Diseño y optimización de un proceso de fermentación para la obtención de enzimas hemicelulolíticas y celulolíticas a partir de Trichoderma koningiopsis Th003
dc.contributor.advisor | Serrato Bermúdez, Juan Carlos | spa |
dc.contributor.advisor | Bautista Bautista, Eddy Johana | spa |
dc.contributor.author | Jaramillo Rodríguez, María Alejandra | spa |
dc.contributor.researchgroup | Bioprocesos y bioprospección | spa |
dc.date.accessioned | 2021-01-29T14:27:16Z | spa |
dc.date.available | 2021-01-29T14:27:16Z | spa |
dc.date.issued | 2020-12-07 | spa |
dc.description.abstract | Lignocellulosic biomass is the most abundant raw material in nature, a part is generated from agro-industrial processes, especially in the agricultural sector. Many of these materials do not have a direct application in industry, therefore their accumulation in large quantities can generate environmental problems. This can be counteracted by using these low-cost materials to generate value-added products such as enzymes, which have an application in different industries. The objective of this work was to design a fermentation process from sugarcane bagasse and wheat bran for the production of hemicellulolytic and cellulolytic enzymes from Trichoderma koningiopsis Th003. Initially, the evaluation of three chemical pretreatment methods was carried out on sugarcane bagasse: basic with 5% NaOH, 2.5% H2SO4 acid, and mixed H2SO4 1% + NaOH 4%. Subsequently, using an experimental design strategy, the physical (fermentation temperature), biological (inoculum concentration), and nutritional (selection and concentration of nitrogen source) conditions were established. Finally, through optimization techniques, the best nutritional conditions (selection of the concentration of carbon and nitrogen sources) and physicochemical (pH, bed height and particle size) for the production of enzymes in a fermentation system were defined. in solid phase. The conditions that favored this production were: temperature of 28 °C; inoculum concentration of 1x106 conidia / mL, bagasse / bran ratio 1: 0.8; yeast extract 3.2 g/L, pH 5.0; particle size 5 cm, and bed height 0.5 cm with five days of fermentation. With them the following enzymatic activities were obtained: FPase 0.275 U/gss, CMCase 1.834 U/gss, and xylanase 1261.05 U/gss. | spa |
dc.description.abstract | La biomasa lignocelulósica es muy abundante en la naturaleza, una parte se genera a partir de procesos agroindustriales especialmente del sector agrícola. Muchos de estos materiales no tienen una aplicación directa en la industria, por lo tanto, su acumulación en grandes cantidades puede generar problemas ambientales. Esto se puede contrarrestar mediante el uso de estos materiales de bajo costo para generar productos con valor agregado como enzimas, las cuales tienen una aplicación en diferentes industrias. Este trabajo tuvo como objetivo el diseño de un proceso de fermentación a partir de bagazo de caña y salvado de trigo para la producción de enzimas hemicelulolíticas y celulolíticas de Trichoderma koningiopsis Th003. Inicialmente se realizó la evaluación de tres métodos de pretratamiento químico sobre el bagazo de caña: básico con NaOH 5%, ácido H2SO4 2,5%, y mixto H2SO4 1% + NaOH 4%. Posteriormente, usando una estrategia de diseño experimental, se establecieron las condiciones físicas (temperatura de fermentación), biológicas (concentración del inóculo), nutricionales (selección y concentración de fuente de nitrógeno) del proceso de fermentacíón. Finalmente, a través de técnicas de optimización se definieron las mejores condiciones nutricionales (selección de la concentración de las fuentes de carbono y nitrógeno) y fisicoquímicas (pH, altura de lecho y tamaño de partícula) para la producción de enzimas en un sistema de fermentación en fase sólida. Las condiciones que favorecieron esta producción fueron: temperatura de 28°C; concentración de inóculo de 1x106 conidios/mL, relación bagazo/salvado 1:0,8; extracto de levadura 3,2 g/L, pH 5,0; tamaño de partícula 5 cm, y altura de lecho 0,5 cm con cinco días de fermentación. Con ellas se obtuvieron las siguientes actividades enzimáticas FPasa 0,275 U/gss, CMCasa 1,834 U /gss, y xilanasa 1261,05 U/gss. | spa |
dc.description.additional | Línea de Investigación: Bioproductos | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.project | Diseño y optimización de un proceso de fermentación para la obtención de enzimas hemicelulolíticas y celulolíticas a partir de Trichoderma koningiopsis Th003 | spa |
dc.format.extent | 141 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78989 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., … Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology, 301(January), 122725. https://doi.org/10.1016/j.biortech.2019.122725 | spa |
dc.relation.references | Adnan, M., Islam, W., Shabbir, A., Khan, K. A., Ghramh, H. A., Huang, Z., … Lu, G. dong. (2019). Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microbial Pathogenesis, 129(January), 7–18. https://doi.org/10.1016/j.micpath.2019.01.042 | spa |
dc.relation.references | Aharwar, A., & Parihar, D. K. (2018). Tannases: Production, properties, applications. Biocatalysis and Agricultural Biotechnology, 15(June), 322–334. https://doi.org/10.1016/j.bcab.2018.07.005 | spa |
dc.relation.references | Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., … Gosselin, I. (2020). Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renewable Energy, 145, 1808–1816. https://doi.org/10.1016/j.renene.2019.07.091 | spa |
dc.relation.references | Alokika, & Singh, B. (2019). Production, characteristics, and biotechnological applications of microbial xylanases. Applied Microbiology and Biotechnology, 103(21–22), 8763–8784. https://doi.org/10.1007/s00253-019-10108-6 | spa |
dc.relation.references | Arni, S. Al. (2018). Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial Crops and Products, 115(May 2017), 330–339. https://doi.org/10.1016/j.indcrop.2018.02.012 | spa |
dc.relation.references | Asgher, M., Ahmad, Z., & Iqbal, H. M. N. (2013). Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Industrial Crops and Products, 44, 488–495. https://doi.org/10.1016/j.indcrop.2012.10.005 | spa |
dc.relation.references | Astolfi, V., Astolfi, A. L., Mazutti, M. A., Rigo, E., Di Luccio, M., Camargo, A. F., … Treichel, H. (2019). Cellulolytic enzyme production from agricultural residues for biofuel purpose on circular economy approach. Bioprocess and Biosystems Engineering, 42(5), 677–685. https://doi.org/10.1007/s00449-019-02072-2 | spa |
dc.relation.references | Ávila, C. L. S., & Carvalho, B. F. (2020). Silage fermentation—updates focusing on the performance of micro-organisms. Journal of Applied Microbiology, 128(4), 966–984. https://doi.org/10.1111/jam.14450 | spa |
dc.relation.references | Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2018). Optimization of endoglucanase production from Trichoderma harzianum strain HZN11 by central composite design under response surface methodology. Biomass Conversion and Biorefinery, 8(2), 305–316. https://doi.org/10.1007/s13399-017-0285-3 | spa |
dc.relation.references | Bajaj, P., & Mahajan, R. (2019). Cellulase and xylanase synergism in industrial biotechnology. Applied Microbiology and Biotechnology, 103(21–22), 8711–8724. https://doi.org/10.1007/s00253-019-10146-0 | spa |
dc.relation.references | Bala, A., & Singh, B. (2019). Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels. Renewable Energy, 136, 1231–1244. https://doi.org/10.1016/j.renene.2018.09.100 | spa |
dc.relation.references | Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6(DEC), 1–19. https://doi.org/10.3389/fenrg.2018.00141 | spa |
dc.relation.references | Basit, A., Liu, J., Rahim, K., Jiang, W., & Lou, H. (2018). Thermophilic xylanases: from bench to bottle. Critical Reviews in Biotechnology, 38(7), 989–1002. https://doi.org/10.1080/07388551.2018.1425662 | spa |
dc.relation.references | Bautista, E. J., Jiménez, A. M., Chavarro-anzola, V., & Gómez, M. I. (2018). Caracterización de crudos enzimáticos del hongo Trichoderma koningiopsis Th para ser usados como aditivos de ensilaje. 1. | spa |
dc.relation.references | Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochemistry, 45(1), 120–128. https://doi.org/10.1016/j.procbio.2009.08.015 | spa |
dc.relation.references | Chadha, B. S., Kaur, B., Basotra, N., Tsang, A., & Pandey, A. (2019). Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. Bioresource Technology, 277(January), 195–203. https://doi.org/10.1016/j.biortech.2019.01.044 | spa |
dc.relation.references | Cheah, W. Y., Sankaran, R., Show, P. L., Ibrahim, T. N. B. T., Chew, K. W., Culaba, A., & Chang, J. S. (2020). Pretreatment methods for lignocellulosic biofuels production: Current advances, challenges and future prospects. Biofuel Research Journal, 7(1), 1115–1127. https://doi.org/10.18331/BRJ2020.7.1.4 | spa |
dc.relation.references | Corrêa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., de Souza, C. G. M., … Peralta, R. M. (2014). Endophytic fungi: expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology and Biotechnology, 41(10), 1467–1478. https://doi.org/10.1007/s10295-014-1496-2 | spa |
dc.relation.references | da Silva, F. L., Magalhães, E. R. B., de Sá Leitão, A. L. O., & dos Santos, E. S. (2020). Production of lignocellulolytic enzymatic complex using pretreated carnauba straw as carbon source and application on sugarcane bagasse hydrolysis. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00815-w | spa |
dc.relation.references | Darabzadeh, N., Hamidi-Esfahani, Z., & Hejazi, P. (2019). Optimization of cellulase production under solid-state fermentation by a new mutant strain of Trichoderma reesei. Food Science and Nutrition, 7(2), 572–578. https://doi.org/10.1002/fsn3.852 | spa |
dc.relation.references | de Almeida Antunes Ferraz, J. L., Oliveira Souza, L., Gustavo de Araújo Fernandes, A., Luiz Ferreira Oliveira, M., de Oliveira, J. R., & Franco, M. (2020). Optimization of the solid-state fermentation conditions and characterization of xylanase produced by Penicillium roqueforti ATCC 10110 using yellow mombin residue (Spondias mombin L.). Chemical Engineering Communications, 207(1), 31–42. https://doi.org/10.1080/00986445.2019.1572000 | spa |
dc.relation.references | de Castro, R. J. S., & Sato, H. H. (2015). Enzyme Production by Solid State Fermentation: General Aspects and an Analysis of the Physicochemical Characteristics of Substrates for Agro-industrial Wastes Valorization. Waste and Biomass Valorization, 6(6), 1085–1093. https://doi.org/10.1007/s12649-015-9396-x | spa |
dc.relation.references | de Oliveira Gorgulho Silva, C., & Filho, E. X. F. (2017). A Review of Holocellulase Production Using Pretreated Lignocellulosic Substrates. Bioenergy Research, 10(2), 592–602. https://doi.org/10.1007/s12155-017-9815-x | spa |
dc.relation.references | Debi, M. R., Wichert, B. A., & Liesegang, A. (2019). Method development to reduce the fiber content of wheat bran and rice bran through anaerobic fermentation with rumen liquor for use in poultry feed. Asian-Australasian Journal of Animal Sciences, 32(3), 395–404. https://doi.org/10.5713/ajas.18.0446 | spa |
dc.relation.references | Dogi, C. A., Pellegrino, M., Poloni, V., Poloni, L., Pereyra, C. M., Sanabria, A., … Cavaglieri, L. (2015). Efficacy of corn silage inoculants on the fermentation quality under farm conditions and their influence on Aspergillus parasitucus, A. flavus and A. fumigatus determined by q-PCR. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 32(2), 229–235. https://doi.org/10.1080/19440049.2014.986223 | spa |
dc.relation.references | Ezeilo, U. R., Lee, C. T., Huyop, F., Zakaria, I. I., & Wahab, R. A. (2019). Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Journal of Environmental Management, 243(January), 206–217. https://doi.org/10.1016/j.jenvman.2019.04.113 | spa |
dc.relation.references | Fabiszewska, A. U., Zielińska, K. J., & Wróbel, B. (2019). Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: a minireview. World Journal of Microbiology and Biotechnology, 35(5), 1–8. https://doi.org/10.1007/s11274-019-2649-2 | spa |
dc.relation.references | Farinas, C. S. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renewable and Sustainable Energy Reviews, 52, 179–188. https://doi.org/10.1016/j.rser.2015.07.092 | spa |
dc.relation.references | Ferreira, J. A., Mahboubi, A., Lennartsson, P. R., & Taherzadeh, M. J. (2016). Waste biorefineries using filamentous ascomycetes fungi: Present status and future prospects. Bioresource Technology, 215, 334–345. https://doi.org/10.1016/j.biortech.2016.03.018 | spa |
dc.relation.references | Fraceto, L. F., Maruyama, C. R., Guilger, M., Mishra, S., Keswani, C., Singh, H. B., & de Lima, R. (2018). Trichoderma harzianum-based novel formulations: potential applications for management of Next-Gen agricultural challenges. Journal of Chemical Technology and Biotechnology, 93(8), 2056–2063. https://doi.org/10.1002/jctb.5613 | spa |
dc.relation.references | Gandra, J. R., Miranda, G. A., Goes, R. H. T. B., Takiya, C. S., Del Valle, T. A., Oliveira, E. R., … Santos, A. L. A. V. (2017). Fibrolytic enzyme supplementation through ruminal bolus on eating behavior, nutrient digestibility and ruminal fermentation in Jersey heifers fed either corn silage- or sugarcane silage-based diets. Animal Feed Science and Technology, 231(June), 29–37. https://doi.org/10.1016/j.anifeedsci.2017.06.009 | spa |
dc.relation.references | Garvey, M., Klose, H., Fischer, R., Lambertz, C., & Commandeur, U. (2013). Cellulases for biomass degradation: Comparing recombinant cellulase expression platforms. Trends in Biotechnology, 31(10), 581–593. https://doi.org/10.1016/j.tibtech.2013.06.006 | spa |
dc.relation.references | Guerrero, C., & Luengas, E. (2013). Plan De Manejo Ambiental Para El Sector Panelero En La Vereda Melgas, Municipio De Chaguaní, Cundinamarca. 11. Retrieved from http://www.umng.edu.co/documents/10162/745281/V3N2_4.pdf | spa |
dc.relation.references | Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1–12. https://doi.org/10.1016/j.riam.2013.10.009 | spa |
dc.relation.references | Ho, M. C., Ong, V. Z., & Wu, T. Y. (2019). Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review. Renewable and Sustainable Energy Reviews, 112(May), 75–86. https://doi.org/10.1016/j.rser.2019.04.082 | spa |
dc.relation.references | Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. https://doi.org/10.1007/s00253-003-1504-3 | spa |
dc.relation.references | Huang, C., Zhao, C., Li, H., Xiong, L., Chen, X., Luo, M., & Chen, X. (2018). Comparison of different pretreatments on the synergistic effect of cellulase and xylanase during the enzymatic hydrolysis of sugarcane bagasse. RSC Advances, 8(54), 30725–30731. https://doi.org/10.1039/C8RA05047C | spa |
dc.relation.references | Jampala, P., Tadikamalla, S., Preethi, M., Ramanujam, S., & Uppuluri, K. B. (2017). Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech, 7(1), 1–13. https://doi.org/10.1007/s13205-017-0607-y | spa |
dc.relation.references | Jatuwong, K., Suwannarach, N., Kumla, J., Penkhrue, W., Kakumyan, P., & Lumyong, S. (2020). Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Frontiers in Microbiology, 11(February), 1–18. https://doi.org/10.3389/fmicb.2020.00188 | spa |
dc.relation.references | Kalsoom, R., Ahmed, S., Nadeem, M., Chohan, S., & Abid, M. (2019). Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. International Journal of Environmental Science and Technology, 16(2), 921–928. https://doi.org/10.1007/s13762-018-1717-8 | spa |
dc.relation.references | Karagoz, P., Bill, R. M., & Ozkan, M. (2019). Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations. Renewable Energy, 143, 741–752. https://doi.org/10.1016/j.renene.2019.05.045 | spa |
dc.relation.references | Krishna, C. (2005). Solid-state fermentation systems - An overview. Critical Reviews in Biotechnology, 25(1–2), 1–30. https://doi.org/10.1080/07388550590925383 | spa |
dc.relation.references | Kumar, A., Anushree, Kumar, J., & Bhaskar, T. (2020). Utilization of lignin: A sustainable and eco-friendly approach. Journal of the Energy Institute, 93(1), 235–271. https://doi.org/10.1016/j.joei.2019.03.005 | spa |
dc.relation.references | Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., & Verma, P. (2020). Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 199(November 2019). https://doi.org/10.1016/j.fuproc.2019.106244 | spa |
dc.relation.references | Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35(5), 377–391. https://doi.org/10.1007/s10295-008-0327-8 | spa |
dc.relation.references | Kumar, V., Dangi, A. K., & Shukla, P. (2018). Engineering Thermostable Microbial Xylanases Toward its Industrial Applications. Molecular Biotechnology, 60(3), 226–235. https://doi.org/10.1007/s12033-018-0059-6 | spa |
dc.relation.references | Ladeira-Ázar, R. I. S., Morgan, T., Maitan-Alfenas, G. P., & Guimarães, V. M. (2019). Inhibitors Compounds on Sugarcane Bagasse Saccharification: Effects of Pretreatment Methods and Alternatives to Decrease Inhibition. Applied Biochemistry and Biotechnology, 188(1), 29–42. https://doi.org/10.1007/s12010-018-2900-6 | spa |
dc.relation.references | Laluce, C., Roldan, I. U., Pecoraro, E., Igbojionu, L. I., & Ribeiro, C. A. (2019). Effects of pretreatment applied to sugarcane bagasse on composition and morphology of cellulosic fractions. Biomass and Bioenergy, 126(May), 231–238. https://doi.org/10.1016/j.biombioe.2019.03.002 | spa |
dc.relation.references | Lee, C. K., Darah, I., & Ibrahim, C. O. (2017). Efficiency of developed solid state bioreactor ‘FERMSOSTAT’ on cellulolytic and xylanase enzymes production. Sains Malaysiana, 46(8), 1249–1257. https://doi.org/10.17576/jsm-2017-4608-10 | spa |
dc.relation.references | Li, H., Chen, X., Xiong, L., Luo, M., Chen, X., Wang, C., … Chen, X. (2019). Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresource Technology, 275(2), 345–351. https://doi.org/10.1016/j.biortech.2018.12.063 | spa |
dc.relation.references | Li, M. F., Yang, S., & Sun, R. C. (2016). Recent advances in alcohol and organic acid fractionation of lignocellulosic biomass. Bioresource Technology, 200, 971–980. https://doi.org/10.1016/j.biortech.2015.10.004 | spa |
dc.relation.references | Liao, J. J., Latif, N. H. A., Trache, D., Brosse, N., & Hussin, M. H. (2020). Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 162, 985–1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168 | spa |
dc.relation.references | Lizardi-Jiménez, M. A., & Hernández-Martínez, R. (2017). Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech, 7(1). https://doi.org/10.1007/s13205-017-0692-y | spa |
dc.relation.references | Long, C., Liu, J., Gan, L., Zeng, B., & Long, M. (2019). Optimization of Xylanase Production by Trichoderma orientalis Using Corn Cobs and Wheat Bran via Statistical Strategy. Waste and Biomass Valorization, 10(5), 1277–1284. https://doi.org/10.1007/s12649-017-0149-x | spa |
dc.relation.references | Lorenci Woiciechowski, A., Dalmas Neto, C. J., Porto de Souza Vandenberghe, L., de Carvalho Neto, D. P., Novak Sydney, A. C., Letti, L. A. J., … Soccol, C. R. (2020). Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology, 304(October 2019), 122848. https://doi.org/10.1016/j.biortech.2020.122848 | spa |
dc.relation.references | Maibam, P. D., & Maiti, S. K. (2019). A Strategy for Simultaneous Xylose Utilization and Enhancement of Cellulase Enzyme Production by Trichoderma reesei Cultivated on Liquid Hydrolysate Followed by Induction with Feeding of Solid Sugarcane Bagasse. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-019-00645-6 | spa |
dc.relation.references | Mansour, A. A., Arnaud, T., Lu-Chau, T. A., Fdz-Polanco, M., Moreira, M. T., & Rivero, J. A. C. (2016). Review of solid state fermentation for lignocellulolytic enzyme production: challenges for environmental applications. Reviews in Environmental Science and Biotechnology, 15(1), 31–46. https://doi.org/10.1007/s11157-016-9389-7 | spa |
dc.relation.references | Marques, N. P., de Cassia Pereira, J., Gomes, E., da Silva, R., Araújo, A. R., Ferreira, H., … Bocchini, D. A. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 122(May), 66–75. https://doi.org/10.1016/j.indcrop.2018.05.022 | spa |
dc.relation.references | Mohamad Ikubar, M. R., Abdul Manan, M., Md. Salleh, M., & Yahya, A. (2018). Solid-state fermentation of oil palm frond petiole for lignin peroxidase and xylanase-rich cocktail production. 3 Biotech, 8(5), 1–11. https://doi.org/10.1007/s13205-018-1268-1 | spa |
dc.relation.references | Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101(5), 3980–4000. https://doi.org/10.3168/jds.2017-13839 | spa |
dc.relation.references | Nanjundaswamy, A., & Okeke, B. C. (2020). Comprehensive Optimization of Culture Conditions for Production of Biomass-Hydrolyzing Enzymes of Trichoderma SG2 in Submerged and Solid-State Fermentation. Applied Biochemistry and Biotechnology, 191(1), 444–462. https://doi.org/10.1007/s12010-020-03258-1 | spa |
dc.relation.references | Nathan, V., Esther Rani, M., Rathinasamy, G., Dhiraviam, K., & Jayavel, S. (2014). Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus, 3(1), 92. https://doi.org/10.1186/2193-1801-3-92 | spa |
dc.relation.references | Nutongkaew, T., Prasertsan, P., Leamdum, C., Sattayasamitsathit, S., & Noparat, P. (2020). Bioconversion of Oil Palm Trunk Residues Hydrolyzed by Enzymes from Newly Isolated Fungi and Use for Ethanol and Acetic Acid Production Under Two-Stage and Simultaneous Fermentation. Waste and Biomass Valorization, 11(4), 1333–1347. https://doi.org/10.1007/s12649-019-00678-x | spa |
dc.relation.references | Onipe, O. O., Jideani, A. I. O., & Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science and Technology, 50(12), 2509–2518. https://doi.org/10.1111/ijfs.12935 | spa |
dc.relation.references | Pachauri, P., Chakradhari, Y., & Veeramani, A. (2020). Study of activators and inhibitors on cellulase production from isolated Trichoderma koningii for effective saccharification of sugarcane bagasse. Biofuels, 11(6), 733–739. https://doi.org/10.1080/17597269.2017.1400856 | spa |
dc.relation.references | Pandya, J. J., & Gupte, A. (2012). Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Bioprocess and Biosystems Engineering, 35(5), 769–779. https://doi.org/10.1007/s00449-011-0657-1 | spa |
dc.relation.references | Patel, A. K., Singhania, R. R., Sim, S. J., & Pandey, A. (2019). Thermostable cellulases: Current status and perspectives. Bioresource Technology, 279(January), 385–392. https://doi.org/10.1016/j.biortech.2019.01.049 | spa |
dc.relation.references | Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2014). Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling. Applied Biochemistry and Biotechnology, 172(8), 3776–3797. https://doi.org/10.1007/s12010-014-0758-9 | spa |
dc.relation.references | Patidar, M. K., Nighojkar, S., Kumar, A., & Nighojkar, A. (2018). Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech, 8(4), 1–24. https://doi.org/10.1007/s13205-018-1220-4 | spa |
dc.relation.references | Pérez-Rodríguez, N., Oliveira, F., Pérez-Bibbins, B., Belo, I., Torrado Agrasar, A., & Domínguez, J. M. (2014). Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor. Applied Biochemistry and Biotechnology, 173(3), 803–825. https://doi.org/10.1007/s12010-014-0895-1 | spa |
dc.relation.references | Philippini, R. R., Martiniano, S. E., Chandel, A. K., de Carvalho, W., & da Silva, S. S. (2019). Pretreatment of Sugarcane Bagasse from Cane Hybrids: Effects on Chemical Composition and 2G Sugars Recovery. Waste and Biomass Valorization, 10(6), 1561–1570. https://doi.org/10.1007/s12649-017-0162-0 | spa |
dc.relation.references | Aprovechamiento de biomasa lignocelulósica : algunas experiencias de investigación en Colombia / Yineth Piñeros Castro coordinadora académica. – Bogotá:UTadeo, 2014. 335 p. ; 24 cm. ISBN: 978-958-725-152-4 | spa |
dc.relation.references | Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., & Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, 56(2), 211–221. https://doi.org/10.1016/j.lwt.2013.12.004 | spa |
dc.relation.references | Raghavarao, K. S. M. ., Ranganathan, T. V, & Karanth, N. G. (2003). Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 13(2), 127–135. https://doi.org/https://doi.org/10.1016/S1369-703X(02)00125-0 | spa |
dc.relation.references | Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., … Mohammadi, A. A. (2020). Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 199, 117457. https://doi.org/10.1016/j.energy.2020.117457 | spa |
dc.relation.references | Rocha, V. A. L., Maeda, R. N., Santa Anna, L. M. M., & Pereira, N. (2013). Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Electronic Journal of Biotechnology, 16(5), 1–13. https://doi.org/10.2225/vol16-issue5-fulltext-1 | spa |
dc.relation.references | Rocky-Salimi, K., & Hamidi-Esfahani, Z. (2010). Evaluation of the effect of particle size, aeration rate and harvest time on the production of cellulase by Trichoderma reesei QM9414 using response surface methodology. Food and Bioproducts Processing, 88(1), 61–66. https://doi.org/10.1016/j.fbp.2009.06.006 | spa |
dc.relation.references | Rooni, V., Raud, M., & Kikas, T. (2017). The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries. Energy, 139, 1–7. https://doi.org/10.1016/j.energy.2017.07.146 | spa |
dc.relation.references | Rosenfelder, P., Eklund, M., & Mosenthin, R. (2013). Nutritive value of wheat and wheat by-products in pig nutrition: A review. Animal Feed Science and Technology, 185(3–4), 107–125. https://doi.org/10.1016/j.anifeedsci.2013.07.011 | spa |
dc.relation.references | Salihu, A., Abbas, O., Sallau, A. B., & Alam, M. Z. (2015). Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment. 3 Biotech, 5(6), 1101–1106. https://doi.org/10.1007/s13205-015-0294-5 | spa |
dc.relation.references | Salomão, G. S. B., Agnezi, J. C., Paulino, L. B., Hencker, L. B., de Lira, T. S., Tardioli, P. W., & Pinotti, L. M. (2019). Production of cellulases by solid state fermentation using natural and pretreated sugarcane bagasse with different fungi. Biocatalysis and Agricultural Biotechnology, 17(November 2018), 1–6. https://doi.org/10.1016/j.bcab.2018.10.019 | spa |
dc.relation.references | Savou, V., Grause, G., Kumagai, S., Saito, Y., Kameda, T., & Yoshioka, T. (2019). Pyrolysis of sugarcane bagasse pretreated with sulfuric acid. Journal of the Energy Institute, 92(4), 1149–1157. https://doi.org/10.1016/j.joei.2018.06.003 | spa |
dc.relation.references | Sharma, K. M., Kumar, R., Panwar, S., & Kumar, A. (2017). Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology, 15(1), 115–126. https://doi.org/10.1016/j.jgeb.2017.02.001 | spa |
dc.relation.references | Shokrkar, H., Ebrahimi, S., & Zamani, M. (2018). A review of bioreactor technology used for enzymatic hydrolysis of cellulosic materials. Cellulose, 25(11), 6279–6304. https://doi.org/10.1007/s10570-018-2028-4 | spa |
dc.relation.references | Silva, D. F., Hergesel, L. M., Campioni, T. S., Carvalho, A. F. A., & Oliva-Neto, P. (2018). Evaluation of different biological and chemical treatments in agroindustrial residues for the production of fungal glucanases and xylanases. Process Biochemistry, 67(December 2017), 29–37. https://doi.org/10.1016/j.procbio.2018.02.008 | spa |
dc.relation.references | Silva, T. H., Takiya, C. S., Vendramini, T. H. A., de Jesus, E. F., Zanferari, F., & Rennó, F. P. (2016). Effects of dietary fibrolytic enzymes on chewing time, ruminal fermentation, and performance of mid-lactating dairy cows. Animal Feed Science and Technology, 221, 35–43. https://doi.org/10.1016/j.anifeedsci.2016.08.013 | spa |
dc.relation.references | Silva, T. A. L., Zamora, H. D. Z., Varão, L. H. R., Prado, N. S., Baffi, M. A., & Pasquini, D. (2018). Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste and Biomass Valorization, 9(11), 2191–2201. https://doi.org/10.1007/s12649-017-9989-7 | spa |
dc.relation.references | Singh, N., Devi, A., Jaryal, R., & Rani, K. (2018). An Ecofriendly and Efficient Strategy for Cost Effective Production of Lignocellulotic Enzymes. Waste and Biomass Valorization, 9(6), 891–898. https://doi.org/10.1007/s12649-017-9861-9 | spa |
dc.relation.references | Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13–18. https://doi.org/10.1016/j.bej.2008.10.019 | spa |
dc.relation.references | Soltanian, S., Aghbashlo, M., Almasi, F., Hosseinzadeh-Bandbafha, H., Nizami, A. S., Ok, Y. S., … Tabatabaei, M. (2020). A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Conversion and Management, 212(March), 112792. https://doi.org/10.1016/j.enconman.2020.112792 | spa |
dc.relation.references | Su, T., Zhao, D., Khodadadi, M., & Len, C. (2020). Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 24, 56–60. https://doi.org/10.1016/j.cogsc.2020.04.005 | spa |
dc.relation.references | Taherzadeh-ghahfarokhi, M., Panahi, R., & Mokhtarani, B. (2019). Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residues. Renewable Energy, 131, 946–955. https://doi.org/10.1016/j.renene.2018.07.130 | spa |
dc.relation.references | Thapa, S., Li, H., OHair, J., Bhatti, S., Chen, F. C., Nasr, K. Al, … Zhou, S. (2019). Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Molecular Biotechnology, 61(8), 579–601. https://doi.org/10.1007/s12033-019-00187-1 | spa |
dc.relation.references | Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013 | spa |
dc.relation.references | Tian, S. Q., Zhao, R. Y., & Chen, Z. C. (2018). Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renewable and Sustainable Energy Reviews, 91(November 2017), 483–489. https://doi.org/10.1016/j.rser.2018.03.113 | spa |
dc.relation.references | Uday, U. S. P., Choudhury, P., Bandyopadhyay, T. K., & Bhunia, B. (2016). Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. International Journal of Biological Macromolecules, 82, 1041–1054. https://doi.org/10.1016/j.ijbiomac.2015.10.086 | spa |
dc.relation.references | Unrean, P., & Ketsub, N. (2018). Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Industrial Crops and Products, 123(July), 238–246. https://doi.org/10.1016/j.indcrop.2018.06.071 | spa |
dc.relation.references | Wang, F., Terry, N., Xu, L., Zhao, L., Ding, Z., & Ma, H. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms, 7(12). https://doi.org/10.3390/microorganisms7120665 | spa |
dc.relation.references | Wang, H., Zhai, L., & Geng, A. (2020). Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. Journal of Bioscience and Bioengineering, 129(2), 242–249. https://doi.org/10.1016/j.jbiosc.2019.08.016 | spa |
dc.relation.references | Xiong, W. (2018). Bagasse composites: A review of material preparation, attributes, and affecting factors. Journal of Thermoplastic Composite Materials, 31(8), 1112–1146. https://doi.org/10.1177/0892705717734596 | spa |
dc.relation.references | Yang, S., Yang, B., Duan, C., Fuller, D. A., Wang, X., Chowdhury, S. P., … Ni, Y. (2019). Applications of enzymatic technologies to the production of high-quality dissolving pulp: A review. Bioresource Technology, 281(February), 440–448. https://doi.org/10.1016/j.biortech.2019.02.132 | spa |
dc.relation.references | Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301(November 2019), 122784. https://doi.org/10.1016/j.biortech.2020.122784 | spa |
dc.relation.references | Yoon, L. W., Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy, 67, 319–338. https://doi.org/10.1016/j.biombioe.2014.05.013 | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
dc.subject.proposal | xilanasas | spa |
dc.subject.proposal | xylanases | eng |
dc.subject.proposal | cellulases | eng |
dc.subject.proposal | celulasas | spa |
dc.subject.proposal | sugarcane bagasse | eng |
dc.subject.proposal | bagazo de caña | spa |
dc.subject.proposal | solid state fermentation | eng |
dc.subject.proposal | fermentación en estado sólido | spa |
dc.title | Diseño y optimización de un proceso de fermentación para la obtención de enzimas hemicelulolíticas y celulolíticas a partir de Trichoderma koningiopsis Th003 | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |