (1969). Design and Performance of an Osmotic Tensiometer for Measuring Capillary Potential. Proc Soil Science Society of America, 33, 196–202.spa
dc.relation.referencesPedrotti, M., Tarantino, A., & Boeck, F. (2014). Experience gained from the conditioning of high-capacity tensiometers. Proceedings of the Sixth International Conference on Unsaturated Soils, 2, 1651–1657.spa
dc.relation.referencesPirjalili, A., Akbari Garakani, A., Golshani, A., & Mirzaii, A. (2020). A Suction-Controlled Ring Device to Measure the Coefficient of Lateral Soil Pressure in Unsaturated Soils. Geotechnical Testing Journal, 43. https://doi.org/10.1520/GTJ20190099spa
dc.relation.referencesPourzargar, A., König, D., Heibrock, G., Datcheva, M., & Schanz, T. (2014). Comparison of Measured and Predicted Suction Stress in Partially Saturated Compacted Mixtures of Sand and Clay Partially Saturated Soils. Vadose Zone J, 13(5). https://doi.org/10.2136/vzj2013.06.0114spa
dc.relation.referencesPrasad, L., & Kuwano, R. (2018). Triaxial apparatus equipped with elastic waves and matric suction measurement techniques. Soils and Foundations, 58(6), 1553–1562. https://doi.org/10.1016/j.sandf.2018.08.010spa
dc.relation.referencesPuppala, A. J., Pradhan, A., Yu, X., & Zhang, N. (2016). Thermal conductivity of sand–kaolin clay mixtures. Environmental Geotechnics, 3(4), 190–202. https://doi.org/10.1680/jenge.15.00022spa
dc.relation.referencesRidley. (2015). Soil suction — what it is and how to successfully measure it. In Australian Centre for Geomechanics (Ed.), Proceedings of the 9th Symposium on Field Measurements in Geomechanics (pp. 27–46). https://doi.org/10.36487/acg_rep/1508_0.2_ridleyspa
dc.relation.referencesRidley, A. M. (1993). The measurement of soil moisture suction. University of London.spa
dc.relation.referencesRidley, A. M., & Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Geotechnique, 43, 321–324. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0027458157&partnerID=40&md5=e5dd992242bd13c538377f25b8da34b0spa
dc.relation.referencesRidley, A. M., & Burland, J. B. (1995). Measurement of suction in materials which swell. Applied Mechanics Reviews, 48(10), 727–732.spa
dc.relation.referencesRidley, A. M., Dineen, K., Burland, J. B., & Vaughan, P. R. (2003). Soil matrix suction: Some examples of its measurement and application in geotechnical engineering. Geotechnique, 53(2), 241–253. https://doi.org/10.1680/geot.2003.53.2.241spa
dc.relation.referencesRogers, C. D. F. (1995). Types and distribution of collapsible soils. Genesis and Properties of Collapsible Soils. Proc. Workshop, Loughborough, 1994, 1–17. https://doi.org/10.1007/978-94-011-0097-7_1spa
dc.relation.referencesRojas, E., Arroyo, H., & Pérez-Rea, M. I. (2014a). Elastoplastic framework for the volumetric behavior of unsaturated soils. In N. Khalili, A. R. Rusell, & A. Khoshghalb (Eds.), Unsaturated soils: Research & Aplications (pp. 323–328). Sydney, Australia.spa
dc.relation.referencesRojas, E., Arroyo, H., & Pérez-Rea, M. I. (2014b). Elastoplastic framework to simulate the collapse of soils. In N. Khalili, A. R. Rusell, & A. Khoshghalb (Eds.), Unsaturated Soils: Research & Applications (pp. 329–334). Sydney, Australia.spa
dc.relation.referencesRojas, E., & Chávez, O. (2013). Volumetric behavior of unsaturated soils. Canadian Geotechnical Journal, 50(2), 209–222. https://doi.org/10.1139/cgj-2012-0341spa
dc.relation.referencesSatyanaga, A., Rahardjo, H., & Zhai, Q. (2017). Estimation of unimodal water characteristic curve for gap-graded soil. Soils and Foundations, 57(5), 789–801. https://doi.org/10.1016/j.sandf.2017.08.009spa
dc.relation.referencesSheng. (2010). Constitutive modelling of unsaturated soils: Discussion of fundamental principles. Proc. of the 5th International Conference on Unsaturated Soils, 91–112. Barcelona, Spain.spa
dc.relation.referencesSheng, D. (2011). Review of fundamental principles in modelling unsaturated soil behaviour. Computers and Geotechnics, 38(6), 757–776. https://doi.org/10.1016/j.compgeo.2011.05.002spa
dc.relation.referencesSoga, K., & Mitchell, J. (2005). Fundamentals of Soil Behavior, 3rd Edition. John Wiley & Sons, Inc.spa
dc.relation.referencesSun, D. A., Gao, Y., & Zhang, J. (2014). Some issues in hydro-mechanical behaviour of unsaturated soils and its modelling. Proceedings of the Sixth International Conference on Unsaturated Soils, 1, 45–53.spa
dc.relation.referencesTake, W. A., & Bolton, M. D. (2003). Tensiometer saturation and the reliable measurement of soil suction. Géotechnique, 53(2), 159–172. https://doi.org/10.1680/geot.2003.53.2.159spa
dc.relation.referencesTarantino, A., & Mongiovi, L. (2002). Design and construction of a tensiometer for direct measurement of matric suction. Proceedings of the Third International Conference of Unsaturated Soils|, 1, 319–324.spa
dc.relation.referencesTarantino, A., & Mongiovi, L. (2003). Calibration of tensiometer for direct measurement of matric suction. Geotechnique, 53(1), 137–141.spa
dc.relation.referencesTarantino, A., & Mongiovì, L. (2001). Experimental procedures and cavitation mechanisms in tensiometer measurements. Geotechnical and Geological Engineering, 19(3–4), 189–210. https://doi.org/10.1023/A:1013174129126spa
dc.relation.referencesToll, D. G., Lourenço, S. D. N., & Mendes, J. (2013). Advances in suction measurements using high suction tensiometers. Engineering Geology, 165, 29–37. https://doi.org/10.1016/j.enggeo.2012.04.013spa
dc.relation.referencesVanapalli, S. K., Fredlund, D. G., & Pufahl, D. E. (1999). The influence of soil structure and stress history on the soil-water characteristics of a compacted till. Geotechnique, 49(2), 143–159. https://doi.org/10.1680/geot.1999.49.2.143spa
dc.relation.referencesVelosa, C. L. (2006). Análisis de la deformación volumétrica de suelos expansivos compactados. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesVenkatarama, B. V., Reddy, & Jagadish, K. S. (1993). Technical note: The static compaction. Geotechnique, 43(2), 337–341.spa
dc.relation.referencesWheeler, S. J., & Sivakumar, V. (1995). An elasto-plastic critical state framework for unsaturated soil. Géotechnique, 45(1), 35–53. https://doi.org/10.1680/geot.1995.45.1.35spa
dc.relation.referencesWilliams, J., & Shaykewich, C. F. (1969). An Evaluation of Polyethylene Glycol P.E.G. 6000 and P.E.G. 20000 in the Osmotic Control of Soil Water Matric Potential. Canadian Journal of Soil Science, 49, 397–401.spa
dc.relation.referencesZhang, N., Yu, X., & Pradhan, A. (2017). Application of a thermo-time domain reflectometry probe in sand-kaolin clay mixtures. Engineering Geology, 216, 98–107. https://doi.org/10.1016/j.enggeo.2016.11.016spa
dc.relation.referencesZhou, A. N., Sheng, D., Sloan, S. W., & Gens, A. (2012a). Interpretation of unsaturated soil behaviour in the stress-saturation space. II: Constitutive relationships and validations. Computers and Geotechnics, 43, 111–123. https://doi.org/10.1016/j.compgeo.2012.02.009spa
dc.relation.referencesZhou, A. N., Sheng, D., Sloan, S. W., & Gens, A. (2012b). Interpretation of unsaturated soil behaviour in the stress - Saturation space, I: Volume change and water retention behaviour. Computers and Geotechnics, 43, 178–187. https://doi.org/10.1016/j.compgeo.2012.04.010spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembEstabilización de suelosspa
dc.subject.lembSoil stabilizationeng
dc.subject.lembCompactación de suelosspa
dc.subject.proposalComportamiento volumétricospa
dc.subject.proposalPotencial de colapsospa
dc.subject.proposalSuelos compactadosspa
dc.subject.proposalSuelos parcialmente saturadosspa
dc.subject.proposalConsolidómetro de succión controladaspa
dc.subject.proposalVolumetric behavioureng
dc.subject.proposalCollapse potentialeng
dc.subject.proposalCompacted soilseng
dc.subject.proposalPartially saturated soilseng
dc.subject.proposalSuction-controlled oedometereng
dc.titleInfluencia de la succión en la compresibilidad de suelos no saturados en trayectorias k0spa
dc.title.translatedInfluence of suction on the compressibility of unsaturated soils in k0 pathseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1077146390.2021.pdf
Tamaño:
9.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: