En 20 día(s), 14 hora(s) y 50 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Modelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionales

dc.contributor.advisorGuzmán Luna, Jaime Alberto
dc.contributor.authorUribe Rendón, Andrea
dc.contributor.cvlacURIBE RENDÓN, ANDREAspa
dc.contributor.orcidGuzmán Luna, Jaime Alberto [0000-0003-4737-1119]spa
dc.contributor.orcidUribe Rendón, Andrea [0000-0002-1601-0313]spa
dc.contributor.researchgroupSistemas Inteligentes Web (Sintelweb)spa
dc.date.accessioned2023-10-19T14:28:49Z
dc.date.available2023-10-19T14:28:49Z
dc.date.issued2023-10-18
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl aprendizaje ontológico permite la creación automática o semiautomática de ontologías de cierto dominio, identificando clases, jerarquía de clases y restricciones a través de técnicas de recuperación de información, aprendizaje automático, aprendizaje profundo y procesamiento de lenguaje natural (PLN). En este trabajo se construye un modelo de aprendizaje ontológico que utiliza modelos, técnicas y algoritmos combinados (Transformadores, Incrustación de Grafos de Conocimiento (KGE) y Reglas de asociación) para elaborar un lenguaje común de competencias y ocupaciones en el área de e-recruitment, específicamente, profesionales en Tecnologías de la Información (TI). La fuente de extracción de información es una red social profesional seleccionada como caso de uso. Se define la ontología base a partir de la cual se inicia el aprendizaje, se diseña un modelo conceptual de aprendizaje ontológico que permite extraer clases, jerarquía de clases y restricciones para la ontología base. Seguido a esto, se implementa este modelo conceptual para obtener resultados de extensión de la ontología base, se evalúa la ontología aprendida a través de una golden ontology y se valida la ontología obtenida por medio de una aplicación para el dominio de e-recruitment. (Texto tomado de la fuente)spa
dc.description.abstractOntological learning allows the automatic or semi-automatic creation of ontologies in a domain, identifying classes, class hierarchy and restrictions through information retrieval techniques, machine learning and natural language processing (NLP). The aim of this document is built an ontological learning model that uses combined models, techniques and algorithms (Transformers, Knowledge Graph Embedding (KGE) and Association Rules) to develop a common language of skills and occupations in the e-recruitment area, specifically, Information Technology (IT) professionals. The source of information extraction is a selected professional social network as a use case. The base ontology from which learning begins is defined, a conceptual model of ontological learning is designed that allows information extract information for classes, hierarchy classes and the restrictions for the base ontology. Following this, this conceptual model is applied to obtain extension results of the base ontology, the learned ontology is evaluated through a golden ontology and the obtained ontology is validated through an application for the e-recruitment domain.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.methodsSe realiza la revisión sistemática de la literatura basada en la Metodología de Kitchenham que consta de tres etapas: planificar la revisión, conducir la revisión y documentar la revsión.spa
dc.description.researchareaWeb semánticaspa
dc.format.extentxx, 218 p{aginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84814
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.references[Python Software Foundation,Ludovico Fabbri, 2022] Python Software Founda- tion,Ludovico Fabbri (2022). https://pypi.org/project/linkedin-jobs-scraper/#us age.spa
dc.relation.referencesAlfonso-Hermelo et al., 2019a] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019a). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer.spa
dc.relation.references[Alfonso-Hermelo et al., 2019b] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019b). Automatically learning a human-resource ontology from professional social-network data. In Canadian Conference on Artificial Intelligence, pages 132–145. Springer.spa
dc.relation.references[Alfonso-Hermelo et al., 2019c] Alfonso-Hermelo, D., Langlais, P., and Bourg, L. (2019c). Automatically Learning a Human-Resource Ontology from Professional Social-Network Data, pages 132–145. Springer, Cham.spa
dc.relation.references[Apostolico and Galil, 1997] Apostolico, A. and Galil, Z., editors (1997). Pattern Matching Algorithms. Oxford University Press.spa
dc.relation.references[Arendt et al., 2023] Arendt, L., Ga-lecka-Burdziak, E., Nu´n˜ez, F., Pater, R., and Usabiaga,C. (2023). Skills requirements across task-content groups in poland: What online job offers tell us. Technological Forecasting and Social Change, 187:122245.spa
dc.relation.references[Arnal et al., 2001] Arnal, E., Ok, W., and Torres, R. (2001). Knowledge, work organisation and economic growth. In Internet, economic growth and globalization, pages 327–376. Springer.spa
dc.relation.references[Arroyo Mesa, 2022] Arroyo Mesa, L. (2022). Tendencias actuales en la búsqueda y selección de personal en el ámbito empresarial.spa
dc.relation.references[Asim et al., 2018a] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018a). A survey of ontology learning techniques and applications. Database, 2018. bay101.spa
dc.relation.references[Asim et al., 2018b] Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., and Abbasi, H. M. (2018b). A survey of ontology learning techniques and applications. Database : the journal of biological databases and curation, 2018.spa
dc.relation.references[Balachander and Moh, 2018] Balachander, Y. and Moh, T.-S. (2018). Ontology based si- milarity for information technology skills. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages 302–305.spa
dc.relation.references[Bechhofer et al., 2004] Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuin- ness, D. L., Patel-Schneider, P. F., Stein, L. A., et al. (2004). Owl web ontology language reference. W3C recommendation, 10(2):1–53.spa
dc.relation.references[Bernaras et al., 1996] Bernaras, A., Laresgoiti, I., and Corera, J. M. (1996). Building and reusing ontologies for electrical network applications. In European Conference on Artificial Intelligence.spa
dc.relation.references[BERNERS-LEE et al., 2001] BERNERS-LEE, T., HENDLER, J., and LASSILA, 2001). The semantic web. Scientific American, 284(5):34–43.spa
dc.relation.references[Borst, 1999] Borst, W. N. (1999). Construction of engineering ontologies for knowledge sharing and reuse. CKL.spa
dc.relation.references[Brencic and Norris, 2010] Brencic, V. and Norris, J. B. (2010). Do employers change job offers in their online job ads to facilitate search? Economics Letters, 108(1):46–48.spa
dc.relation.references[Brewster et al., 2004] Brewster, C., Alani, H., Dasmahapatra, S., and Wilks, Y. (2004). Data driven ontology evaluation. International Conference on Language Resources and Evaluation, Lisbon, Portugal.spa
dc.relation.references[Bui et al., 2021] Bui, T.-C., Le, V.-D., To, H.-T., and Cha, S. K. (2021). Generative pre- training for paraphrase generation by representing and predicting spans in exemplars. In 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), pages 83–90. IEEE.spa
dc.relation.references[Cañete et al., 2020] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., and Pérez, J. (2020). Spanish pre-trained bert model and evaluation data. In PML4DC at ICLR 2020.spa
dc.relation.references[CB Insights Research, 2020] CBInsights Research (3deAbrilde2020) https://www.cbinsights.com/research/hr-tech/f.spa
dc.relation.references[Cer et al., 2018] Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John, R. S., Cons- tant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al. (2018). Universal sentence encoder. arXiv preprint arXiv:1803.11175.spa
dc.relation.references[Chala, 2018] Chala, S. A. (2018). Bidirectional job matching through unsupervised feature learning. In Master’s thesis. OPUS Siegen Master’s thesis, Universit¨at Siegen, URN 467–12858.spa
dc.relation.references[Chen and Gu, 2021] Chen, J. and Gu, J. (2021). Adol: a novel framework for automatic domain ontology learning. The Journal of Supercomputing, 77(1):152–169.spa
dc.relation.references[Chiatti and Daga, 2022] Chiatti, A. and Daga, E. (2022). Neuro-symbolic learning for dealing with sparsity in cultural heritage image archives: an empirical journey.spa
dc.relation.references[Chow and Chapman, 2013] Chow, S. and Chapman, D. (2013). Gamifying the employee recruitment process. In Proceedings of the First International Conference on Gameful Design, Research, and Applications, pages 91–94.spa
dc.relation.references[Coggle, 2021] Coggle (2021). Dataset validator relevant for iot ontologies. https:// coggle.it/diagram/WZ8ANCiQegABugPa/t/how-to-validate-ontologies.spa
dc.relation.references[Cordero Mena and Yunga Tucto, 2022] Cordero Mena, K. I. and Yunga Tucto, C. M. (2022). Diseño y desarrollo de un chatbot usando redes neuronales y procesamiento de lenguaje natural orientado a entidades bancarias. B.S. thesis.spa
dc.relation.references[Cormen et al., 2022] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to algorithms. MIT press.spa
dc.relation.references[Costabello et al., 2023] Costabello, L., Janik, A., Bayram, E., and Pai, S. (2023). Knowledge graph embeddings for nlp: From theory to practice.spa
dc.relation.references[Costabello et al., 2019] Costabello, L., Pai, S., Van, C. L., McGrath, R., McCarthy, N., and Tabacof, P. (2019). AmpliGraph: a Library for Representation Learning on Knowledge Graphs.spa
dc.relation.references[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.spa
dc.relation.references[Dong et al., 2020] Dong, H., Wang, W., Coenen, F., and Huang, K. (2020). Knowledge base enrichment by relation learning from social tagging data. Information Sciences, 526:203–220.spa
dc.relation.references[Ebiele et al., 2022] Ebiele, M., McKenna, L., Bendechache, M., and Brennan, R. (2022). Multi-label classification using bert and knowledge graphs with a limited training dataset.spa
dc.relation.references[Ehrlinger and Wo, 2016] Ehrlinger, L. and W¨oß, W. (2016). Towards a definition of know- ledge graphs. SEMANTiCS (Posters, Demos, SuCCESS), 48(1-4):2.spa
dc.relation.references[Erd et al., 2022] Erd, R., Feddoul, L., Lachenmaier, C., and Mauch, M. J. (2022). Evaluation of data augmentation for named entity recognition in the German legal domain.spa
dc.relation.references[Europass, 2017] Europass (22 de Mayo de 2017). https://europa.eu/europass/es/euro pean-qualifications-framework-eqf.spa
dc.relation.references[europass Union Europea, 2022] europass Union Europea (2022). europass. https:// europa.eu/europass/es/find-courses.spa
dc.relation.references[European Commission, 2022] European Commission (27 de Enero de 2022).https://ec.europa.eu/esco/lod/static/model.html.spa
dc.relation.references[European Commission website, 2022] European Commission website (27 de Enero de 2022).https://esco.ec.europa.eu/es/about-esco/what-esco.spa
dc.relation.references[Fajcıkova et al., 2018] Fajcıkova, A., Urbancova, H., and Fejfarova, M. (2018). New trends in the recruitment of employees in Czech ICT organizations. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics and Administration, 26:39–49.spa
dc.relation.references[Faliagka et al., 2012] Faliagka, E., Tsakalidis, A., and Tzimas, G. (2012). An integrated e-recruitment system for automated personality mining and applicant ranking. Internet researchspa
dc.relation.referencesFeng et al., 2020] Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2020).Language-agnostic bert sentence embedding. arXiv preprint arXiv:2007.01852.spa
dc.relation.references[Fensel et al., 2020] Fensel, D., S¸im¸sek, U., Angele, K., Huaman, E., K¨arle, E., Panasiuk, O., Toma, I., Umbrich, J., Wahler, A., Fensel, D., et al. (2020). Introduction: what is a knowledge graph? Knowledge graphs: Methodology, tools and selected use cases, pages 1–10.spa
dc.relation.references[Fensel et al., 2001] Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., and Patel-Schneider, P. F. (2001). Oil: An ontology infrastructure for the semantic web. IEEE intelligent systems, 16(2):38–45.spa
dc.relation.references[Fraga, 2016] Fraga, D. C. (2016). Métodos y técnicas para la evaluación del aprendizaje de ontologías de dominio.spa
dc.relation.references[Gao and Chen, 2020] Gao, W. and Chen, Y. (2020). Approximation analysis of ontology learning algorithm in linear combination setting. Journal of Cloud Computing, 9(1):1–10.spa
dc.relation.references[Garceia-Sanchez et al., 2006] García-Sánchez, F., Marteinez-Béjar, R., Contreras, L., Fernández-Breis, J. T., and Castellanos-Nieves, D. (2006). An ontology-based intelligent system for recruitment. Expert Systems with Applications, 31(2):248–263.spa
dc.relation.references[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2):199–220.spa
dc.relation.references[Guarino, 1997] Guarino, N. (1997). Understanding, building and using ontologies. International journal of human-computer studies, 46(2-3):293–310.spa
dc.relation.references[Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.spa
dc.relation.references[Harzallah et al., 2002] Harzallah, M., Leclere, M., and Trichet, F. (2002). Commoncv: modeling the competencies underlying a curriculum vitae. In Proceedings of the 14th international conference on Software engineering and knowledge engineering, pages 65–71.spa
dc.relation.references[Hogan et al., 2021] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4):1–37.spa
dc.relation.references[Howard and Ruder, 2018] Howard, J. and Ruder, S. (2018). Universal language model fine- tuning for text classification. arXiv preprint arXiv:1801.06146.spa
dc.relation.references[Hsu et al., 2021] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. (2021). Hubert: Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3451–3460.spa
dc.relation.references[Hubert et al., 2022] Hubert, N., Monnin, P., Brun, A., and Monticolo, D. (2022). Knowledge graph embeddings for link prediction: Beware of semantics! In DL4KG@ ISWC 2022: Workshop on Deep Learning for Knowledge Graphs, held as part of ISWC 2022: the 21st International Semantic Web Conference.spa
dc.relation.references[HuntersAmericas, 2023] HuntersAmericas (2023). Las fallas en los perfiles de puesto y el impacto de sus resultados. http://www.hlghunters.com/blog/ 96-fallas-perfiles-puestos.spa
dc.relation.references[Jiménez-Ruiz et al., 2012] Jiménez-Ruiz, E., Grau, B. C., Zhou, Y., and Horrocks, I. (2012). Large-scale interactive ontology matching: Algorithms and implementation. In ECAI, volume 242, pages 444–449.spa
dc.relation.references[Jun, 2011] Jun, Z. (2011). Manufacturing process skill systematization based on ontology technology. In 2011 Third International Conference on Measuring Technology and Mechatronics Automation, volume 2, pages 496–499.spa
dc.relation.references[Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement.spa
dc.relation.references[Kahlawi, 2020] Kahlawi, A. (2020). An ontology driven esco lod quality enhancement. International Journal of Advanced Computer Science and Applications, 11(3).spa
dc.relation.references[Kasereka, 2020] Kasereka, H. (2020). Importance of web scraping in e-commerce and e-marketing. SSRN Electronic Journal.spa
dc.relation.references[Katyshev and Anikin, 2023] Katyshev, A. and Anikin, A. (2023). Modern approaches for concepts and relations extraction for ontology learning. In Novel & Intelligent Digital Systems Conferences, pages 290–296. Springer.spa
dc.relation.references[Khatiwada et al., 2022] Khatiwada, A., Shirai, S., Srinivas, K., and Hassanzadeh, O. (2022). Knowledge graph embeddings for causal relation prediction. In Workshop on Deep Learning for Knowledge Graphs (DL4KG@ ISWC2022). spa
dc.relation.references[Khder, 2021] Khder, M. A. (2021). Web scraping or web crawling: State of art, techniques, approaches and application. International Journal of Advances in Soft Computing & Its Applications, 13(3).spa
dc.relation.references[Kinsta, Maddy Osman, 2022] Kinsta,MaddyOsman(2022). https://kinsta.com/es/blog/estadisticas-de-linkedin/.spa
dc.relation.references[Kumaran and Sankar, 2013] Kumaran, V. S. and Sankar, A. (2013). Towards an automated system for intelligent screening of candidates for recruitment using ontology mapping (expert). International Journal of Metadata, Semantics and Ontologies, 8(1):56–64.spa
dc.relation.references[Lakzaei and Shamsfard, 2021] Lakzaei, B. and Shamsfard, M. (2021). Ontology learning from relational databases. Information Sciences, 577:280–297.spa
dc.relation.references[LAMY, 2019] LAMY, J.-B. (2019). Consultas sparql owlready2. ://owlready2. readthedocs.io/en/v0.37/sparql.html.spa
dc.relation.references[Lawi et al., 2022] Lawi, A., Mesra, H., and Amir, S. (2022). Implementation of long short-term memory and gated recurrent units on grouped time-series data to predict stock prices accurately. Journal of Big Data, 9(1):1–19.spa
dc.relation.references[le Vrang et al., 2014] le Vrang, M., Papantoniou, A., Pauwels, E., Fannes, P., Vandensteen, D., and De Smedt, J. (2014). Esco: Boosting job matching in europe with semantic interoperability. Computer, 47(10):57–64.spa
dc.relation.references[Lievens et al., 2007] Lievens, F., Van Hoye, G., and Anseel, F. (2007). Organizational identity and employer image: Towards a unifying framework. British Journal of Management, 18:S45–S59.spa
dc.relation.references[LinkedIn Corporation, 2022] LinkedInCorporation(2022).https://www.linkedin.com/feed/.spa
dc.relation.references[Liu et al., 2019] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.spa
dc.relation.references[Lopez-Bassols, 2002] Lopez-Bassols, V. (2002). Ict skills and employment. OECD.spa
dc.relation.references[López Bonilla et al., 2012] López Bonilla, M., Guzmán Luna, J. A., and Durley Torres, I. (2012). Metodologías y métodos para la construcción de ontologías. Scientia Et Technicaspa
dc.relation.references[Maedche and Staab, 2001] Maedche, A. and Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent systems, 16(2):72–79.spa
dc.relation.references[Manzano-Macho et al., 2008] Manzano-Macho, D., Gomez-Pérez, A., and Borrajo Millán, D. (2008). Unsupervised and domain independent ontology learning: combining heterogeneous sources of evidence. Sixth International Language Resources and Evaluation (LREC’08).spa
dc.relation.references[Maree et al., 2018] Maree, M., Kmail, A. B., and Belkhatir, M. (2018). Analysis and shortcomings of e-recruitment systems: Towards a semantics-based approach addressing knowledge incompleteness and limited domain coverage. Journal of Information Science, 45(6):713–735.spa
dc.relation.references[McGuinness et al., 2002] McGuinness, D. L., Fikes, R., Hendler, J., and Stein, L. A. (2002). Daml+ oil: an ontology language for the semantic web. IEEE Intelligent Systems, 17(5):72– 80.spa
dc.relation.references[McGuinness et al., 2003] McGuinness, D. L., Fikes, R., Stein, L. A., and Hendler, J. A. (2003). Daml-ont: An ontology language for the semantic web. In Spinning the Semantic Web, pages 65–93.spa
dc.relation.references[McGuinness et al., 2004] McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl web ontology language overview. W3C recommendation, 10(10):2004.spa
dc.relation.references[Mhammedi et al., 2021] Mhammedi, S., El Massari, H., and Gherabi, N. (2021). Cb2onto: Owl ontology learning approach from couchbase. In Intelligent Systems in Big Data, Semantic Web and Machine Learning, pages 95–110. Springer.spa
dc.relation.references[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26.spa
dc.relation.references[Mnih and Kavukcuoglu, 2013] Mnih, A. and Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-contrastive estimation. Advances in neural information processing systems, 26.spa
dc.relation.references[Neches et al., 1991] Neches, R., Fikes, R. E., Finin, T., Gruber, T., Patil, R., Senator, T., and Swartout, W. R. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3):36–36.spa
dc.relation.references[NERI, 2005] NERI, F. (2005). Evaluation of ontolearn, a methodology for automatic learning of domain ontologies. Ontology Learning from Text: Methods, Evaluation and Appli- cations, 123.spa
dc.relation.references[Nordsieck et al., 2022] Nordsieck, R., Heider, M., Hummel, A., and H¨ahner, J. (2022). A closer look at sum-based embeddings for knowledge graphs containing procedural knowledge. In Alam, M., Buscaldi, D., Cochez, M., Osborne, F., and Recupero, D. R., editors, DL4KG 2022 - Deep Learning for Knowledge Graphs 2022: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2022) co-located with the 21th International Semantic Web Conference (ISWC 2022), virtual conference, online, October 24, 2022, page 7.spa
dc.relation.references[Novalija and Grobelnik, 2018] Novalija, I. and Grobelnik, M. (2018). Towards smart statistics in labour market domain. Slovenian KDD Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana 2018.spa
dc.relation.references[Noy and Mcguinness, 2001] Noy, N. and Mcguinness, D. (2001). Ontology development 101: A guide to creating your first ontology. Knowledge Systems Laboratory, 32.spa
dc.relation.references[OECD, 2004] OECD (2004). Information Technology Outlook 2004. OECD. [OECD, 2010] OECD (2010). OECD Information Technology Outlook 2010. OECD.spa
dc.relation.references[OIT, 2022] OIT (2022). Isco international standard classification of occupations. https://www.ilo.org/public/spanish/bureau/stat/isco/index.htm.spa
dc.relation.references[on Information Technology Curricula, 2017] on Information Technology Curricula, T. G. (2017). Information Technology Curricula 2017: Curriculum Guidelines for Baccalaureate Degree Programs in Information Technology. Association for Computing Machinery, New York, NY, USA.spa
dc.relation.references[Organización internacional del trabajo, 2005] Organización internacional del trabajo (30 de Enero de 2005). https://www.ilo.org/public/spanish/bureau/stat/isco/isco08/ index.htm.spa
dc.relation.references[Organization, 2022] Organization, I. L. (2022). Isco international standard classification of occupations. https://www.ilo.org/public/english/bureau/stat/isco/isco08/ index.htm.spa
dc.relation.references[Park et al., 2018] Park, S. H., Kim, B., Kang, C. M., Chung, C. C., and Choi, J. W. (2018). Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1672–1678. IEEE.spa
dc.relation.references[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.spa
dc.relation.references[Porzel and Malaka, 2004] Porzel, R. and Malaka, R. (2004). A task-based approach for ontology evaluation. In ECAI Workshop on Ontology Learning and Population, Valencia, Spain, pages 1–6. Citeseer. spa
dc.relation.references[Pouliakas, 2021] Pouliakas, K. (2021). Artificial intelligence and job automation: an EU analysis using online job vacancy data. Publications Office of the European Union.spa
dc.relation.references[Prud’hommeaux and Seaborne, 2007] Prud’hommeaux, E. and Seaborne, A. (2007). SPARQL query language for RDF. Live Draft - version.spa
dc.relation.references[Puduppully and Lapata, 2021] Puduppully, R. and Lapata, M. (2021). Data-to-text generation with Macro Planning. Transactions of the Association for Computational Linguistics, 9:510–527.spa
dc.relation.references[Radevski and Trichet, 2006] Radevski, V. and Trichet, F. (2006). Ontology-based systems dedicated to human resources management: An application in e-recruitment. In Meersman, R., Tari, Z., and Herrero, P., editors, On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages 1068–1077, Berlin, Heidelberg. Springer Berlin Heidelberg.spa
dc.relation.references[Radziwon et al., 2014] Radziwon, A., Bilberg, A., Bogers, M., and Madsen, E. S. (2014). The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia engineering, 69:1184-1190.spa
dc.relation.references[Ramos et al., 2009] Ramos, E., NAA, H., and CasaA, R. (2009). Esquema para evaluar ontologías para un dominio de conocimiento. Enlace, 6:57 – 71.spa
dc.relation.references[Raza et al., 2020] Raza, M. A., Raza, B., Jabeen, T., Raza, S., and Abbas, M. (2020). Using combined list hierarchy and headings of HTML documents for learning domain-specific ontology. International Journal of Advanced Computer Science and Applications, 11(4).spa
dc.relation.references[Reimers and Gurevych, 2019] Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sen- tence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.spa
dc.relation.references[Rentzsch and Staneva, 2020] Rentzsch, R. and Staneva, M. (2020). Skills-matching and skills intelligence through curated and data-driven ontologies. In Proceedings of the DELFI Workshops.spa
dc.relation.references[Revenko et al., 2022] Revenko, A., Mireles, V., Breit, A., Bourgonje, P., Schneider, J., Kh- valchik, M., and Rehm, G. (2022). Learning Ontology Classes from Text by Clustering Lexical Substitutes Derived from Language Models1.spa
dc.relation.references[Rohman et al., 2023] Rohman, M. A., Suhartono, S., and Chamidy, T. (2023). Bidirectional gru dengan attention mechanism pada analisis sentiment pln mobile. Techno. Com, 22(2):358–372.spa
dc.relation.references[Ross, 2021] Ross, L. (2021). 25 emerging recruitment trends in 2021. https://vervoe. com/recruitment-trends-2021/. spa
dc.relation.references[Saeeda et al., 2020] Saeeda, L., Med, M., Ledvinka, M., Blaˇsko, M., and Kˇremen, P. (2020). Entity linking and lexico-semantic patterns for ontology learning. In European Semantic Web Conference, pages 138–153. Springer.spa
dc.relation.references[Salas and Salas, 2020] Salas, A. M. D. L. M. and Salas, L. M. (2020). Brecha de habilidades de los jóvenes en el mercado laboral colombiano. Universitas Económica 018139, Universidad Javeriana - Bogotá.spa
dc.relation.references[Salazar et al., 2015] Salazar, O. M., Jaramillo, J. C., Ovalle, D. A., and Guzmán, J. A. (2015). A case-based multi-agent and recommendation environment to improve the e- recruitment process. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 389–397. Springer.spa
dc.relation.references[Sanh et al., 2019] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a dis-tilled version of Bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.spa
dc.relation.references[Seedorf and Schader, 2011] Seedorf, S. and Schader, M. (2011). Towards an enterprise software component ontology. In A Renaissance of Information Technology for Sustainability and Global Competitiveness., volume 5.spa
dc.relation.references[Shakya and Paudel, 2019] Shakya, A. and Paudel, S. (2019). Job-candidate matching using esco ontology. Journal of the Institute of Engineering, 15(1):1–13.spa
dc.relation.references[Sibarani et al., 2017] Sibarani, E. M., Scerri, S., Morales, C., Auer, S., and Collarana, D. (2017). Ontology-guided job market demand analysis: A cross-sectional study for the data science field. In Proceedings of the 13th International Conference on Semantic Systems, Semantics2017, page 25–32, New York, NY, USA. Association for Computing Machinery.spa
dc.relation.references[Singto and Mingkhwan, 2013] Singto, P. and Mingkhwan, A. (2013). Semantic searching it careers concepts based on ontology. Journal of Advanced Management Science, 1:103–106. spa
dc.relation.references[Soni and Swaminarayan, 2017] Soni, H. H. and Swaminarayan, P. R. (2017). ”study of semantic web based e-recruitment system: Review”. International Journal of Advanced Research in Computer Science, 8(9).spa
dc.relation.references[So-lek-Borowska and Wilczewska, 2018] So-lek-Borowska, C. and Wilczewska, M. (2018).New technologies in the recruitment process. Economics and Culture, 15:25–33.spa
dc.relation.references[Tong, 2009] Tong, D. Y. K. (2009). A study of e-recruitment technology adoption in Malaysia. Industrial Management & Data Systems.spa
dc.relation.references[Turney, 2002] Turney, P. D. (2002). Mining the web for synonyms: Pmi-ir versus lsa on toefl. Computer information sciences.spa
dc.relation.references[ul haq Dar and Dorn, 2018] ul haq Dar, E. and Dorn, J. (2018). Ontology based classification system for online job offers. In 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pages 1–8. IEEE.spa
dc.relation.references[Van der Velde, 2020] Van der Velde, L. (2020). Within occupation wage dispersion and the task content of jobs. Oxford Bulletin of Economics and Statistics, 82(5):1161–1197.spa
dc.relation.references[Van Hautte et al., 2020] Van Hautte, J., Schelstraete, V., and Wornoo, M. (2020). Leveraging the inherent hierarchy of vacancy titles for automated job ontology expansion. In Proceedings of the 6th International Workshop on Computational Terminology, pages 37–42, Marseille, France. European Language Resources Association.spa
dc.relation.references[Varen Caballero et al., 2019] Varen Caballero, E., Silega Mart´ınez, N., and Rojas Carbo- nell, R. (2019). Ontología para gestionar la información científica de los recursos humanos en proyectos de desarrollo de software. Serie Científica De La Universidad De Las Ciencias Informáticas, 10(9).spa
dc.relation.references[Vashishth et al., 2018] Vashishth, S., Jain, P., and Talukdar, P. (2018). Cesi: Canonicalizing open knowledge bases using embeddings and side information. In Proceedings of the 2018 World Wide Web Conference, pages 1317–1327spa
dc.relation.references[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L- ., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.spa
dc.relation.references[Vrandecic, 2009] Vrandecic, D. (2009). Ontology evaluation. In Handbook on ontologies, pages 293–313. Springer. spa
dc.relation.references[Vrolijk et al., 2022] Vrolijk, J., Mol, S. T., Weber, C., Tavakoli, M., Kismihok, G., and Pelucchi, M. (2022). Ontojob: Automated ontology learning from labor market data. In 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pages 195–200.spa
dc.relation.references[W3C, 2012] W3C (2012). Owl 2 web ontology language profiles (second edition). https://www.w3.org/TR/owl2-profiles/.spa
dc.relation.references[Wong et al., 2017] Wong, I. A., Wan, Y. K. P., and Gao, J. H. (2017). How to attract and retain Generation Y employees? an exploration of career choice and the meaning of work. Tourism Management Perspectives, 23:140–150.spa
dc.relation.references[World Wide Web Consortium, “Semantic Web - W3C,” W3.org, 2012] World Wide Web Consortium “Semantic Web-W3C,”W3.org(2012). https://www.w3.org/standards/semanticweb/.spa
dc.relation.references[Xu et al., 2020] Xu, Z., Harzallah, M., Guillet, F., and Ichise, R. (2020). Towards a term clustering framework for modular ontology learning. In Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., and Filipe, J., editors, Knowledge Discovery, Knowledge Engineering and Knowledge Management, pages 178–201, Cham. Springer International Publishing.spa
dc.relation.references[Zhou et al., 2021] Zhou, J., Naseem, T., Fernandez Astudillo, R., Lee, Y.-S., Florian, R., and Roukos, S. (2021). Structure-aware fine-tuning of sequence-to-sequence transformers for transition-based AMR parsing. In Proceedings of the 2021 Conference on Empiri- cal Methods in Natural Language Processing, pages 6279–6290, Online and Punta Cana, Dominican Republic. Association for Computational Linguisticsspa
dc.relation.references[Zhou, 2007] Zhou, L. (2007). Ontology learning: State of the art and open issues. Information Technology and Management, 8:241–252.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::001 - Conocimientospa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)spa
dc.subject.lembMachine learningeng
dc.subject.lembProcesamiento electrónico de datos en la educaciónspa
dc.subject.lembEducation - Data processingeng
dc.subject.lembProfesionales de informaciónspa
dc.subject.lembInformation professionalseng
dc.subject.proposalAprendizaje ontológicospa
dc.subject.proposalTransformadoresspa
dc.subject.proposalIncrustación de grafos de conocimientospa
dc.subject.proposalReglas de asociaciónspa
dc.subject.proposalE-recruitmentspa
dc.subject.proposalTecnologías de la informaciónspa
dc.subject.proposalRedes profesionalesspa
dc.subject.proposalOntological learningeng
dc.subject.proposalTransformerseng
dc.subject.proposalKnowledge Graph Embeddingeng
dc.subject.proposalAssociation ruleseng
dc.subject.proposalE-recruitmenteng
dc.subject.proposalInformation Technologyeng
dc.subject.proposalProfessional social networkseng
dc.titleModelo de aprendizaje ontológico en el dominio de e-recruitment asociado a perfiles profesionales en TI y apoyado por redes sociales profesionalesspa
dc.title.translatedOntological learning model in the e-recruitment domain associated with IT professional profiles and supported by professional social networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152438312.2023.pdf
Tamaño:
12.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: