En 6 día(s), 1 hora(s) y 56 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Impactos del dióxido de nitrógeno (NO2) y ozono (O3) en salud para la ciudad de Bogotá

dc.contributor.advisorRojas Roa, Néstor Yezidspa
dc.contributor.advisorPineda Rojas, Andrea Lauraspa
dc.contributor.authorHerrera Escalante, Mónica Tatianaspa
dc.contributor.researchgroupCalidad del Airespa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2025-12-05T13:37:56Z
dc.date.available2025-12-05T13:37:56Z
dc.date.issued2025-12-04
dc.descriptionilustraciones, fotografías, gráficas, mapas, tablasspa
dc.description.abstractEste estudio evaluó la calidad del aire en Bogotá y sus impactos en salud asociados al dióxido de nitrógeno (NO2) y al ozono troposférico (O3) entre 2013 y 2023, integrando datos de la Red de Monitoreo de Calidad del Aire (RMCAB), simulaciones con el modelo DAUMOD-GRS y estimaciones epidemiológicas mediante AirQ+®. Los resultados muestran que, aunque las concentraciones de NO2 no superaron el límite nacional de 60 µg/m3, se mantuvieron por encima de las guía de la OMS (10–20 µg/m³), con 2938 días de excedencia sobre 25 µg/m3 y hasta 87 días consecutivos por encima de este valor. En el caso del O3, se registraron 127 días con concentraciones superiores a 100 µg/m3 y 30 días por encima de 120 µg/m3, alcanzando episodios de hasta 10 días consecutivos. En cuanto a las tendencias, el NO2 presentó una reducción significativa de –0.29 µg/m³ por año, con descensos más marcados en Ferias (–1.84 µg/m3/año) y aumentos en Kennedy (+0.82 µg/m3/año), mientras que el O3 evidenció un incremento de 0.82 µg/m3/año, especialmente estaciones como Usaquén (+0.98 µg/m3/año), (Tunal (+0.94 µg/m3/año) y Kennedy (+1.48 µg/m3/año). La evaluación en salud reveló a Kennedy como la localidad de mayor carga (2.576 muertes atribuibles a largo plazo y 769 a corto plazo) y un impacto mayor en mujeres. En cuanto a la simulación, los resultados muestran un desempeño bueno del modelo DAUMOD-GRS para obtener la distribución espacial de las concentraciones horarias de NO2 y O3 en la ciudad (FA2 entre 53–73 %, NMSE 0.33–0.64 y FB entre –0.19 y 0.10). Finalmente, los escenarios de reducción evidenciaron que la eliminación de fuentes móviles a diésel y la transición total hacia vehículos eléctricos y a gas natural tendrían el mayor efecto en la reducción de NO2 y, en consecuencia, de la mortalidad atribuible en la ciudad. (Texto tomado de la fuente).spa
dc.description.abstractThis study evaluated air quality in Bogotá and its health impacts associated to nitrogen dioxide (NO2) and tropospheric ozone (O3) between 2013 and 2023, integrating data from the Air Quality Monitoring Network (Red de Monitoreo de Calidad de Aire de Bogotá - RMCAB) simulations with the DAUMOD-GRS model, and epidemiological estimates using AirQ+®. The results show that although NO2 concentrations did not exceed the national limit of 60 µg/m3, they consistently remained above the WHO guidelines (10–20 µg/m³), with 2,938 days surpassing 25 µg/m3 and up to 87 consecutive days above this value. For O3, 127 days recorded concentrations higher than 100 µg/m3 and 30 days above 120 µg/m3, with episodes lasting up to 10 consecutive days. In terms of trends, NO2 showed a significant decrease of –0.29 µg/m3 per year, with sharper declines in Ferias (–1.84 µg/m3/year) and increases in Kennedy (+0.82 µg/m3/year), while O3 presented an overall increase of 0.82 µg/m3/year, particularly in stations such as Usaquen (+0.98) Tunal (+0.94 µg/m3/year) and Kennedy (+1.48 µg/m3/year). The health assessment identified Kennedy as the locality with the highest burden (2.576 attributable deaths in the long term and 769 in the short term), with a greater impact observed among women. Regarding the simulation, the DAUMOD-GRS model showed good performance in reproducing the spatial distribution of hourly NO2 and O3 concentrations in the city (FA2 between 53–73%, NMSE 0.33–0.64, and FB between –0.19 and 0.10). Finally, the emission reduction scenarios revealed that eliminating diesel-powered mobile sources and fully transitioning to electric and natural gas vehicles would have the greatest effect in reducing NO2 levels and, consequently, the attributable mortality in Bogotá.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaCalidad del airespa
dc.format.extentxii, 106 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89184
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Química y Ambientalspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAirQ+. (2025). AirQ+_What is AirQ+ (p. 6). https://www.who.int/es/tools/airq
dc.relation.referencesAjayi, S. A., Adams, C. A., Dumedah, G., Adebanji, A. O., & Ackaah, W. (2024). Modelling of risk of health burden based on residents’ exposure near trafficked intersection. Journal of Transport and Health, 37(May), 101833. https://doi.org/10.1016/j.jth.2024.101833
dc.relation.referencesAlabdulrazzaq, H., Alenezi, M. N., Rawajfih, Y., Alghannam, B. A., Al-Hassan, A. A., & Al-Anzi, F. S. (2021). On the accuracy of ARIMA based prediction of COVID-19 spread. Results in Physics, 27, 104509. https://doi.org/10.1016/j.rinp.2021.104509
dc.relation.referencesAlcaldía Mayor de Bogotá. (2024). Bogotá. https://bogota.gov.co/mi-ciudad
dc.relation.referencesAlcaldía Mayor de Bogotá, & Secretaria Distrital de Ambiente. (2021). Informe Anual de Calidad del Aire de Bogota 2020, Red de Monitoreo de Calidad del Aire de Bogotá RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe_Anual_2009_RMCAB.pdf
dc.relation.referencesAmini, H., Yousefian, F., Faridi, S., Andersen, Z. J., Calas, E., Castro, A., Cervantes-Martínez, K., Cole-Hunter, T., Corso, M., Dragic, N., Evangelopoulos, D., Gapp, C., Hassanvand, M. S., Kim, I., Le Tertre, A., Medina, S., Miller, B., Montero, S., Requia, W. J., … Mudu, P. (2024). Two Decades of Air Pollution Health Risk Assessment: Insights From the Use of WHO’s AirQ and AirQ+ Tools. Public Health Reviews , 45(June), 1–13. https://doi.org/10.3389/phrs.2024.1606969
dc.relation.referencesAristizábal, J. P., Rojas, N. Y., Clappier, A., & Blond, N. (2010). Determinación De Las Condiciones De Frontera Para El Modelo De Calidad De Aire De Bogotá Empleando Chimere. May 2014.
dc.relation.referencesBai, L., Wang, J., Ma, X., & Lu, H. (2018). Air Pollution Forecasts: An Overview. International Journal of Environmental Research and Public Health, 15(4), 2–44. https://doi.org/10.3390/ijerph15040780
dc.relation.referencesBallesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755
dc.relation.referencesBaquero, F. (2023). Análisis de la variabilidad estacional, interanual y tendencia del ozono (O3) y sus precursores, así como la dinámica oxidativa de la atmósfera en Bogotá entre 2010 y 2020. Universidad Nacional de Colombia.
dc.relation.referencesBenvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29, 105340. https://doi.org/10.1016/j.dib.2020.105340
dc.relation.referencesBlackman, A., Bonilla, J. A., & Villalobos, L. (2023). Quantifying COVID-19’s silver lining: Avoided deaths from air quality improvements in Bogotá. Journal of Environmental Economics and Management, 117(July 2021). https://doi.org/10.1016/j.jeem.2022.102749
dc.relation.referencesBrunekreef, B., Strak, M., Chen, J., Andersen, Z. J., Atkinson, R., Bauwelinck, M., Bellander, T., Boutron, M.-C., Brandt, J., Carey, I., Cesaroni, G., Forastiere, F., Fecht, D., Gulliver, J., Hertel, O., Hoffmann, B., de Hoogh, K., Houthuijs, D., Hvidtfeldt, U., … Hoek, G. (2021). Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM(2.5), BC, NO(2), and O(3): An Analysis of European Cohorts in the ELAPSE Project. Research Report (Health Effects Institute), 2021(208), 1–127.
dc.relation.referencesButler, T. M., Stock, Z. S., Russo, M. R., Denier Van Der Gon, H. A. C., & Lawrence, M. G. (2012). Megacity ozone air quality under four alternative future scenarios. Atmospheric Chemistry and Physics, 12(10), 4413–4428. https://doi.org/10.5194/acp-12-4413-2012
dc.relation.referencesCárdenas, J. E. P. (2017). LA CALIDAD DEL AIRE EN COLOMBIA : UN PROBLEMA DE SALUD PÚBLICA , UN PROBLEMA DE TODOS. Revista Biosalud, 16(2), 5–6. https://doi.org/10.17151/biosa.2017.16.2.1
dc.relation.referencesCarmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., & Tang, Y. (2008). Predicting air quality: Improvements through advanced methods to integrate models and measurements. Journal of Computational Physics, 227(7), 3540–3571. https://doi.org/10.1016/j.jcp.2007.02.024
dc.relation.referencesCarriazo, F., & Gómez-Mahecha, J. A. (2018). The demand for air quality: Evidence from the housing market in Bogotá, Colombia. Environment and Development Economics, 23(2), 121–138. https://doi.org/10.1017/S1355770X18000050
dc.relation.referencesCasallas, A., Cabrera, A., Guevara-Luna, M. A., Tompkins, A., González, Y., Aranda, J., Belalcazar, L. C., Mogollon-Sotelo, C., Celis, N., Lopez-Barrera, E., Peña-Rincon, C. A., & Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. Science of the Total Environment, 906(August 2023). https://doi.org/10.1016/j.scitotenv.2023.167350
dc.relation.referencesCasallas, A., Castillo-Camacho, M. P., Guevara-Luna, M. A., González, Y., Sanchez, E., & Belalcazar, L. C. (2022). Spatio-temporal analysis of PM2.5 and policies in Northwestern South America. Science of the Total Environment, 852(May). https://doi.org/10.1016/j.scitotenv.2022.158504
dc.relation.referencesCasallas, A., Castillo-camacho, M. P., Sanchez, E. R., González, Y., Celis, N., Mendez-espinosa, J. F., Belalcazar, L. C., & Ferro, C. (2022). Surface, satellite ozone changes in Northern South America during low anthropogenic emission conditions: a Machine Learning approach. SSRN:
dc.relation.referencesCasallas, A., Castillo-Camacho, M. P., Sanchez, E. R., González, Y., Celis, N., Mendez-Espinosa, J. F., Belalcazar, L. C., & Ferro, C. (2023). Surface, satellite ozone variations in Northern South America during low anthropogenic emission conditions: a machine learning approach. Air Quality, Atmosphere and Health, 16(4), 745–764. https://doi.org/10.1007/s11869-023-01303-6
dc.relation.referencesChang, J. C., & Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1–3), 167–196. https://doi.org/10.1007/s00703-003-0070-7
dc.relation.referencesCooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J. F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., & Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. Elementa, 2, 1–28. https://doi.org/10.12952/journal.elementa.000029
dc.relation.referencesDavuliene, L., Jasineviciene, D., Garbariene, I., Andriejauskiene, J., Ulevicius, V., & Bycenkiene, S. (2021). Long-term air pollution trend analysis in the South-eastern Baltic region, 1981–2017. Atmospheric Research, 247(May 2020), 105191. https://doi.org/10.1016/j.atmosres.2020.105191
dc.relation.referencesDavuliene, L., Sakalys, J., Dudoitis, V., Reklaite, A., & Ulevicius, V. (2019). Long-term black carbon variation in the South-Eastern Baltic Region in 2008–2015. Atmospheric Pollution Research, 10(1), 123–133. https://doi.org/10.1016/j.apr.2018.06.013
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2022). Boletín Técnico Encuesta Multipropósito Bogotá-Cundinamarca (EM) 2021 (p. 1). https://www.dane.gov.co/files/investigaciones/multi/Boletin_EM_2021.pdf
dc.relation.referencesDNP. (2018). Conpes 3943. Consejo Nacional de Politica Economica y Social Republica de Colombia Departamento Nacional de Planeación. (p. 115). https://www.cancilleria.gov.co/documento-conpes-estrategia-atencion-migracion-venezuela
dc.relation.referencesEPA. (2000). El Smog ¿A Quién Perjudica ? Lo que usted necesita saber acerca del ozono y su salud.
dc.relation.referencesEPA. (2007). Un resumen de la Ley de Aire Limpio. Research Triangle, 1–27. https://espanol.epa.gov/sites/default/files/2020-05/documents/050720_cleanairact_un_resumen_de_la_ley_de_aire_limpio.pdf
dc.relation.referencesEPA. (2024). El impacto del dióxido de carbono en la calidad del aire. Agencia de Protección Ambiental. https://espanol.epa.gov/cai/el-impacto-del-dioxido-de-nitrogeno-en-la-calidad-del-aire-interior
dc.relation.referencesEyring, V., Arblaster, J. M., Cionni, I., Sedláček, J., Perlwitz, J., Young, P. J., Bekki, S., Bergmann, D., Cameron-Smith, P., Collins, W. J., Faluvegi, G., Gottschaldt, K. D., Horowitz, L. W., Kinnison, D. E., Lamarque, J. F., Marsh, D. R., Saint-Martin, D., Shindell, D. T., Sudo, K., … Watanabe, S. (2013). Long-term ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical Research Atmospheres, 118(10), 5029–5060. https://doi.org/10.1002/jgrd.50316
dc.relation.referencesEzimand, K., & Kakroodi, A. A. (2019). Prediction and spatio – Temporal analysis of ozone concentration in a metropolitan area. Ecological Indicators, 103(April), 589–598. https://doi.org/10.1016/j.ecolind.2019.04.059
dc.relation.referencesGarcía Milán, D. R. (2024). Predicción de ozono troposférico en Bogotá : un enfoque de Machine Learning Predicción de ozono troposférico en Bogotá : un enfoque de Machine Learning. Universidad Nacioal de Colombia.
dc.relation.referencesGómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science and Policy, 114(September), 422–435. https://doi.org/10.1016/j.envsci.2020.09.009
dc.relation.referencesGonzále Castilo, Y. A. (2021). Evaluación del impacto en la calidad del aire generado por el aislamiento preventivo como medida frente al COVID-19 en tres ciudades de Colombia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/80998/1030592627.2021.pdf?sequence=3&isAllowed=y
dc.relation.referencesGonzález Riaño, V. C. (2016). Análisis del efecto de ozono de fin de semana en Bogotá [Universidad Nacional De Colombia]. http://www.bdigital.unal.edu.co/55908/
dc.relation.referencesGrajales, J. F., & Baquero-Bernal, A. (2014). Inference of surface concentrations of nitrogen dioxide (NO2) in Colombia from tropospheric columns of the ozone measurement instrument (OMI). Atmosfera, 27(2), 193–214. https://doi.org/10.1016/S0187-6236(14)71110-5
dc.relation.referencesGrell, G., & Baklanov, A. (2011). Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmospheric Environment, 45(38), 6845–6851. https://doi.org/10.1016/j.atmosenv.2011.01.017
dc.relation.referencesHassan, N. A., Hashim, Z., & Hashim, J. H. (2016). Impact of Climate Change on Air Quality and Public Health in Urban Areas. Asia Pacific Journal of Public Health, 28(2S), 38–48. https://doi.org/10.1177/1010539515592951
dc.relation.referencesHe, H., Liang, X. Z., Lei, H., & Wuebbles, D. J. (2016). Future U.S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design. Atmospheric Environment, 128, 124–133. https://doi.org/10.1016/j.atmosenv.2015.12.064
dc.relation.referencesHerrera López, A. B., Rojas, N. Y., Riojas-Rodríguez, H., Texcalac-Sangrador, J. L., Torres-Duque, C. A., Herrera, A. C., Arbeláez, M. P., Herrera, V., & Rodríguez-Villamizar, L. A. (2024). Long-Term Effect of Air Pollution on COPD Exacerbations: AIREPOC Cohort in Bogotá, Colombia. Atmosphere, 15(12). https://doi.org/10.3390/atmos15121449
dc.relation.referencesHesterberg, T. W., Bunn, W. B., Mcclellan, R. O., Hamade, A. K., Christopher, M., & Valberg, P. A. (2009). Critical review of the human data on short-term nitrogen dioxide ( NO 2 ) exposures : Evidence for NO 2 no-effect levels. 39(2), 743–781. https://doi.org/10.3109/10408440903294945
dc.relation.referencesHoshyaripour, G., Brasseur, G., Andrade, M. F., Gavidia-Calderón, M., Bouarar, I., & Ynoue, R. Y. (2016). Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models. Atmospheric Environment, 145, 365–375. https://doi.org/10.1016/j.atmosenv.2016.09.061
dc.relation.referencesHossain, M. S., Frey, H. C., Louie, P. K., & Lau, A. K. (2021). Combined effects of increased O3 and reduced NO2 concentrations on short-term air pollution health risks in Hong Kong. Environmental Pollution, 270(2), 116280. https://doi.org/10.1016/j.envpol.2020.116280
dc.relation.referencesHuangfu, P., & Atkinson, R. (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment International, 144(July), 105998. https://doi.org/10.1016/j.envint.2020.105998
dc.relation.referencesInstituto Nacional de Salud de Colombia. (2020). Boletín Epidemiológico Semanal. http://ondiscapacidad.minsalud.gov.co/indicadores/Paginas/Mapa-dinamico.aspx
dc.relation.referencesKazemi, Z., Kazemi, Z., Jafari, A. J., Farzadkia, M., Hosseini, J., Amini, P., Shahsavani, A., & Kermani, M. (2024). Estimating the health impacts of exposure to Air pollutants and the evaluation of changes in their concentration using a linear model in Iran. Toxicology Reports, 12(December 2023), 56–64. https://doi.org/10.1016/j.toxrep.2023.12.006
dc.relation.referencesLandázuri, J. S. (2020). Estudio de las emisiones de NO2 por el método de combustión co-firing [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/48837
dc.relation.referencesLang, P. E., Carslaw, D. C., & Moller, S. J. (2019). A trend analysis approach for air quality network data. Atmospheric Environment: X, 2(March), 100030. https://doi.org/10.1016/j.aeaoa.2019.100030
dc.relation.referencesLavagnini, I., Badocco, D., Pastore, P., & Magno, F. (2011). Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits. Talanta, 87(1), 180–188. https://doi.org/10.1016/j.talanta.2011.09.059
dc.relation.referencesLee, H. J., Kuwayama, T., & FitzGibbon, M. (2023). Trends of ambient O3 levels associated with O3 precursor gases and meteorology in California: Synergies from ground and satellite observations. Remote Sensing of Environment, 284(November 2022), 113358. https://doi.org/10.1016/j.rse.2022.113358
dc.relation.referencesLópez, A. B. H., Torres-Duque, C. A., Arbeláez, M. P., Roa, N. Y. R., Riojas-Rodríguez, H., Sangrador, J. L. T., Herrera, V., & Rodríguez-Villamizar, L. A. (2024). Short-term effect of air pollution exposure on COPD exacerbations: a time series study in Bogota, Colombia. Air Quality, Atmosphere and Health, 17(12), 2775–2787. https://doi.org/10.1007/s11869-024-01600-8
dc.relation.referencesLorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., ... & Krol, M. (2017). Structural uncertainty in air mass factor calculation for NO 2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 10(3), 759-782. https://doi.org/10.5194/amt-10-759-2017
dc.relation.referencesMansour, Y., & Schain, M. (2001). Learning with maximum-entropy distributions. Machine Learning, 45(2), 123-145.
dc.relation.referencesMarín, D., Herrera, V., Piñeros-Jiménez, J. G., Rojas-Sánchez, O. A., Mangones, S. C., Rojas, Y., Cáceres, J., Agudelo-Castañeda, D. M., Rojas, N. Y., Belalcazar-Ceron, L. C., Ochoa-Villegas, J., Montes-Mejía, M. L., Lopera-Velasquez, V. M., Castillo-Navarro, S. M., Torres-Prieto, A., Baumgartner, J., & Rodríguez-Villamizar, L. A. (2025). Long-term exposure to PM2.5 and cardiorespiratory mortality: an ecological small-area study in five cities in Colombia. Ca
dc.relation.referencesMarmett, B., Carvalho, R. B., Nunes, R. B., & Rhoden, C. R. (2022). Exposure to O3 and NO2 in physically active adults: an evaluation of physiological parameters and health risk assessment. Environmental Geochemistry and Health, 44(12), 4269–4284. https://doi.org/10.1007/s10653-021-01194-5
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Calidad del Aire (p. 59). https://www.minambiente.gov.co/index.php/estrategia-nacional-de-calidad-del-aire-enca
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2025). La contaminación atmosférica en Colombia.
dc.relation.referencesMinisterio de Salud (2022). Plan Decenal de Salud Pública 2022-2031. In Ministerio de Salud (Issue 32, pp. 1–154). https://www.minsalud.gov.co/plandecenal/Paginas/PDSP-2022-2031.aspx
dc.relation.referencesMolina-Gómez, N. I., Calderón-Rivera, D. S., Sierra-Parada, R., Díaz-Arévalo, J. L., & López-Jiménez, P. A. (2021). Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá. International Journal of Biometeorology, 65(1), 119–132. https://doi.org/10.1007/s00484-020-01955-4
dc.relation.referencesMphale, O., & Narasimhan, V. L. (2022). Comparative Forecasts of Confirmed COVID-19 Cases in Botswana Using Box-Jenkin’s ARIMA and Exponential Smoothing State-Space Models. In Recurrent Neural Networks (1st ed., pp. 355–381). Taylor & Francis Group.
dc.relation.referencesNaghan, D. J., Neisi, A., Goudarzi, G., Dastoorpoor, M., Fadaei, A., & Angali, K. A. (2022). Estimation of the effects PM2.5, NO2, O3 pollutants on the health of Shahrekord residents based on AirQ+ software during (2012–2018). Toxicology Reports, 9(March), 842–847. https://doi.org/10.1016/j.toxrep.2022.03.045
dc.relation.referencesObservatorio Ambiental de Bogotá. (2021). Descubre cómo está la concentración de Ozono en el aire de Bogotá. https://oab.ambientebogota.gov.co/concentracion-de-ozono-en-el-aire-de-bogota-esta-dentro-de-los-niveles-permisibles/
dc.relation.referencesOrellano, P., Reynoso, J., Quaranta, N., Bardach, A., Ciapponi, A., Investigaciones, C. De, Nicolás, S., Tecnológica, U., Conicet, N., & Nicolás, S. (2020). Short-term exposure to particulate matter ( PM 10 and PM 2 . 5 ), nitrogen dioxide ( NO 2 ), and ozone ( O 3 ) and all-cause and cause-specific mortality : Systematic review and meta -analysis. Environment International, 142(December 2019), 105876. https://doi.org/10.1016/j.envint.2020.105876
dc.relation.referencesOrganización Mundial de la Salud. (2021a). Contaminación del aire ambiente (exterior). Contaminación Del Aire Ambiente (Exterior). https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
dc.relation.referencesOrganización Mundial de la Salud. (2021b). Directrices mundiales de la OMS sobre la calidad del aire Resumen ejecutivo. Repositorio Institucional Para Compartir Información. OMS, 1–16. https://iris.who.int/bitstream/handle/10665/346062/9789240035461-spa.pdf
dc.relation.referencesOrtiz, E. Y., Keller, C. A., Cardenas, B., Saenz, H. E., Wakabayashi, K., Seddon, J., Castillero, E., Retama, A., Hernandez, L. A., & Grajales, F. (2021). Combination of GEOS-CF model with Machine Learning as a tool for forecasting regional pollution in Bogota. 8th Congreso Colombiano y Conferencia Internacional En Calidad de Aire y Salud Publica, CASAP 2021 - Proceedings, 1–4. https://doi.org/10.1109/CASAP54985.2021.9703381
dc.relation.referencesPachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., Meneses, S., Chaparro, R., Nedbor-Gross, R., & Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049
dc.relation.referencesPalacios, E. K. M. (2019). Air pollution, everyone’s problem | La contaminación del aire, un problema de todos. Revista Facultad de Medicina, 67(2), 189–191. https://www-scopus-com.ezproxy.uamerica.edu.co/record/display.uri?eid=2-s2.0-85073411899&origin=resultslist&sort=plf-f&src=s&st1=Contaminación+del+aire&sid=59c37259f18fb89882ce5a7ca3102fe9&sot=b&sdt=b&sl=37&s=TITLE-ABS-KEY%28Contaminación+del+aire%29&relp
dc.relation.referencesPardo Amaya, D., & Samuel, S. (2022). Assessment of the Impact of Vehicle Emissions on Air Quality Changes during COVID-19 Lockdown in Bogota, Colombia. SAE Technical Papers, 2022, 1–7. https://doi.org/10.4271/2022-01-0583
dc.relation.referencesParmentier, B. (2014). Characterization of land transitions patterns from multivariate time series using seasonal trend analysis and principal component analysis. Remote Sensing, 6(12), 12639–12665. https://doi.org/10.3390/rs61212639
dc.relation.referencesPeluso, A., Rastogi, D., Klasky, H. B., Logan, J., Maguire, D., Grant, J., Christian, B., & Hanson, H. A. (2024). Environmental determinants of health: Measuring multiple physical environmental exposures at the United States census tract level. Health and Place, 89(June), 103303. https://doi.org/10.1016/j.healthplace.2024.103303
dc.relation.referencesPeng, H., Wang, S., & Wang, X. (2008). Consistency and asymptotic distribution of the Theil-Sen estimator. Journal of Statistical Planning and Inference, 138(6), 1836–1850. https://doi.org/10.1016/j.jspi.2007.06.036
dc.relation.referencesPierpaolo Mudu, Michal Krzyżanowski, & Christian Gapp. (2023). Evaluación de impacto en salud de la contaminación del aire: Manual de introducción a AirQ+. https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/manual-intro_es_web_v1.pdf?sfvrsn=e98582bb_3&download=true
dc.relation.referencesPineda, A. L. (2014). Simple atmospheric dispersion model to estimate hourly ground-level nitrogen dioxide and ozone concentrations at urban scale. Environmental Modelling and Software, 59, 127–134. https://doi.org/10.1016/j.envsoft.2014.05.016
dc.relation.referencesPineda, A. L., & Venegas, L. E. (2013). Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO 2 concentrations. Atmospheric Research, 120–121, 147–154. https://doi.org/10.1016/j.atmosres.2012.08.010
dc.relation.referencesPineda Rojas, A.L., Venegas, L. E. (2015). Modelo de calidad del aire para evaluar las concentraciones de NO2 y O3 en áreas urbanas. 074(XII Congreso Argentino de Meteorología (CONGREMET XII)), 2015.
dc.relation.referencesPlatikanov, S., Terrado, M., Pay, M. T., Soret, A., & Tauler, R. (2022). Understanding temporal and spatial changes of O3 or NO2 concentrations combining multivariate data analysis methods and air quality transport models. Science of the Total Environment, 806(2). https://doi.org/10.1016/j.scitotenv.2021.150923
dc.relation.referencesQiu, M., Zigler, C., & Selin, N. E. (2022). Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. Atmospheric Chemistry and Physics, 22(16), 10551–10566. https://doi.org/10.5194/acp-22-10551-2022
dc.relation.referencesQuiroga, J. M. (2021). DIAGNOSTICO Y ESTADO ACTUAL ESTACIONES RMCAB LOCALIZACIÓN DE LAS ESTACIONES DE LA RMCAB ESTACION CARVAJAL .
dc.relation.referencesRamírez, O., Sánchez de la Campa, A. M., Amato, F., Catacolí, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045
dc.relation.referencesRincón Rueda, G. A., & Murad Pedraza, J. A. (2023). Análisis estadístico de los efectos de la cuarentena por covid 19 en la calidad del aire de Bogotá y 20 ciudades del mundo (enero a julio de 2020). Revista EIA, 20(40), 1–6. https://doi.org/10.24050/reia.v20i40.1701
dc.relation.referencesRitz, B., Hoffmann, B., & Annette, P. (2019). The Effects of Fine Dust, Ozone, and Nitrogen Dioxide on Health.pdf. Deutsches Arzteblatt International, 51–52, 881–886. https://doi.org/https://doi.org/10.3238/arztebl.2019.0881
dc.relation.referencesRodríguez-Villamizar, L. A., Rojas-Roa, N. Y., Blanco-Becerra, L. C., Herrera-Galindo, V. M., & Fernández-Niño, J. A. (2018). Short-term effects of air pollution on respiratory and circulatory morbidity in colombia 2011–2014: A multi-city, time-series analysis. International Journal of Environmental Research and Public Health, 15(8). https://doi.org/10.3390/ijerph15081610
dc.relation.referencesRodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w
dc.relation.referencesRomero-Lankao, P., Qin, H., & Borbor-Cordova, M. (2013). Exploration of health risks related to air pollution and temperature in three Latin American cities. Social Science and Medicine, 83, 110–118. https://doi.org/10.1016/j.socscimed.2013.01.009
dc.relation.referencesRovira, J., Domingo, J. L., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of the Total Environment, 703, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538
dc.relation.referencesSahai, A. K., Rath, N., Sood, V., & Singh, M. P. (2020). ARIMA modelling & forecasting of COVID-19 in top five affected countries. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 1419–1427. https://doi.org/10.1016/j.dsx.2020.07.042
dc.relation.referencesSaldarriaga O., G. (2012). Sensibilidad de la contaminación fotoquímica en Bogotá a la Oscilación del Sur El Niño (ENSO) [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/10576/
dc.relation.referencesSampedro, J., Waldhoff, S. T., Van de Ven, D. J., Pardo, G., Van Dingenen, R., Arto, I., del Prado, A., & Sanz, M. J. (2020). Future impacts of ozone driven damages on agricultural systems. Atmospheric Environment, 231(April). https://doi.org/10.1016/j.atmosenv.2020.117538
dc.relation.referencesSandu, A., Daescu, D. N., Carmichael, G. R., & Chai, T. (2005). Adjoint sensitivity analysis of regional air quality models. Journal of Computational Physics, 204(1), 222–252. https://doi.org/10.1016/j.jcp.2004.10.011
dc.relation.referencesSayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., & Jung, J. (2020). Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks, 121, 396–408. https://doi.org/10.1016/j.neunet.2019.09.033
dc.relation.referencesSchlenger, J. (2024). Random Forest. Computer Science in Sport, 201–207. https://doi.org/10.1007/978-3-662-68313-2_24
dc.relation.referencesSecretaría de salud. (2025). Observatorio de Salud de Bogotá, datos abierto gobierno transparente- SALUDATA. Datos de Salud. https://saludata.saludcapital.gov.co/osb/
dc.relation.referencesSecretaria Distrital de Ambiente. (2024). Informe Anual de Monitoreo de la de Calidad del Aire de 2023.
dc.relation.referencesSecretaria Distrital de Ambiente. (2025). Red de Monitoreo de Calidad del Aire de Bogotá- RMCAB. http://201.245.192.252:81/Report/stationreport
dc.relation.referencesSeguel, R. J., Gallardo, L., Osses, M., Rojas, N. Y., Nogueira, T., Menares, C., de Fatima Andrade, M., Belalcázar, L. C., Carrasco, P., Eskes, H., Fleming, Z. L., Huneeus, N., Ibarra-Espinosa, S., Landulfo, E., Leiva, M., Mangones, S. C., Morais, F. G., Moreira, G. A., Pantoja, N., … Yoshida, A. C. (2022). Photochemical sensitivity to emissions and local meteorology in Bogotá, Santiago, and São Paulo. Elementa: Science of the Anthropocene, 10(1). https://doi.org/10.1525/elementa.2021.00044
dc.relation.referencesSeinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics. From Air Pollution to Climate Change (Second Edi). John wiley & sons, inc.
dc.relation.referencesSeong, B. (2020). Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models. Economic Modelling, 91(February), 463–468. https://doi.org/10.1016/j.econmod.2020.06.020
dc.relation.referencesShi, Y. (2022). Forecasting mortality rates with the penalized exponential smoothing state space model. Journal of the Operational Research Society, 73(5), 955–968. https://doi.org/10.1080/01605682.2021.1892465
dc.relation.referencesSicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J. J. D., & Calatayud, V. (2020). Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 735, 139542. https://doi.org/10.1016/j.scitotenv.2020.139542
dc.relation.referencesSilva, C., Siciliano, B., Carvalho, N., Corrêa, S., & Arbilla, G. (2019). Modelos Fotoquímicos Simples Como Ferramenta Para O Gerenciamento Da Qualidade Do Ar. Química Nova, 42(3), 273–282. https://doi.org/10.21577/0100-4042.20170343
dc.relation.referencesSimões, J., Bernardo, A., Lima Gonçalves, L., & Brito, J. (2025). Assessment of air pollution and mortality in Portugal using AirQ+ and the effects of COVID-19 on their relationship. Scientific Reports. https://doi.org/10.1038/s41598-025-97704-x
dc.relation.referencesTarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O., Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., … Neu, J. L. (2019). Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa, 7(39). https://doi.org/10.1525/elementa.376
dc.relation.referencesTarmanini, C., Sarma, N., Gezegin, C., & Ozgonenel, O. (2023). Short term load forecasting based on ARIMA and ANN approaches. Energy Reports, 9, 550–557. https://doi.org/10.1016/j.egyr.2023.01.060
dc.relation.referencesTello-cifuentes, L., & Díaz-paz, J. P. (2021). Análisis de la contaminación ambiental usando técnicas de teledetección y análisis de componentes principales. Tecnológicas, 24(50). https://doi.org/https://doi.org/10.22430/22565337.1710
dc.relation.referencesTiwari, S., & Agrawal, M. (2018). Ozone Concentrations in Troposphere: Historical and Current Perspectives. In Tropospheric Ozone and its Impacts on Crop Plants: A Threat to Future Global Food Security (pp. 1–29). Springer International Publishing. https://doi.org/10.1007/978-3-319-71873-6_1
dc.relation.referencesTudor, C. (2022). Ozone pollution in London and Edinburgh: spatiotemporal characteristics, trends, transport and the impact of COVID-19 control measures. Heliyon, 8(11), e11384. https://doi.org/10.1016/j.heliyon.2022.e11384
dc.relation.referencesVallero, D. A. (2019). Air pollution dispersion models. In Air Pollution Calculations (pp. 429–448). Elsevier. https://doi.org/10.1016/b978-0-12-814934-8.00014-4
dc.relation.referencesVardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: A review. Atmospheric Environment, 37(2), 155–182. https://doi.org/10.1016/S1352-2310(02)00857-9
dc.relation.referencesVijayaraghavan, K., Cho, S., Morris, R., Spink, D., Jung, J., Pauls, R., & Duffett, K. (2016). Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios. Atmospheric Environment, 141, 209–218. https://doi.org/10.1016/j.atmosenv.2016.06.053
dc.relation.referencesWatson, L., Lacressonnière, G., Gauss, M., Engardt, M., Andersson, C., Josse, B., Marécal, V., Nyiri, A., Sobolowski, S., Siour, G., Szopa, S., & Vautard, R. (2016). Impact of emissions and +2 °C climate change upon future ozone and nitrogen dioxide over Europe. Atmospheric Environment, 142, 271–285. https://doi.org/10.1016/j.atmosenv.2016.07.051
dc.relation.referencesWesterlund, J., Urbain, J. P., & Bonilla, J. (2014). Application of air quality combination forecasting to Bogota. Atmospheric Environment, 89, 22–28. https://doi.org/10.1016/j.atmosenv.2014.02.015
dc.relation.referencesWilliams, M. L., Atkinson, R. W., Anderson, H. R., & Kelly, F. J. (2014). Associations between daily mortality in London and combinedoxidant capacity, ozone and nitrogen dioxide. Air Qual Atmos Health, 7, 407–414. DOI 10.1007/s11869-014-0249-8%0A
dc.relation.referencesWorld Health Organization. (2003). Health Aspects of Air Pollution with Particulate Matter , Ozone and Nitrogen Dioxide (Issue January).
dc.relation.referencesWorld Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
dc.relation.referencesZhang, L., Lin, J., Qiu, R., Hu, X., Zhang, H., Chen, Q., Tan, H., Lin, D., & Wang, J. (2018). Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecological Indicators, 95(August), 702–710. https://doi.org/10.1016/j.ecolind.2018.08.032
dc.relation.referencesZhang, R., Sarwar, G., C, F. J., & Lau, A. K. H. (2013). Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River. Atmospheric Research, 132–133(2), 332–344. https://doi.org/10.1016/j.atmosres.2013.06.001
dc.relation.referencesZhang, X., Osei, F., Stein, A., Cheng, C., & Maji, K. J. (2022). Temporal and spatial evolution of short-term exposure to ozone pollution: Its health impacts in China based on a meta-analysis. Journal of Cleaner Production, 373(May), 133938. https://doi.org/10.1016/j.jclepro.2022.133938
dc.relation.referencesZhang, Y., Bocquet, M., Mallet, V., Seigneur, C., & Baklanov, A. (2012). Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment, 60, 632–655. https://doi.org/10.1016/j.atmosenv.2012.06.031
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.proposalImpactos en saludspa
dc.subject.proposalDAUMOD-GRSspa
dc.subject.proposalO3spa
dc.subject.proposalNO2spa
dc.subject.proposalAIRQ+spa
dc.subject.proposalHealth impactseng
dc.subject.proposalDAUMOD-GRSeng
dc.subject.proposalO3eng
dc.subject.proposalNO2eng
dc.subject.proposalAIRQ+eng
dc.subject.unescoDeterioro ambientalspa
dc.subject.unescoEnvironmental degradationeng
dc.subject.unescoPolítica ambientalspa
dc.subject.unescoEnvironmental policyeng
dc.subject.unescoMedio urbanospa
dc.subject.unescoUrban environmenteng
dc.titleImpactos del dióxido de nitrógeno (NO2) y ozono (O3) en salud para la ciudad de Bogotáspa
dc.title.translatedHealth impacts of nitrogen dioxide (NO2) and ozone (O3) in the city of Bogotáeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis_Monica Herrera_9092025.pdf
Tamaño:
6.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: