Desarrollo de un laboratorio virtual de geotecnia enfocado en el ensayo de compresión triaxial modalidad compresión axial
| dc.contributor.advisor | Ávila Álvarez, Guillermo Eduardo | spa |
| dc.contributor.author | Gerena González, Jhon Oscar | spa |
| dc.date.accessioned | 2020-11-30T15:52:11Z | spa |
| dc.date.available | 2020-11-30T15:52:11Z | spa |
| dc.date.issued | 2020-11-13 | spa |
| dc.description.abstract | Los ensayos de laboratorio de geotecnia son fundamentales para la caracterización del comportamiento mecánico de los suelos, muchos de los modelos constitutivos que se emplean actualmente se basan en observaciones experimentales, de tal manera que el laboratorio es, sin duda, una herramienta primordial para la comprensión de diversos comportamientos mecánicos y permite afianzar procesos de enseñanza y aprendizaje. Tal vez el ensayo triaxial es el desarrollo que más se ha empleado en los estudios del comportamiento de los suelos porque brinda gran cantidad de información. Esta práctica, sin embargo, no es accesible a todos los estudiantes durante tiempos extensos y en algunos casos esta es una limitante. Asimismo, los laboratorios virtuales se muestran como un mecanismo útil para fomentar el aprendizaje en los estudiantes de ingeniería, mientras que se establecen como un esfuerzo para reducir costos inherentes al manejo de equipos, facilitan la repetición y la variación en los datos de entrada. El desarrollo de este tipo de herramientas virtuales lleva implícito la aplicación de modelos de comportamiento que permitan simular la respuesta del suelo ante unas ciertas condiciones impuestas, bien sea de carga o de deformación. Este trabajo de grado presenta las bases teóricas y prácticas para el desarrollo de actividades virtuales de geotecnia basadas en la etapa de falla de la prueba de compresión triaxial modalidad compresión axial. La modelación usa la aproximación por elementos finitos, esta sigue la formulación de Galerkin la cual se puede emplear para incluir de manera adecuada análisis no lineales (Griffiths, 1994), asimismo se usa el criterio de fluencia de Drucker-Prager. Este proyecto es desarrollado en Python. | spa |
| dc.description.abstract | Laboratory testing is fundamental for characterization of soil mechanical behavior, numerous constitutive models currently used are based on experimental observations, in such a way that laboratory practices are undoubtedly a good tool for understanding mechanical behavior and to strengthen teaching and learning processes. Perhaps triaxial test is the development that has been most used in studies of the behavior of soils because it provides good amount of data. However, these practices are not accessible to all students during the required time, this fact becomes a limitation. On the other hand, virtual laboratories are an useful instrument to promote learning in engineering students, since these are established as an effort to reduce costs inherent in the management of equipment, also allow repetition and variation in input data. The development of this type of virtual tools implicitly involves the application of behavior models that simulate the soil response to certain imposed conditions, e.g. load or strains. This document presents the theoretical and practical bases for developing a geotechnical virtual laboratory based on the triaxial compression test. This model is a finite element approach, this follows the Galerkin's formulation which can be used to adequately include nonlinear analyzes (Griffiths, 1994). Thus, the compression model uses theory of nonlinear finite element analysis with the elastoplastic considerations of Drucker-Prager yield criterion. This project uses the Python programming language. | spa |
| dc.description.additional | Línea de Investigación: Relaciones constitutivas de suelos, rocas y materiales afines; Modelación y análisis en geotecniaModelación y análisis en geotecnia | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 336 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78658 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
| dc.relation.references | Alnuaim, A. M. (2014). Performance of micropiled raft in sand and clay-centrifuge and numerical studies. | spa |
| dc.relation.references | Atkinson, J. (2007). The Mechanics of Soils and Foundations. London: CRC Press, https://doi.org/10.1201/9781315273549 | spa |
| dc.relation.references | Bathe, K.-J. (2014). Finite Element Procedures (2nd ed.). Watertown: Klaus-Jürgen Bathe; second edition (August 25, 2014). | spa |
| dc.relation.references | Biot, M. A. (1941). General Theory of Tridimensional Consolidation. Reprinted from Journal of applied physics, Vol. 12, No. 2, pp. 155-164. | spa |
| dc.relation.references | Bishop, A. & Henkel, D. (1957). The Measurement of Soil Properties in the Triaxial Test (1st ed.). Edward Arnold LTD. | spa |
| dc.relation.references | Black, J., (2014). Pycalculix Build FEA Models in Python. Recuperado de: http://justinablack.com/pycalculix/ | spa |
| dc.relation.references | Booker, J.R., Small, J.C., (1975). An investigation of the stability of numerical solutions of Biot’s equations of consolidation. International Journal of Solids & Structures;11:907–11. | spa |
| dc.relation.references | Borja R.I. (1991), "Cam clay plasticity, part 11: Implicit integration of constitutive equations based on nonlinear elastic stress prediction", Comput. Meth. Appl. Mech. Eng., Vol. 88, pp 225-240 | spa |
| dc.relation.references | Borja, R., Tamagnini, C., & Alarcón, E. (1999). Consolidación elastoplástica con deformaciones finitas: Implementación con elementos finitos y ejemplos numéricos. Métodos Numéricos Para Cálculo y Diseño En Ingeniería: Revista Internacional, 15(2), 269–296. | spa |
| dc.relation.references | Budhu, M. (1999). A Multimedia Geotechnical Laboratory Test. ASEE Annual Conference and Exposition, Charlotte. | spa |
| dc.relation.references | Burd, H. J. (1986). A Large Displacement Finite Element Analysis of a Reinforced Unpaved Road. University of Oxford. | spa |
| dc.relation.references | Budhu, M. (2001). A Multimedia Geotechnical Laboratory Test. ASEE Annual Conference and Exposition, Charlotte. | spa |
| dc.relation.references | Burd, H. J. (1986). A Large Displacement Finite Element Analysis of a Reinforced Unpaved Road. University of Oxford. | spa |
| dc.relation.references | Cardoso, V. E. (2016). Finit3element. Recuperado de: https://finit3element.wordpress.com/2016/04/27/intro/ | spa |
| dc.relation.references | Casanova, F. & Atilus , W. (2013). Desarrollo de una red neuronal artificial para validar cálculos en el diseño estructural de puentes. Revista Académica de la Facultad de Ingeniería, Universidad Autónoma de Yucatán. Vol. 17, No.3 | spa |
| dc.relation.references | Chen, W. F. (Ed.). (2013). Limit analysis and soil plasticity. Elsevier. | spa |
| dc.relation.references | Cividini, A (1993). Constitutive behaviour and numerical modelling. In: Hudson J (ed) Comprehensive rock engineering, vol 1. Pergamon Press, Oxford, pp 395–426 | spa |
| dc.relation.references | Cueto, O., Herrera, M., Coronel, C., & Bravo. (2013). Análisis de los modelos constitutivos empleados para simular la compactación del suelo mediante el método de elementos finitos. 22. 75-80. | spa |
| dc.relation.references | Drucker, D. C. & Prager, W. (1952). Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165. | spa |
| dc.relation.references | Duque, G. & Escobar C. (2016). Geomecánica. Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia. | spa |
| dc.relation.references | England, R. (1969). Error estimates for Runge – Kutta type solutions to systems of ordinary differential equations. Computer Journal, 12, 166-170. | spa |
| dc.relation.references | Gear, C., W. (1971). Numerical Initial Value Problems in Ordinary Deferential Equations, Prentice-Hall, New Jersey. | spa |
| dc.relation.references | Germaine, J. T., & Ladd, C. C. (1988). Triaxial of saturated cohesive soils. Advanced triaxial testing of souls and rock, ASTM STP 977, Robert T. Donaghe, Ronald C. Chaney and Marshall L. Silver, Eds., American Society for Testing and Materials, Philadelphia, pp. 421-459. | spa |
| dc.relation.references | Gockenbach, M. S. (2006). Understanding and Implementing the Finite Element Method. (SIAM, Ed.) (1st ed.). Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104). | spa |
| dc.relation.references | Granados, J. S. A. P. (2018). Las nuevas generaciones como un reto para la educación actual. Bogotá: Universidad Sergio Arboleda. | spa |
| dc.relation.references | Griffiths, D., & Smith, L. (1988). Programming the Finite Element Method (2nd ed.). Wiley. | spa |
| dc.relation.references | Griffiths, D., V. (1982). Computation of Bearing Capacity Factors using Finite Elements. Geotechnique vol. 32(3) pp 195-202. | spa |
| dc.relation.references | Griffiths, D. V. (1994). Coupled Analyses in Geomechanics. Visco-Plastic Behaviour of Geomaterials, 245–317. https://doi.org/10.1007/978-3-7091-2710-0_5 | spa |
| dc.relation.references | Guerrero M, L. F., Gómez P, D., Sandoval V, E., Thomson, P., & Marulanda Casas, J. (2014). SISMILAB, un laboratorio virtual de ingeniería sísmica, y su impacto en la educación. | spa |
| dc.relation.references | Gutierrez, M., Ishihara, K., & Towhata, I. (1991). Flow theory for sand during rotation of principal stress direction. Soils and foundations, 31(4), 121-132. | spa |
| dc.relation.references | Hatherly, P. A. (2016). The Virtual Laboratory and Interactive Screen Experiments. Connecting Research in Physics Education with Teacher Education, 1–7. | spa |
| dc.relation.references | Hammer, P. C., Marlowe O. P., & Stroud, A. H. (1956). "Numerical Integration Over Simplexes and Cones", Mathematics Tables Aids Computation, Vol. 10, pp. 130 -137. | spa |
| dc.relation.references | Harkness, J., Zervos, A., Le Pen, L. Aingaran S., Powrie William (2016). Discrete element simulation of railway ballast: modelling cell pressure effects in triaxial tests. Granular Matter 18, 65. https://doi.org/10.1007/s10035-016-0660-y | spa |
| dc.relation.references | Henkel, D. J. (1956). The effect of overconsolidation on the behaviour of clays during shear. Geotechnique, 6 :139-1 50. | spa |
| dc.relation.references | Hird, C. C., Pyrah, I. C. & Russell, D. (1992). Finite element modelling of vertical drains beneath embankments on soft ground. Geotechnique 42, No. 3, 499-511. | spa |
| dc.relation.references | Ho, I. H., & Hsieh, C. C. (2013). Numerical modeling for undrained shear strength of clays subjected to different plasticity indexes. Journal of GeoEngineering, 8(3), 91-100. | spa |
| dc.relation.references | Holzbecher, E. (2016). Multiphysics modelling of the Mandel – Cryer effect. International Journal of Multiphysics, 10(1), 11–20. https://doi.org/10.21152/1750-9548.10.1.11 | spa |
| dc.relation.references | Jeon, H.-M., Lee, P.-S., & Bathe, K.-J. (2014). The MITC3 shell finite element enriched by interpolation covers. Computers & Structures, 134, 128–142. https://doi.org/https://doi.org/10.1016/j.compstruc.2013.12.003 | spa |
| dc.relation.references | Labuz, J.F., Zang, A. (2012). Mohr–Coulomb Failure Criterion. Rock Mech Rock Eng 45, 975–979. https://doi.org/10.1007/s00603-012-0281-7 | spa |
| dc.relation.references | Ma, B., Muhunthan, B. & Xie, X. (2013), Stress history effects on 1‐D consolidation of soft soils: a rheological model. Int. J. Numer. Anal. Meth. Geomech., 37: 2671-2689. doi:10.1002/nag.2156 | spa |
| dc.relation.references | Masala, S.; Biggar, K. (2005). The Geotechnical Virtual Laboratory. II. Consolidation. Geotechnical Centre at the University of Alberta (LEE4). | spa |
| dc.relation.references | Matsuoka, H. (1976). On the Significance of the Spatial Mobilised Plane. Soils and Foundations, Vol 16(1) pp 91-100. | spa |
| dc.relation.references | Mckenna, F., Fenves, G.L., Filippou, F.C, Mazzoni, S. (2008), “Open System for Earthquake Engineering Simulation ,University of California”, Berkeley, http://opensees.berkeley.edu | spa |
| dc.relation.references | Medzvieckas, J., Dirgėlienė, N., & Skuodis, Š. (2017). Stress-strain states differences in specimens during triaxial compression and direct shear tests. Procedia Engineering, 172, 739-745. | spa |
| dc.relation.references | NASA (1993), FAST User Guide, Recuperado el 01 de Agosto de 2020 de https://www.nas.nasa.gov/Software/FAST/RND-93-010.walatka-clucas/htmldocs/titlepage.html | spa |
| dc.relation.references | Papakaliatakis, G., & Simos, T. E. (1999). Integration of Some Constitutive Relations of Plane Strain Elastoplasticity Using Modified Runge-Kutta Methods. Civil Engineering and Environmental Systems, 16(2), 77–92. https://doi.org/10.1080/02630259908970254 | spa |
| dc.relation.references | Payen, D. J., & Bathe, K.-J. (2011). Improved stresses for the 4-node tetrahedral element. Computers & Structures, 89(13), 1265–1273. https://doi.org/https://doi.org/10.1016/j.compstruc.2011.02.009 | spa |
| dc.relation.references | Penumadu, D., Zhao, R., & Frost, D. (2000). Virtual geotechnical laboratory experiments using a simulator. International journal for numerical and analytical methods in geomechanics, 24(5), 439-451. | spa |
| dc.relation.references | Potts, D. (2003). Numerical analysis: A virtual dream or practical reality? Geotechnique. 53. 535-573. 10.1680/geot.53.6.535.37330. | spa |
| dc.relation.references | Potts, D., & Axelsson, K. (Eds.). (2002). Guidelines for the use of advanced numerical analysis. Thomas Telford. | spa |
| dc.relation.references | Potts D. & Ganendra D. (1994), "An evaluation of substepping and implicit stress point algorithms", Comput. Meth. Appl. Mech. Eng., Vol. 119, pp 341-354. | spa |
| dc.relation.references | Potts D. & Gens A. (1985), "A critical assessment of methods of correcting for drift from the yield surface in elasto-plastic finite element analysis", Int. Jnl. Num. Anal. Meth. Geomech., Vol. 9, pp 149-159. | spa |
| dc.relation.references | Potts, D., & Zdravkovic, L. (1999). Finite Element Analysis in Geotechnical Engineering: Volume 1 - Theory. https://doi.org/10.1680/feaiget.27534 | spa |
| dc.relation.references | Potts, D., & Zdravkovic, L. (1999-b). Some Pitfalls when using Modified Cam Clay. | spa |
| dc.relation.references | Potts, D., & Zdravkovic, L. (2001). Finite Element Analysis in Geotechnical Engineering: Volume 2 - Application (Vol. 1). https://doi.org/10.1680/feaigea.27831 | spa |
| dc.relation.references | Ramírez, J M. & Rivera, S. (2017) Aplicación del ciclo de vida y el análisis estructurado en el desarrollo de un laboratorio virtual de transformadores monofásicos. Revista Educación en Ingeniería 12 (23) 43-48. | spa |
| dc.relation.references | Rendulic L. (1935). Der Hydrodynamische Spannungsausgleich in Zentral Entwaserten Tonzylindern Wasserwirtschaft und Technik, Wein 1935;2:250–3. | spa |
| dc.relation.references | Sagrilo, L.V., Sousa, J.R., Lima, E.C., Porto, E.C., & Fernandes, J.V. (2012). A Study on the Holding Capacity Safety Factors for Torpedo Anchors. J. Applied Mathematics, 2012, 102618:1-102618:18. | spa |
| dc.relation.references | Segerlind, L. J. (1984). Applied Finite Element Analysis (2nd ed., Vol. 1). Michigan: Wiley. | spa |
| dc.relation.references | Simo, J. C. & Hughes, T. J. R., (1998), Computational Inelasticity, Springer. | spa |
| dc.relation.references | Simulsoft, (2018). Listado updates_octubre_2018. Recuperado el 16 de Julio de 2020 de: descargas.simulsoft-ingenieros.es/gts_nx/documentacion/listadoupdates_octubre_2018.pdf | spa |
| dc.relation.references | Sloan, S., W. (1981). Numerical Analysis of Incompressible and Plastic Solids Using Finite Elements. Ph.D. Thesis university of Cambridge. | spa |
| dc.relation.references | Smith I., & Hobbs R. (1976). Biot analysis of consolidation beneath embankments. Geotechnique 26, 149–171. | spa |
| dc.relation.references | Smith, I., Griffiths, D., & Margetts, L. (2014). Programming the Finite Element Method. (J. W. & S. Ltd, Ed.) (5th ed., Vol. 1). Chennai, India: Wiley. | spa |
| dc.relation.references | Schneider & Hans (1977). "Olga Taussky-Todd's influence on matrix theory and matrix theorists". Linear and Multilinear Algebra. 5 (3): 197 – 224. Doi: 10.1080/03081087708817197 | spa |
| dc.relation.references | Summerfield, M. (2007). Rapid GUI Programming with Python and Qt: The Definitive Guide to PyQt Programming (paperback). Pearson Education. | spa |
| dc.relation.references | Sutterer, K. (2010). Undergraduate Geotechnical Laboratory and Field Testing : A Review of Current Practice and Future Needs, 1–10. | spa |
| dc.relation.references | Ing, T. & Xiaoyan, N. (2002). Coupled consolidation theory with non-Darcian flow. Computers and Geotechnics -COMPUT GEOTECH. 29. 169-209. 10.1016/S0266352X (01)00022-2. | spa |
| dc.relation.references | Terzaghi, K., (1943), Theoretical Soil Mechanics, John Wiley. | spa |
| dc.relation.references | Terzaghi, K., & Peck, R, B. (1968), Soil Mechanics in Engineering Practice, 2nd Ed., John Wiley. | spa |
| dc.relation.references | Universidad de Castilla - La Mancha, (s. f). Diagrama de Flujo del MEF. Recuperado el 08 de mayo de 2020 de: https://previa.uclm.es/profesorado/evieira/asignatura/meccomp/book/MEF/Flux_diag.htm Universidad de Valencia (1998). | spa |
| dc.relation.references | Universidad de Valencia (1998). Método de Newton. Recuperado el 09 de mayo de 2020 de: https://www.uv.es/~diaz/mn/node20.html | spa |
| dc.relation.references | Valarezo, M. (2010). Laboratorio virtual de ingeniería geotécnica. Universidad Técnica Particular de Loja. | spa |
| dc.relation.references | Valerio, O. (2011). Ensayos triaxiales para suelos. Métodos Y Materiales, 1(1), 14-24. https://doi.org/10.15517/mym.v1i1.8391 | spa |
| dc.relation.references | Westergaard, H. M. (1952), Theory of Elasticity and Plasticity, Harvard University Press, John Wiley. | spa |
| dc.relation.references | Wood, D. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139878272 | spa |
| dc.relation.references | Yu, H. S. (2007). Plasticity and geotechnics (Vol. 13). Springer Science & Business Media. | spa |
| dc.relation.references | Zeevaert, A. E. (1980). Finite Element Formulation for the Analysis of Interfaces, Nonlinear and Large Displacement problems in geotechnical engineering. Georgia Institute of Technology. | spa |
| dc.relation.references | Zelle, J. M. (2004). Python programming: an introduction to computer science. Franklin, Beedle & Associates, Inc. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.proposal | Elementos finitos | spa |
| dc.subject.proposal | Finite element method | eng |
| dc.subject.proposal | Elastoplasticidad | spa |
| dc.subject.proposal | Elasto-plasticity | eng |
| dc.subject.proposal | Python | spa |
| dc.subject.proposal | Python | eng |
| dc.subject.proposal | Laboratorio virtual | spa |
| dc.subject.proposal | Virtual lab | eng |
| dc.title | Desarrollo de un laboratorio virtual de geotecnia enfocado en el ensayo de compresión triaxial modalidad compresión axial | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

