Desarrollo de un laboratorio virtual de geotecnia enfocado en el ensayo de compresión triaxial modalidad compresión axial

dc.contributor.advisorÁvila Álvarez, Guillermo Eduardospa
dc.contributor.authorGerena González, Jhon Oscarspa
dc.date.accessioned2020-11-30T15:52:11Zspa
dc.date.available2020-11-30T15:52:11Zspa
dc.date.issued2020-11-13spa
dc.description.abstractLos ensayos de laboratorio de geotecnia son fundamentales para la caracterización del comportamiento mecánico de los suelos, muchos de los modelos constitutivos que se emplean actualmente se basan en observaciones experimentales, de tal manera que el laboratorio es, sin duda, una herramienta primordial para la comprensión de diversos comportamientos mecánicos y permite afianzar procesos de enseñanza y aprendizaje. Tal vez el ensayo triaxial es el desarrollo que más se ha empleado en los estudios del comportamiento de los suelos porque brinda gran cantidad de información. Esta práctica, sin embargo, no es accesible a todos los estudiantes durante tiempos extensos y en algunos casos esta es una limitante. Asimismo, los laboratorios virtuales se muestran como un mecanismo útil para fomentar el aprendizaje en los estudiantes de ingeniería, mientras que se establecen como un esfuerzo para reducir costos inherentes al manejo de equipos, facilitan la repetición y la variación en los datos de entrada. El desarrollo de este tipo de herramientas virtuales lleva implícito la aplicación de modelos de comportamiento que permitan simular la respuesta del suelo ante unas ciertas condiciones impuestas, bien sea de carga o de deformación. Este trabajo de grado presenta las bases teóricas y prácticas para el desarrollo de actividades virtuales de geotecnia basadas en la etapa de falla de la prueba de compresión triaxial modalidad compresión axial. La modelación usa la aproximación por elementos finitos, esta sigue la formulación de Galerkin la cual se puede emplear para incluir de manera adecuada análisis no lineales (Griffiths, 1994), asimismo se usa el criterio de fluencia de Drucker-Prager. Este proyecto es desarrollado en Python.spa
dc.description.abstractLaboratory testing is fundamental for characterization of soil mechanical behavior, numerous constitutive models currently used are based on experimental observations, in such a way that laboratory practices are undoubtedly a good tool for understanding mechanical behavior and to strengthen teaching and learning processes. Perhaps triaxial test is the development that has been most used in studies of the behavior of soils because it provides good amount of data. However, these practices are not accessible to all students during the required time, this fact becomes a limitation. On the other hand, virtual laboratories are an useful instrument to promote learning in engineering students, since these are established as an effort to reduce costs inherent in the management of equipment, also allow repetition and variation in input data. The development of this type of virtual tools implicitly involves the application of behavior models that simulate the soil response to certain imposed conditions, e.g. load or strains. This document presents the theoretical and practical bases for developing a geotechnical virtual laboratory based on the triaxial compression test. This model is a finite element approach, this follows the Galerkin's formulation which can be used to adequately include nonlinear analyzes (Griffiths, 1994). Thus, the compression model uses theory of nonlinear finite element analysis with the elastoplastic considerations of Drucker-Prager yield criterion. This project uses the Python programming language.spa
dc.description.additionalLínea de Investigación: Relaciones constitutivas de suelos, rocas y materiales afines; Modelación y análisis en geotecniaModelación y análisis en geotecniaspa
dc.description.degreelevelMaestríaspa
dc.format.extent336spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78658
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAlnuaim, A. M. (2014). Performance of micropiled raft in sand and clay-centrifuge and numerical studies.spa
dc.relation.referencesAtkinson, J. (2007). The Mechanics of Soils and Foundations. London: CRC Press, https://doi.org/10.1201/9781315273549spa
dc.relation.referencesBathe, K.-J. (2014). Finite Element Procedures (2nd ed.). Watertown: Klaus-Jürgen Bathe; second edition (August 25, 2014).spa
dc.relation.referencesBiot, M. A. (1941). General Theory of Tridimensional Consolidation. Reprinted from Journal of applied physics, Vol. 12, No. 2, pp. 155-164.spa
dc.relation.referencesBishop, A. & Henkel, D. (1957). The Measurement of Soil Properties in the Triaxial Test (1st ed.). Edward Arnold LTD.spa
dc.relation.referencesBlack, J., (2014). Pycalculix Build FEA Models in Python. Recuperado de: http://justinablack.com/pycalculix/spa
dc.relation.referencesBooker, J.R., Small, J.C., (1975). An investigation of the stability of numerical solutions of Biot’s equations of consolidation. International Journal of Solids & Structures;11:907–11.spa
dc.relation.referencesBorja R.I. (1991), "Cam clay plasticity, part 11: Implicit integration of constitutive equations based on nonlinear elastic stress prediction", Comput. Meth. Appl. Mech. Eng., Vol. 88, pp 225-240spa
dc.relation.referencesBorja, R., Tamagnini, C., & Alarcón, E. (1999). Consolidación elastoplástica con deformaciones finitas: Implementación con elementos finitos y ejemplos numéricos. Métodos Numéricos Para Cálculo y Diseño En Ingeniería: Revista Internacional, 15(2), 269–296.spa
dc.relation.referencesBudhu, M. (1999). A Multimedia Geotechnical Laboratory Test. ASEE Annual Conference and Exposition, Charlotte.spa
dc.relation.referencesBurd, H. J. (1986). A Large Displacement Finite Element Analysis of a Reinforced Unpaved Road. University of Oxford.spa
dc.relation.referencesBudhu, M. (2001). A Multimedia Geotechnical Laboratory Test. ASEE Annual Conference and Exposition, Charlotte.spa
dc.relation.referencesBurd, H. J. (1986). A Large Displacement Finite Element Analysis of a Reinforced Unpaved Road. University of Oxford.spa
dc.relation.referencesCardoso, V. E. (2016). Finit3element. Recuperado de: https://finit3element.wordpress.com/2016/04/27/intro/spa
dc.relation.referencesCasanova, F. & Atilus , W. (2013). Desarrollo de una red neuronal artificial para validar cálculos en el diseño estructural de puentes. Revista Académica de la Facultad de Ingeniería, Universidad Autónoma de Yucatán. Vol. 17, No.3spa
dc.relation.referencesChen, W. F. (Ed.). (2013). Limit analysis and soil plasticity. Elsevier.spa
dc.relation.referencesCividini, A (1993). Constitutive behaviour and numerical modelling. In: Hudson J (ed) Comprehensive rock engineering, vol 1. Pergamon Press, Oxford, pp 395–426spa
dc.relation.referencesCueto, O., Herrera, M., Coronel, C., & Bravo. (2013). Análisis de los modelos constitutivos empleados para simular la compactación del suelo mediante el método de elementos finitos. 22. 75-80.spa
dc.relation.referencesDrucker, D. C. & Prager, W. (1952). Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165.spa
dc.relation.referencesDuque, G. & Escobar C. (2016). Geomecánica. Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia.spa
dc.relation.referencesEngland, R. (1969). Error estimates for Runge – Kutta type solutions to systems of ordinary differential equations. Computer Journal, 12, 166-170.spa
dc.relation.referencesGear, C., W. (1971). Numerical Initial Value Problems in Ordinary Deferential Equations, Prentice-Hall, New Jersey.spa
dc.relation.referencesGermaine, J. T., & Ladd, C. C. (1988). Triaxial of saturated cohesive soils. Advanced triaxial testing of souls and rock, ASTM STP 977, Robert T. Donaghe, Ronald C. Chaney and Marshall L. Silver, Eds., American Society for Testing and Materials, Philadelphia, pp. 421-459.spa
dc.relation.referencesGockenbach, M. S. (2006). Understanding and Implementing the Finite Element Method. (SIAM, Ed.) (1st ed.). Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104).spa
dc.relation.referencesGranados, J. S. A. P. (2018). Las nuevas generaciones como un reto para la educación actual. Bogotá: Universidad Sergio Arboleda.spa
dc.relation.referencesGriffiths, D., & Smith, L. (1988). Programming the Finite Element Method (2nd ed.). Wiley.spa
dc.relation.referencesGriffiths, D., V. (1982). Computation of Bearing Capacity Factors using Finite Elements. Geotechnique vol. 32(3) pp 195-202.spa
dc.relation.referencesGriffiths, D. V. (1994). Coupled Analyses in Geomechanics. Visco-Plastic Behaviour of Geomaterials, 245–317. https://doi.org/10.1007/978-3-7091-2710-0_5spa
dc.relation.referencesGuerrero M, L. F., Gómez P, D., Sandoval V, E., Thomson, P., & Marulanda Casas, J. (2014). SISMILAB, un laboratorio virtual de ingeniería sísmica, y su impacto en la educación.spa
dc.relation.referencesGutierrez, M., Ishihara, K., & Towhata, I. (1991). Flow theory for sand during rotation of principal stress direction. Soils and foundations, 31(4), 121-132.spa
dc.relation.referencesHatherly, P. A. (2016). The Virtual Laboratory and Interactive Screen Experiments. Connecting Research in Physics Education with Teacher Education, 1–7.spa
dc.relation.referencesHammer, P. C., Marlowe O. P., & Stroud, A. H. (1956). "Numerical Integration Over Simplexes and Cones", Mathematics Tables Aids Computation, Vol. 10, pp. 130 -137.spa
dc.relation.referencesHarkness, J., Zervos, A., Le Pen, L. Aingaran S., Powrie William (2016). Discrete element simulation of railway ballast: modelling cell pressure effects in triaxial tests. Granular Matter 18, 65. https://doi.org/10.1007/s10035-016-0660-yspa
dc.relation.referencesHenkel, D. J. (1956). The effect of overconsolidation on the behaviour of clays during shear. Geotechnique, 6 :139-1 50.spa
dc.relation.referencesHird, C. C., Pyrah, I. C. & Russell, D. (1992). Finite element modelling of vertical drains beneath embankments on soft ground. Geotechnique 42, No. 3, 499-511.spa
dc.relation.referencesHo, I. H., & Hsieh, C. C. (2013). Numerical modeling for undrained shear strength of clays subjected to different plasticity indexes. Journal of GeoEngineering, 8(3), 91-100.spa
dc.relation.referencesHolzbecher, E. (2016). Multiphysics modelling of the Mandel – Cryer effect. International Journal of Multiphysics, 10(1), 11–20. https://doi.org/10.21152/1750-9548.10.1.11spa
dc.relation.referencesJeon, H.-M., Lee, P.-S., & Bathe, K.-J. (2014). The MITC3 shell finite element enriched by interpolation covers. Computers & Structures, 134, 128–142. https://doi.org/https://doi.org/10.1016/j.compstruc.2013.12.003spa
dc.relation.referencesLabuz, J.F., Zang, A. (2012). Mohr–Coulomb Failure Criterion. Rock Mech Rock Eng 45, 975–979. https://doi.org/10.1007/s00603-012-0281-7spa
dc.relation.referencesMa, B., Muhunthan, B. & Xie, X. (2013), Stress history effects on 1‐D consolidation of soft soils: a rheological model. Int. J. Numer. Anal. Meth. Geomech., 37: 2671-2689. doi:10.1002/nag.2156spa
dc.relation.referencesMasala, S.; Biggar, K. (2005). The Geotechnical Virtual Laboratory. II. Consolidation. Geotechnical Centre at the University of Alberta (LEE4).spa
dc.relation.referencesMatsuoka, H. (1976). On the Significance of the Spatial Mobilised Plane. Soils and Foundations, Vol 16(1) pp 91-100.spa
dc.relation.referencesMckenna, F., Fenves, G.L., Filippou, F.C, Mazzoni, S. (2008), “Open System for Earthquake Engineering Simulation ,University of California”, Berkeley, http://opensees.berkeley.eduspa
dc.relation.referencesMedzvieckas, J., Dirgėlienė, N., & Skuodis, Š. (2017). Stress-strain states differences in specimens during triaxial compression and direct shear tests. Procedia Engineering, 172, 739-745.spa
dc.relation.referencesNASA (1993), FAST User Guide, Recuperado el 01 de Agosto de 2020 de https://www.nas.nasa.gov/Software/FAST/RND-93-010.walatka-clucas/htmldocs/titlepage.htmlspa
dc.relation.referencesPapakaliatakis, G., & Simos, T. E. (1999). Integration of Some Constitutive Relations of Plane Strain Elastoplasticity Using Modified Runge-Kutta Methods. Civil Engineering and Environmental Systems, 16(2), 77–92. https://doi.org/10.1080/02630259908970254spa
dc.relation.referencesPayen, D. J., & Bathe, K.-J. (2011). Improved stresses for the 4-node tetrahedral element. Computers & Structures, 89(13), 1265–1273. https://doi.org/https://doi.org/10.1016/j.compstruc.2011.02.009spa
dc.relation.referencesPenumadu, D., Zhao, R., & Frost, D. (2000). Virtual geotechnical laboratory experiments using a simulator. International journal for numerical and analytical methods in geomechanics, 24(5), 439-451.spa
dc.relation.referencesPotts, D. (2003). Numerical analysis: A virtual dream or practical reality? Geotechnique. 53. 535-573. 10.1680/geot.53.6.535.37330.spa
dc.relation.referencesPotts, D., & Axelsson, K. (Eds.). (2002). Guidelines for the use of advanced numerical analysis. Thomas Telford.spa
dc.relation.referencesPotts D. & Ganendra D. (1994), "An evaluation of substepping and implicit stress point algorithms", Comput. Meth. Appl. Mech. Eng., Vol. 119, pp 341-354.spa
dc.relation.referencesPotts D. & Gens A. (1985), "A critical assessment of methods of correcting for drift from the yield surface in elasto-plastic finite element analysis", Int. Jnl. Num. Anal. Meth. Geomech., Vol. 9, pp 149-159.spa
dc.relation.referencesPotts, D., & Zdravkovic, L. (1999). Finite Element Analysis in Geotechnical Engineering: Volume 1 - Theory. https://doi.org/10.1680/feaiget.27534spa
dc.relation.referencesPotts, D., & Zdravkovic, L. (1999-b). Some Pitfalls when using Modified Cam Clay.spa
dc.relation.referencesPotts, D., & Zdravkovic, L. (2001). Finite Element Analysis in Geotechnical Engineering: Volume 2 - Application (Vol. 1). https://doi.org/10.1680/feaigea.27831spa
dc.relation.referencesRamírez, J M. & Rivera, S. (2017) Aplicación del ciclo de vida y el análisis estructurado en el desarrollo de un laboratorio virtual de transformadores monofásicos. Revista Educación en Ingeniería 12 (23) 43-48.spa
dc.relation.referencesRendulic L. (1935). Der Hydrodynamische Spannungsausgleich in Zentral Entwaserten Tonzylindern Wasserwirtschaft und Technik, Wein 1935;2:250–3.spa
dc.relation.referencesSagrilo, L.V., Sousa, J.R., Lima, E.C., Porto, E.C., & Fernandes, J.V. (2012). A Study on the Holding Capacity Safety Factors for Torpedo Anchors. J. Applied Mathematics, 2012, 102618:1-102618:18.spa
dc.relation.referencesSegerlind, L. J. (1984). Applied Finite Element Analysis (2nd ed., Vol. 1). Michigan: Wiley.spa
dc.relation.referencesSimo, J. C. & Hughes, T. J. R., (1998), Computational Inelasticity, Springer.spa
dc.relation.referencesSimulsoft, (2018). Listado updates_octubre_2018. Recuperado el 16 de Julio de 2020 de: descargas.simulsoft-ingenieros.es/gts_nx/documentacion/listadoupdates_octubre_2018.pdfspa
dc.relation.referencesSloan, S., W. (1981). Numerical Analysis of Incompressible and Plastic Solids Using Finite Elements. Ph.D. Thesis university of Cambridge.spa
dc.relation.referencesSmith I., & Hobbs R. (1976). Biot analysis of consolidation beneath embankments. Geotechnique 26, 149–171.spa
dc.relation.referencesSmith, I., Griffiths, D., & Margetts, L. (2014). Programming the Finite Element Method. (J. W. & S. Ltd, Ed.) (5th ed., Vol. 1). Chennai, India: Wiley.spa
dc.relation.referencesSchneider & Hans (1977). "Olga Taussky-Todd's influence on matrix theory and matrix theorists". Linear and Multilinear Algebra. 5 (3): 197 – 224. Doi: 10.1080/03081087708817197spa
dc.relation.referencesSummerfield, M. (2007). Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming (paperback). Pearson Education.spa
dc.relation.referencesSutterer, K. (2010). Undergraduate Geotechnical Laboratory and Field Testing : A Review of Current Practice and Future Needs, 1–10.spa
dc.relation.referencesIng, T. & Xiaoyan, N. (2002). Coupled consolidation theory with non-Darcian flow. Computers and Geotechnics -COMPUT GEOTECH. 29. 169-209. 10.1016/S0266352X (01)00022-2.spa
dc.relation.referencesTerzaghi, K., (1943), Theoretical Soil Mechanics, John Wiley.spa
dc.relation.referencesTerzaghi, K., & Peck, R, B. (1968), Soil Mechanics in Engineering Practice, 2nd Ed., John Wiley.spa
dc.relation.referencesUniversidad de Castilla - La Mancha, (s. f). Diagrama de Flujo del MEF. Recuperado el 08 de mayo de 2020 de: https://previa.uclm.es/profesorado/evieira/asignatura/meccomp/book/MEF/Flux_diag.htm Universidad de Valencia (1998).spa
dc.relation.referencesUniversidad de Valencia (1998). Método de Newton. Recuperado el 09 de mayo de 2020 de: https://www.uv.es/~diaz/mn/node20.htmlspa
dc.relation.referencesValarezo, M. (2010). Laboratorio virtual de ingeniería geotécnica. Universidad Técnica Particular de Loja.spa
dc.relation.referencesValerio, O. (2011). Ensayos triaxiales para suelos. Métodos Y Materiales, 1(1), 14-24. https://doi.org/10.15517/mym.v1i1.8391spa
dc.relation.referencesWestergaard, H. M. (1952), Theory of Elasticity and Plasticity, Harvard University Press, John Wiley.spa
dc.relation.referencesWood, D. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139878272spa
dc.relation.referencesYu, H. S. (2007). Plasticity and geotechnics (Vol. 13). Springer Science & Business Media.spa
dc.relation.referencesZeevaert, A. E. (1980). Finite Element Formulation for the Analysis of Interfaces, Nonlinear and Large Displacement problems in geotechnical engineering. Georgia Institute of Technology.spa
dc.relation.referencesZelle, J. M. (2004). Python programming: an introduction to computer science. Franklin, Beedle & Associates, Inc.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalFinite element methodeng
dc.subject.proposalElastoplasticidadspa
dc.subject.proposalElasto-plasticityeng
dc.subject.proposalPythonspa
dc.subject.proposalPythoneng
dc.subject.proposalLaboratorio virtualspa
dc.subject.proposalVirtual labeng
dc.titleDesarrollo de un laboratorio virtual de geotecnia enfocado en el ensayo de compresión triaxial modalidad compresión axialspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032466342.2020.pdf
Tamaño:
4.09 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: