Impactos del dióxido de nitrógeno (NO2) y ozono (O3) en salud para la ciudad de Bogotá
| dc.contributor.advisor | Rojas Roa, Néstor Yezid | spa |
| dc.contributor.advisor | Pineda Rojas, Andrea Laura | spa |
| dc.contributor.author | Herrera Escalante, Mónica Tatiana | spa |
| dc.contributor.researchgroup | Calidad del Aire | spa |
| dc.coverage.city | Bogotá | spa |
| dc.coverage.country | Colombia | spa |
| dc.coverage.region | Cundinamarca | spa |
| dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000838 | |
| dc.date.accessioned | 2025-12-05T13:37:56Z | |
| dc.date.available | 2025-12-05T13:37:56Z | |
| dc.date.issued | 2025-12-04 | |
| dc.description | ilustraciones, fotografías, gráficas, mapas, tablas | spa |
| dc.description.abstract | Este estudio evaluó la calidad del aire en Bogotá y sus impactos en salud asociados al dióxido de nitrógeno (NO2) y al ozono troposférico (O3) entre 2013 y 2023, integrando datos de la Red de Monitoreo de Calidad del Aire (RMCAB), simulaciones con el modelo DAUMOD-GRS y estimaciones epidemiológicas mediante AirQ+®. Los resultados muestran que, aunque las concentraciones de NO2 no superaron el límite nacional de 60 µg/m3, se mantuvieron por encima de las guía de la OMS (10–20 µg/m³), con 2938 días de excedencia sobre 25 µg/m3 y hasta 87 días consecutivos por encima de este valor. En el caso del O3, se registraron 127 días con concentraciones superiores a 100 µg/m3 y 30 días por encima de 120 µg/m3, alcanzando episodios de hasta 10 días consecutivos. En cuanto a las tendencias, el NO2 presentó una reducción significativa de –0.29 µg/m³ por año, con descensos más marcados en Ferias (–1.84 µg/m3/año) y aumentos en Kennedy (+0.82 µg/m3/año), mientras que el O3 evidenció un incremento de 0.82 µg/m3/año, especialmente estaciones como Usaquén (+0.98 µg/m3/año), (Tunal (+0.94 µg/m3/año) y Kennedy (+1.48 µg/m3/año). La evaluación en salud reveló a Kennedy como la localidad de mayor carga (2.576 muertes atribuibles a largo plazo y 769 a corto plazo) y un impacto mayor en mujeres. En cuanto a la simulación, los resultados muestran un desempeño bueno del modelo DAUMOD-GRS para obtener la distribución espacial de las concentraciones horarias de NO2 y O3 en la ciudad (FA2 entre 53–73 %, NMSE 0.33–0.64 y FB entre –0.19 y 0.10). Finalmente, los escenarios de reducción evidenciaron que la eliminación de fuentes móviles a diésel y la transición total hacia vehículos eléctricos y a gas natural tendrían el mayor efecto en la reducción de NO2 y, en consecuencia, de la mortalidad atribuible en la ciudad. (Texto tomado de la fuente). | spa |
| dc.description.abstract | This study evaluated air quality in Bogotá and its health impacts associated to nitrogen dioxide (NO2) and tropospheric ozone (O3) between 2013 and 2023, integrating data from the Air Quality Monitoring Network (Red de Monitoreo de Calidad de Aire de Bogotá - RMCAB) simulations with the DAUMOD-GRS model, and epidemiological estimates using AirQ+®. The results show that although NO2 concentrations did not exceed the national limit of 60 µg/m3, they consistently remained above the WHO guidelines (10–20 µg/m³), with 2,938 days surpassing 25 µg/m3 and up to 87 consecutive days above this value. For O3, 127 days recorded concentrations higher than 100 µg/m3 and 30 days above 120 µg/m3, with episodes lasting up to 10 consecutive days. In terms of trends, NO2 showed a significant decrease of –0.29 µg/m3 per year, with sharper declines in Ferias (–1.84 µg/m3/year) and increases in Kennedy (+0.82 µg/m3/year), while O3 presented an overall increase of 0.82 µg/m3/year, particularly in stations such as Usaquen (+0.98) Tunal (+0.94 µg/m3/year) and Kennedy (+1.48 µg/m3/year). The health assessment identified Kennedy as the locality with the highest burden (2.576 attributable deaths in the long term and 769 in the short term), with a greater impact observed among women. Regarding the simulation, the DAUMOD-GRS model showed good performance in reproducing the spatial distribution of hourly NO2 and O3 concentrations in the city (FA2 between 53–73%, NMSE 0.33–0.64, and FB between –0.19 and 0.10). Finally, the emission reduction scenarios revealed that eliminating diesel-powered mobile sources and fully transitioning to electric and natural gas vehicles would have the greatest effect in reducing NO2 levels and, consequently, the attributable mortality in Bogotá. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
| dc.description.researcharea | Calidad del aire | spa |
| dc.format.extent | xii, 106 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89184 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Ingeniería Química y Ambiental | spa |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | spa |
| dc.relation.references | AirQ+. (2025). AirQ+_What is AirQ+ (p. 6). https://www.who.int/es/tools/airq | |
| dc.relation.references | Ajayi, S. A., Adams, C. A., Dumedah, G., Adebanji, A. O., & Ackaah, W. (2024). Modelling of risk of health burden based on residents’ exposure near trafficked intersection. Journal of Transport and Health, 37(May), 101833. https://doi.org/10.1016/j.jth.2024.101833 | |
| dc.relation.references | Alabdulrazzaq, H., Alenezi, M. N., Rawajfih, Y., Alghannam, B. A., Al-Hassan, A. A., & Al-Anzi, F. S. (2021). On the accuracy of ARIMA based prediction of COVID-19 spread. Results in Physics, 27, 104509. https://doi.org/10.1016/j.rinp.2021.104509 | |
| dc.relation.references | Alcaldía Mayor de Bogotá. (2024). Bogotá. https://bogota.gov.co/mi-ciudad | |
| dc.relation.references | Alcaldía Mayor de Bogotá, & Secretaria Distrital de Ambiente. (2021). Informe Anual de Calidad del Aire de Bogota 2020, Red de Monitoreo de Calidad del Aire de Bogotá RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe_Anual_2009_RMCAB.pdf | |
| dc.relation.references | Amini, H., Yousefian, F., Faridi, S., Andersen, Z. J., Calas, E., Castro, A., Cervantes-Martínez, K., Cole-Hunter, T., Corso, M., Dragic, N., Evangelopoulos, D., Gapp, C., Hassanvand, M. S., Kim, I., Le Tertre, A., Medina, S., Miller, B., Montero, S., Requia, W. J., … Mudu, P. (2024). Two Decades of Air Pollution Health Risk Assessment: Insights From the Use of WHO’s AirQ and AirQ+ Tools. Public Health Reviews , 45(June), 1–13. https://doi.org/10.3389/phrs.2024.1606969 | |
| dc.relation.references | Aristizábal, J. P., Rojas, N. Y., Clappier, A., & Blond, N. (2010). Determinación De Las Condiciones De Frontera Para El Modelo De Calidad De Aire De Bogotá Empleando Chimere. May 2014. | |
| dc.relation.references | Bai, L., Wang, J., Ma, X., & Lu, H. (2018). Air Pollution Forecasts: An Overview. International Journal of Environmental Research and Public Health, 15(4), 2–44. https://doi.org/10.3390/ijerph15040780 | |
| dc.relation.references | Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755 | |
| dc.relation.references | Baquero, F. (2023). Análisis de la variabilidad estacional, interanual y tendencia del ozono (O3) y sus precursores, así como la dinámica oxidativa de la atmósfera en Bogotá entre 2010 y 2020. Universidad Nacional de Colombia. | |
| dc.relation.references | Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief, 29, 105340. https://doi.org/10.1016/j.dib.2020.105340 | |
| dc.relation.references | Blackman, A., Bonilla, J. A., & Villalobos, L. (2023). Quantifying COVID-19’s silver lining: Avoided deaths from air quality improvements in Bogotá. Journal of Environmental Economics and Management, 117(July 2021). https://doi.org/10.1016/j.jeem.2022.102749 | |
| dc.relation.references | Brunekreef, B., Strak, M., Chen, J., Andersen, Z. J., Atkinson, R., Bauwelinck, M., Bellander, T., Boutron, M.-C., Brandt, J., Carey, I., Cesaroni, G., Forastiere, F., Fecht, D., Gulliver, J., Hertel, O., Hoffmann, B., de Hoogh, K., Houthuijs, D., Hvidtfeldt, U., … Hoek, G. (2021). Mortality and Morbidity Effects of Long-Term Exposure to Low-Level PM(2.5), BC, NO(2), and O(3): An Analysis of European Cohorts in the ELAPSE Project. Research Report (Health Effects Institute), 2021(208), 1–127. | |
| dc.relation.references | Butler, T. M., Stock, Z. S., Russo, M. R., Denier Van Der Gon, H. A. C., & Lawrence, M. G. (2012). Megacity ozone air quality under four alternative future scenarios. Atmospheric Chemistry and Physics, 12(10), 4413–4428. https://doi.org/10.5194/acp-12-4413-2012 | |
| dc.relation.references | Cárdenas, J. E. P. (2017). LA CALIDAD DEL AIRE EN COLOMBIA : UN PROBLEMA DE SALUD PÚBLICA , UN PROBLEMA DE TODOS. Revista Biosalud, 16(2), 5–6. https://doi.org/10.17151/biosa.2017.16.2.1 | |
| dc.relation.references | Carmichael, G. R., Sandu, A., Chai, T., Daescu, D. N., Constantinescu, E. M., & Tang, Y. (2008). Predicting air quality: Improvements through advanced methods to integrate models and measurements. Journal of Computational Physics, 227(7), 3540–3571. https://doi.org/10.1016/j.jcp.2007.02.024 | |
| dc.relation.references | Carriazo, F., & Gómez-Mahecha, J. A. (2018). The demand for air quality: Evidence from the housing market in Bogotá, Colombia. Environment and Development Economics, 23(2), 121–138. https://doi.org/10.1017/S1355770X18000050 | |
| dc.relation.references | Casallas, A., Cabrera, A., Guevara-Luna, M. A., Tompkins, A., González, Y., Aranda, J., Belalcazar, L. C., Mogollon-Sotelo, C., Celis, N., Lopez-Barrera, E., Peña-Rincon, C. A., & Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. Science of the Total Environment, 906(August 2023). https://doi.org/10.1016/j.scitotenv.2023.167350 | |
| dc.relation.references | Casallas, A., Castillo-Camacho, M. P., Guevara-Luna, M. A., González, Y., Sanchez, E., & Belalcazar, L. C. (2022). Spatio-temporal analysis of PM2.5 and policies in Northwestern South America. Science of the Total Environment, 852(May). https://doi.org/10.1016/j.scitotenv.2022.158504 | |
| dc.relation.references | Casallas, A., Castillo-camacho, M. P., Sanchez, E. R., González, Y., Celis, N., Mendez-espinosa, J. F., Belalcazar, L. C., & Ferro, C. (2022). Surface, satellite ozone changes in Northern South America during low anthropogenic emission conditions: a Machine Learning approach. SSRN: | |
| dc.relation.references | Casallas, A., Castillo-Camacho, M. P., Sanchez, E. R., González, Y., Celis, N., Mendez-Espinosa, J. F., Belalcazar, L. C., & Ferro, C. (2023). Surface, satellite ozone variations in Northern South America during low anthropogenic emission conditions: a machine learning approach. Air Quality, Atmosphere and Health, 16(4), 745–764. https://doi.org/10.1007/s11869-023-01303-6 | |
| dc.relation.references | Chang, J. C., & Hanna, S. R. (2004). Air quality model performance evaluation. Meteorology and Atmospheric Physics, 87(1–3), 167–196. https://doi.org/10.1007/s00703-003-0070-7 | |
| dc.relation.references | Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J. F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., & Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. Elementa, 2, 1–28. https://doi.org/10.12952/journal.elementa.000029 | |
| dc.relation.references | Davuliene, L., Jasineviciene, D., Garbariene, I., Andriejauskiene, J., Ulevicius, V., & Bycenkiene, S. (2021). Long-term air pollution trend analysis in the South-eastern Baltic region, 1981–2017. Atmospheric Research, 247(May 2020), 105191. https://doi.org/10.1016/j.atmosres.2020.105191 | |
| dc.relation.references | Davuliene, L., Sakalys, J., Dudoitis, V., Reklaite, A., & Ulevicius, V. (2019). Long-term black carbon variation in the South-Eastern Baltic Region in 2008–2015. Atmospheric Pollution Research, 10(1), 123–133. https://doi.org/10.1016/j.apr.2018.06.013 | |
| dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2022). Boletín Técnico Encuesta Multipropósito Bogotá-Cundinamarca (EM) 2021 (p. 1). https://www.dane.gov.co/files/investigaciones/multi/Boletin_EM_2021.pdf | |
| dc.relation.references | DNP. (2018). Conpes 3943. Consejo Nacional de Politica Economica y Social Republica de Colombia Departamento Nacional de Planeación. (p. 115). https://www.cancilleria.gov.co/documento-conpes-estrategia-atencion-migracion-venezuela | |
| dc.relation.references | EPA. (2000). El Smog ¿A Quién Perjudica ? Lo que usted necesita saber acerca del ozono y su salud. | |
| dc.relation.references | EPA. (2007). Un resumen de la Ley de Aire Limpio. Research Triangle, 1–27. https://espanol.epa.gov/sites/default/files/2020-05/documents/050720_cleanairact_un_resumen_de_la_ley_de_aire_limpio.pdf | |
| dc.relation.references | EPA. (2024). El impacto del dióxido de carbono en la calidad del aire. Agencia de Protección Ambiental. https://espanol.epa.gov/cai/el-impacto-del-dioxido-de-nitrogeno-en-la-calidad-del-aire-interior | |
| dc.relation.references | Eyring, V., Arblaster, J. M., Cionni, I., Sedláček, J., Perlwitz, J., Young, P. J., Bekki, S., Bergmann, D., Cameron-Smith, P., Collins, W. J., Faluvegi, G., Gottschaldt, K. D., Horowitz, L. W., Kinnison, D. E., Lamarque, J. F., Marsh, D. R., Saint-Martin, D., Shindell, D. T., Sudo, K., … Watanabe, S. (2013). Long-term ozone changes and associated climate impacts in CMIP5 simulations. Journal of Geophysical Research Atmospheres, 118(10), 5029–5060. https://doi.org/10.1002/jgrd.50316 | |
| dc.relation.references | Ezimand, K., & Kakroodi, A. A. (2019). Prediction and spatio – Temporal analysis of ozone concentration in a metropolitan area. Ecological Indicators, 103(April), 589–598. https://doi.org/10.1016/j.ecolind.2019.04.059 | |
| dc.relation.references | García Milán, D. R. (2024). Predicción de ozono troposférico en Bogotá : un enfoque de Machine Learning Predicción de ozono troposférico en Bogotá : un enfoque de Machine Learning. Universidad Nacioal de Colombia. | |
| dc.relation.references | Gómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science and Policy, 114(September), 422–435. https://doi.org/10.1016/j.envsci.2020.09.009 | |
| dc.relation.references | Gonzále Castilo, Y. A. (2021). Evaluación del impacto en la calidad del aire generado por el aislamiento preventivo como medida frente al COVID-19 en tres ciudades de Colombia [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/80998/1030592627.2021.pdf?sequence=3&isAllowed=y | |
| dc.relation.references | González Riaño, V. C. (2016). Análisis del efecto de ozono de fin de semana en Bogotá [Universidad Nacional De Colombia]. http://www.bdigital.unal.edu.co/55908/ | |
| dc.relation.references | Grajales, J. F., & Baquero-Bernal, A. (2014). Inference of surface concentrations of nitrogen dioxide (NO2) in Colombia from tropospheric columns of the ozone measurement instrument (OMI). Atmosfera, 27(2), 193–214. https://doi.org/10.1016/S0187-6236(14)71110-5 | |
| dc.relation.references | Grell, G., & Baklanov, A. (2011). Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmospheric Environment, 45(38), 6845–6851. https://doi.org/10.1016/j.atmosenv.2011.01.017 | |
| dc.relation.references | Hassan, N. A., Hashim, Z., & Hashim, J. H. (2016). Impact of Climate Change on Air Quality and Public Health in Urban Areas. Asia Pacific Journal of Public Health, 28(2S), 38–48. https://doi.org/10.1177/1010539515592951 | |
| dc.relation.references | He, H., Liang, X. Z., Lei, H., & Wuebbles, D. J. (2016). Future U.S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design. Atmospheric Environment, 128, 124–133. https://doi.org/10.1016/j.atmosenv.2015.12.064 | |
| dc.relation.references | Herrera López, A. B., Rojas, N. Y., Riojas-Rodríguez, H., Texcalac-Sangrador, J. L., Torres-Duque, C. A., Herrera, A. C., Arbeláez, M. P., Herrera, V., & Rodríguez-Villamizar, L. A. (2024). Long-Term Effect of Air Pollution on COPD Exacerbations: AIREPOC Cohort in Bogotá, Colombia. Atmosphere, 15(12). https://doi.org/10.3390/atmos15121449 | |
| dc.relation.references | Hesterberg, T. W., Bunn, W. B., Mcclellan, R. O., Hamade, A. K., Christopher, M., & Valberg, P. A. (2009). Critical review of the human data on short-term nitrogen dioxide ( NO 2 ) exposures : Evidence for NO 2 no-effect levels. 39(2), 743–781. https://doi.org/10.3109/10408440903294945 | |
| dc.relation.references | Hoshyaripour, G., Brasseur, G., Andrade, M. F., Gavidia-Calderón, M., Bouarar, I., & Ynoue, R. Y. (2016). Prediction of ground-level ozone concentration in São Paulo, Brazil: Deterministic versus statistic models. Atmospheric Environment, 145, 365–375. https://doi.org/10.1016/j.atmosenv.2016.09.061 | |
| dc.relation.references | Hossain, M. S., Frey, H. C., Louie, P. K., & Lau, A. K. (2021). Combined effects of increased O3 and reduced NO2 concentrations on short-term air pollution health risks in Hong Kong. Environmental Pollution, 270(2), 116280. https://doi.org/10.1016/j.envpol.2020.116280 | |
| dc.relation.references | Huangfu, P., & Atkinson, R. (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment International, 144(July), 105998. https://doi.org/10.1016/j.envint.2020.105998 | |
| dc.relation.references | Instituto Nacional de Salud de Colombia. (2020). Boletín Epidemiológico Semanal. http://ondiscapacidad.minsalud.gov.co/indicadores/Paginas/Mapa-dinamico.aspx | |
| dc.relation.references | Kazemi, Z., Kazemi, Z., Jafari, A. J., Farzadkia, M., Hosseini, J., Amini, P., Shahsavani, A., & Kermani, M. (2024). Estimating the health impacts of exposure to Air pollutants and the evaluation of changes in their concentration using a linear model in Iran. Toxicology Reports, 12(December 2023), 56–64. https://doi.org/10.1016/j.toxrep.2023.12.006 | |
| dc.relation.references | Landázuri, J. S. (2020). Estudio de las emisiones de NO2 por el método de combustión co-firing [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/48837 | |
| dc.relation.references | Lang, P. E., Carslaw, D. C., & Moller, S. J. (2019). A trend analysis approach for air quality network data. Atmospheric Environment: X, 2(March), 100030. https://doi.org/10.1016/j.aeaoa.2019.100030 | |
| dc.relation.references | Lavagnini, I., Badocco, D., Pastore, P., & Magno, F. (2011). Theil-Sen nonparametric regression technique on univariate calibration, inverse regression and detection limits. Talanta, 87(1), 180–188. https://doi.org/10.1016/j.talanta.2011.09.059 | |
| dc.relation.references | Lee, H. J., Kuwayama, T., & FitzGibbon, M. (2023). Trends of ambient O3 levels associated with O3 precursor gases and meteorology in California: Synergies from ground and satellite observations. Remote Sensing of Environment, 284(November 2022), 113358. https://doi.org/10.1016/j.rse.2022.113358 | |
| dc.relation.references | López, A. B. H., Torres-Duque, C. A., Arbeláez, M. P., Roa, N. Y. R., Riojas-Rodríguez, H., Sangrador, J. L. T., Herrera, V., & Rodríguez-Villamizar, L. A. (2024). Short-term effect of air pollution exposure on COPD exacerbations: a time series study in Bogota, Colombia. Air Quality, Atmosphere and Health, 17(12), 2775–2787. https://doi.org/10.1007/s11869-024-01600-8 | |
| dc.relation.references | Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., ... & Krol, M. (2017). Structural uncertainty in air mass factor calculation for NO 2 and HCHO satellite retrievals. Atmospheric Measurement Techniques, 10(3), 759-782. https://doi.org/10.5194/amt-10-759-2017 | |
| dc.relation.references | Mansour, Y., & Schain, M. (2001). Learning with maximum-entropy distributions. Machine Learning, 45(2), 123-145. | |
| dc.relation.references | Marín, D., Herrera, V., Piñeros-Jiménez, J. G., Rojas-Sánchez, O. A., Mangones, S. C., Rojas, Y., Cáceres, J., Agudelo-Castañeda, D. M., Rojas, N. Y., Belalcazar-Ceron, L. C., Ochoa-Villegas, J., Montes-Mejía, M. L., Lopera-Velasquez, V. M., Castillo-Navarro, S. M., Torres-Prieto, A., Baumgartner, J., & Rodríguez-Villamizar, L. A. (2025). Long-term exposure to PM2.5 and cardiorespiratory mortality: an ecological small-area study in five cities in Colombia. Ca | |
| dc.relation.references | Marmett, B., Carvalho, R. B., Nunes, R. B., & Rhoden, C. R. (2022). Exposure to O3 and NO2 in physically active adults: an evaluation of physiological parameters and health risk assessment. Environmental Geochemistry and Health, 44(12), 4269–4284. https://doi.org/10.1007/s10653-021-01194-5 | |
| dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Calidad del Aire (p. 59). https://www.minambiente.gov.co/index.php/estrategia-nacional-de-calidad-del-aire-enca | |
| dc.relation.references | Ministerio de Ambiente y Desarrollo Sostenible. (2025). La contaminación atmosférica en Colombia. | |
| dc.relation.references | Ministerio de Salud (2022). Plan Decenal de Salud Pública 2022-2031. In Ministerio de Salud (Issue 32, pp. 1–154). https://www.minsalud.gov.co/plandecenal/Paginas/PDSP-2022-2031.aspx | |
| dc.relation.references | Molina-Gómez, N. I., Calderón-Rivera, D. S., Sierra-Parada, R., Díaz-Arévalo, J. L., & López-Jiménez, P. A. (2021). Analysis of incidence of air quality on human health: a case study on the relationship between pollutant concentrations and respiratory diseases in Kennedy, Bogotá. International Journal of Biometeorology, 65(1), 119–132. https://doi.org/10.1007/s00484-020-01955-4 | |
| dc.relation.references | Mphale, O., & Narasimhan, V. L. (2022). Comparative Forecasts of Confirmed COVID-19 Cases in Botswana Using Box-Jenkin’s ARIMA and Exponential Smoothing State-Space Models. In Recurrent Neural Networks (1st ed., pp. 355–381). Taylor & Francis Group. | |
| dc.relation.references | Naghan, D. J., Neisi, A., Goudarzi, G., Dastoorpoor, M., Fadaei, A., & Angali, K. A. (2022). Estimation of the effects PM2.5, NO2, O3 pollutants on the health of Shahrekord residents based on AirQ+ software during (2012–2018). Toxicology Reports, 9(March), 842–847. https://doi.org/10.1016/j.toxrep.2022.03.045 | |
| dc.relation.references | Observatorio Ambiental de Bogotá. (2021). Descubre cómo está la concentración de Ozono en el aire de Bogotá. https://oab.ambientebogota.gov.co/concentracion-de-ozono-en-el-aire-de-bogota-esta-dentro-de-los-niveles-permisibles/ | |
| dc.relation.references | Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., Ciapponi, A., Investigaciones, C. De, Nicolás, S., Tecnológica, U., Conicet, N., & Nicolás, S. (2020). Short-term exposure to particulate matter ( PM 10 and PM 2 . 5 ), nitrogen dioxide ( NO 2 ), and ozone ( O 3 ) and all-cause and cause-specific mortality : Systematic review and meta -analysis. Environment International, 142(December 2019), 105876. https://doi.org/10.1016/j.envint.2020.105876 | |
| dc.relation.references | Organización Mundial de la Salud. (2021a). Contaminación del aire ambiente (exterior). Contaminación Del Aire Ambiente (Exterior). https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health | |
| dc.relation.references | Organización Mundial de la Salud. (2021b). Directrices mundiales de la OMS sobre la calidad del aire Resumen ejecutivo. Repositorio Institucional Para Compartir Información. OMS, 1–16. https://iris.who.int/bitstream/handle/10665/346062/9789240035461-spa.pdf | |
| dc.relation.references | Ortiz, E. Y., Keller, C. A., Cardenas, B., Saenz, H. E., Wakabayashi, K., Seddon, J., Castillero, E., Retama, A., Hernandez, L. A., & Grajales, F. (2021). Combination of GEOS-CF model with Machine Learning as a tool for forecasting regional pollution in Bogota. 8th Congreso Colombiano y Conferencia Internacional En Calidad de Aire y Salud Publica, CASAP 2021 - Proceedings, 1–4. https://doi.org/10.1109/CASAP54985.2021.9703381 | |
| dc.relation.references | Pachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., Meneses, S., Chaparro, R., Nedbor-Gross, R., & Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049 | |
| dc.relation.references | Palacios, E. K. M. (2019). Air pollution, everyone’s problem | La contaminación del aire, un problema de todos. Revista Facultad de Medicina, 67(2), 189–191. https://www-scopus-com.ezproxy.uamerica.edu.co/record/display.uri?eid=2-s2.0-85073411899&origin=resultslist&sort=plf-f&src=s&st1=Contaminación+del+aire&sid=59c37259f18fb89882ce5a7ca3102fe9&sot=b&sdt=b&sl=37&s=TITLE-ABS-KEY%28Contaminación+del+aire%29&relp | |
| dc.relation.references | Pardo Amaya, D., & Samuel, S. (2022). Assessment of the Impact of Vehicle Emissions on Air Quality Changes during COVID-19 Lockdown in Bogota, Colombia. SAE Technical Papers, 2022, 1–7. https://doi.org/10.4271/2022-01-0583 | |
| dc.relation.references | Parmentier, B. (2014). Characterization of land transitions patterns from multivariate time series using seasonal trend analysis and principal component analysis. Remote Sensing, 6(12), 12639–12665. https://doi.org/10.3390/rs61212639 | |
| dc.relation.references | Peluso, A., Rastogi, D., Klasky, H. B., Logan, J., Maguire, D., Grant, J., Christian, B., & Hanson, H. A. (2024). Environmental determinants of health: Measuring multiple physical environmental exposures at the United States census tract level. Health and Place, 89(June), 103303. https://doi.org/10.1016/j.healthplace.2024.103303 | |
| dc.relation.references | Peng, H., Wang, S., & Wang, X. (2008). Consistency and asymptotic distribution of the Theil-Sen estimator. Journal of Statistical Planning and Inference, 138(6), 1836–1850. https://doi.org/10.1016/j.jspi.2007.06.036 | |
| dc.relation.references | Pierpaolo Mudu, Michal Krzyżanowski, & Christian Gapp. (2023). Evaluación de impacto en salud de la contaminación del aire: Manual de introducción a AirQ+. https://cdn.who.int/media/docs/default-source/air-pollution-documents/air-quality-and-health/manual-intro_es_web_v1.pdf?sfvrsn=e98582bb_3&download=true | |
| dc.relation.references | Pineda, A. L. (2014). Simple atmospheric dispersion model to estimate hourly ground-level nitrogen dioxide and ozone concentrations at urban scale. Environmental Modelling and Software, 59, 127–134. https://doi.org/10.1016/j.envsoft.2014.05.016 | |
| dc.relation.references | Pineda, A. L., & Venegas, L. E. (2013). Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO 2 concentrations. Atmospheric Research, 120–121, 147–154. https://doi.org/10.1016/j.atmosres.2012.08.010 | |
| dc.relation.references | Pineda Rojas, A.L., Venegas, L. E. (2015). Modelo de calidad del aire para evaluar las concentraciones de NO2 y O3 en áreas urbanas. 074(XII Congreso Argentino de Meteorología (CONGREMET XII)), 2015. | |
| dc.relation.references | Platikanov, S., Terrado, M., Pay, M. T., Soret, A., & Tauler, R. (2022). Understanding temporal and spatial changes of O3 or NO2 concentrations combining multivariate data analysis methods and air quality transport models. Science of the Total Environment, 806(2). https://doi.org/10.1016/j.scitotenv.2021.150923 | |
| dc.relation.references | Qiu, M., Zigler, C., & Selin, N. E. (2022). Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. Atmospheric Chemistry and Physics, 22(16), 10551–10566. https://doi.org/10.5194/acp-22-10551-2022 | |
| dc.relation.references | Quiroga, J. M. (2021). DIAGNOSTICO Y ESTADO ACTUAL ESTACIONES RMCAB LOCALIZACIÓN DE LAS ESTACIONES DE LA RMCAB ESTACION CARVAJAL . | |
| dc.relation.references | Ramírez, O., Sánchez de la Campa, A. M., Amato, F., Catacolí, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045 | |
| dc.relation.references | Rincón Rueda, G. A., & Murad Pedraza, J. A. (2023). Análisis estadístico de los efectos de la cuarentena por covid 19 en la calidad del aire de Bogotá y 20 ciudades del mundo (enero a julio de 2020). Revista EIA, 20(40), 1–6. https://doi.org/10.24050/reia.v20i40.1701 | |
| dc.relation.references | Ritz, B., Hoffmann, B., & Annette, P. (2019). The Effects of Fine Dust, Ozone, and Nitrogen Dioxide on Health.pdf. Deutsches Arzteblatt International, 51–52, 881–886. https://doi.org/https://doi.org/10.3238/arztebl.2019.0881 | |
| dc.relation.references | Rodríguez-Villamizar, L. A., Rojas-Roa, N. Y., Blanco-Becerra, L. C., Herrera-Galindo, V. M., & Fernández-Niño, J. A. (2018). Short-term effects of air pollution on respiratory and circulatory morbidity in colombia 2011–2014: A multi-city, time-series analysis. International Journal of Environmental Research and Public Health, 15(8). https://doi.org/10.3390/ijerph15081610 | |
| dc.relation.references | Rodriguez-Villamizar, L. A., Rojas, Y., Grisales, S., Mangones, S. C., Cáceres, J. J., Agudelo-Castañeda, D. M., Herrera, V., Marín, D., Jiménez, J. G. P., Belalcázar-Ceron, L. C., Rojas-Sánchez, O. A., Ochoa Villegas, J., López, L., Rojas, O. M., Vicini, M. C., Salas, W., Orrego, A. Z., Castillo, M., Sáenz, H., … Rojas, N. Y. (2024). Intra-urban variability of long-term exposure to PM2.5 and NO2 in five cities in Colombia. Environmental Science and Pollution Research International, 31(2), 3207–3221. https://doi.org/10.1007/s11356-023-31306-w | |
| dc.relation.references | Romero-Lankao, P., Qin, H., & Borbor-Cordova, M. (2013). Exploration of health risks related to air pollution and temperature in three Latin American cities. Social Science and Medicine, 83, 110–118. https://doi.org/10.1016/j.socscimed.2013.01.009 | |
| dc.relation.references | Rovira, J., Domingo, J. L., & Schuhmacher, M. (2020). Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Science of the Total Environment, 703, 135538. https://doi.org/10.1016/j.scitotenv.2019.135538 | |
| dc.relation.references | Sahai, A. K., Rath, N., Sood, V., & Singh, M. P. (2020). ARIMA modelling & forecasting of COVID-19 in top five affected countries. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(5), 1419–1427. https://doi.org/10.1016/j.dsx.2020.07.042 | |
| dc.relation.references | Saldarriaga O., G. (2012). Sensibilidad de la contaminación fotoquímica en Bogotá a la Oscilación del Sur El Niño (ENSO) [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/10576/ | |
| dc.relation.references | Sampedro, J., Waldhoff, S. T., Van de Ven, D. J., Pardo, G., Van Dingenen, R., Arto, I., del Prado, A., & Sanz, M. J. (2020). Future impacts of ozone driven damages on agricultural systems. Atmospheric Environment, 231(April). https://doi.org/10.1016/j.atmosenv.2020.117538 | |
| dc.relation.references | Sandu, A., Daescu, D. N., Carmichael, G. R., & Chai, T. (2005). Adjoint sensitivity analysis of regional air quality models. Journal of Computational Physics, 204(1), 222–252. https://doi.org/10.1016/j.jcp.2004.10.011 | |
| dc.relation.references | Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., & Jung, J. (2020). Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks, 121, 396–408. https://doi.org/10.1016/j.neunet.2019.09.033 | |
| dc.relation.references | Schlenger, J. (2024). Random Forest. Computer Science in Sport, 201–207. https://doi.org/10.1007/978-3-662-68313-2_24 | |
| dc.relation.references | Secretaría de salud. (2025). Observatorio de Salud de Bogotá, datos abierto gobierno transparente- SALUDATA. Datos de Salud. https://saludata.saludcapital.gov.co/osb/ | |
| dc.relation.references | Secretaria Distrital de Ambiente. (2024). Informe Anual de Monitoreo de la de Calidad del Aire de 2023. | |
| dc.relation.references | Secretaria Distrital de Ambiente. (2025). Red de Monitoreo de Calidad del Aire de Bogotá- RMCAB. http://201.245.192.252:81/Report/stationreport | |
| dc.relation.references | Seguel, R. J., Gallardo, L., Osses, M., Rojas, N. Y., Nogueira, T., Menares, C., de Fatima Andrade, M., Belalcázar, L. C., Carrasco, P., Eskes, H., Fleming, Z. L., Huneeus, N., Ibarra-Espinosa, S., Landulfo, E., Leiva, M., Mangones, S. C., Morais, F. G., Moreira, G. A., Pantoja, N., … Yoshida, A. C. (2022). Photochemical sensitivity to emissions and local meteorology in Bogotá, Santiago, and São Paulo. Elementa: Science of the Anthropocene, 10(1). https://doi.org/10.1525/elementa.2021.00044 | |
| dc.relation.references | Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics. From Air Pollution to Climate Change (Second Edi). John wiley & sons, inc. | |
| dc.relation.references | Seong, B. (2020). Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models. Economic Modelling, 91(February), 463–468. https://doi.org/10.1016/j.econmod.2020.06.020 | |
| dc.relation.references | Shi, Y. (2022). Forecasting mortality rates with the penalized exponential smoothing state space model. Journal of the Operational Research Society, 73(5), 955–968. https://doi.org/10.1080/01605682.2021.1892465 | |
| dc.relation.references | Sicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J. J. D., & Calatayud, V. (2020). Amplified ozone pollution in cities during the COVID-19 lockdown. Science of the Total Environment, 735, 139542. https://doi.org/10.1016/j.scitotenv.2020.139542 | |
| dc.relation.references | Silva, C., Siciliano, B., Carvalho, N., Corrêa, S., & Arbilla, G. (2019). Modelos Fotoquímicos Simples Como Ferramenta Para O Gerenciamento Da Qualidade Do Ar. Química Nova, 42(3), 273–282. https://doi.org/10.21577/0100-4042.20170343 | |
| dc.relation.references | Simões, J., Bernardo, A., Lima Gonçalves, L., & Brito, J. (2025). Assessment of air pollution and mortality in Portugal using AirQ+ and the effects of COVID-19 on their relationship. Scientific Reports. https://doi.org/10.1038/s41598-025-97704-x | |
| dc.relation.references | Tarasick, D., Galbally, I. E., Cooper, O. R., Schultz, M. G., Ancellet, G., Leblanc, T., Wallington, T. J., Ziemke, J., Liu, X., Steinbacher, M., Staehelin, J., Vigouroux, C., Hannigan, J. W., García, O., Foret, G., Zanis, P., Weatherhead, E., Petropavlovskikh, I., Worden, H., … Neu, J. L. (2019). Tropospheric ozone assessment report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa, 7(39). https://doi.org/10.1525/elementa.376 | |
| dc.relation.references | Tarmanini, C., Sarma, N., Gezegin, C., & Ozgonenel, O. (2023). Short term load forecasting based on ARIMA and ANN approaches. Energy Reports, 9, 550–557. https://doi.org/10.1016/j.egyr.2023.01.060 | |
| dc.relation.references | Tello-cifuentes, L., & Díaz-paz, J. P. (2021). Análisis de la contaminación ambiental usando técnicas de teledetección y análisis de componentes principales. Tecnológicas, 24(50). https://doi.org/https://doi.org/10.22430/22565337.1710 | |
| dc.relation.references | Tiwari, S., & Agrawal, M. (2018). Ozone Concentrations in Troposphere: Historical and Current Perspectives. In Tropospheric Ozone and its Impacts on Crop Plants: A Threat to Future Global Food Security (pp. 1–29). Springer International Publishing. https://doi.org/10.1007/978-3-319-71873-6_1 | |
| dc.relation.references | Tudor, C. (2022). Ozone pollution in London and Edinburgh: spatiotemporal characteristics, trends, transport and the impact of COVID-19 control measures. Heliyon, 8(11), e11384. https://doi.org/10.1016/j.heliyon.2022.e11384 | |
| dc.relation.references | Vallero, D. A. (2019). Air pollution dispersion models. In Air Pollution Calculations (pp. 429–448). Elsevier. https://doi.org/10.1016/b978-0-12-814934-8.00014-4 | |
| dc.relation.references | Vardoulakis, S., Fisher, B. E. A., Pericleous, K., & Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: A review. Atmospheric Environment, 37(2), 155–182. https://doi.org/10.1016/S1352-2310(02)00857-9 | |
| dc.relation.references | Vijayaraghavan, K., Cho, S., Morris, R., Spink, D., Jung, J., Pauls, R., & Duffett, K. (2016). Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios. Atmospheric Environment, 141, 209–218. https://doi.org/10.1016/j.atmosenv.2016.06.053 | |
| dc.relation.references | Watson, L., Lacressonnière, G., Gauss, M., Engardt, M., Andersson, C., Josse, B., Marécal, V., Nyiri, A., Sobolowski, S., Siour, G., Szopa, S., & Vautard, R. (2016). Impact of emissions and +2 °C climate change upon future ozone and nitrogen dioxide over Europe. Atmospheric Environment, 142, 271–285. https://doi.org/10.1016/j.atmosenv.2016.07.051 | |
| dc.relation.references | Westerlund, J., Urbain, J. P., & Bonilla, J. (2014). Application of air quality combination forecasting to Bogota. Atmospheric Environment, 89, 22–28. https://doi.org/10.1016/j.atmosenv.2014.02.015 | |
| dc.relation.references | Williams, M. L., Atkinson, R. W., Anderson, H. R., & Kelly, F. J. (2014). Associations between daily mortality in London and combinedoxidant capacity, ozone and nitrogen dioxide. Air Qual Atmos Health, 7, 407–414. DOI 10.1007/s11869-014-0249-8%0A | |
| dc.relation.references | World Health Organization. (2003). Health Aspects of Air Pollution with Particulate Matter , Ozone and Nitrogen Dioxide (Issue January). | |
| dc.relation.references | World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. | |
| dc.relation.references | Zhang, L., Lin, J., Qiu, R., Hu, X., Zhang, H., Chen, Q., Tan, H., Lin, D., & Wang, J. (2018). Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecological Indicators, 95(August), 702–710. https://doi.org/10.1016/j.ecolind.2018.08.032 | |
| dc.relation.references | Zhang, R., Sarwar, G., C, F. J., & Lau, A. K. H. (2013). Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River. Atmospheric Research, 132–133(2), 332–344. https://doi.org/10.1016/j.atmosres.2013.06.001 | |
| dc.relation.references | Zhang, X., Osei, F., Stein, A., Cheng, C., & Maji, K. J. (2022). Temporal and spatial evolution of short-term exposure to ozone pollution: Its health impacts in China based on a meta-analysis. Journal of Cleaner Production, 373(May), 133938. https://doi.org/10.1016/j.jclepro.2022.133938 | |
| dc.relation.references | Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., & Baklanov, A. (2012). Real-time air quality forecasting, part I: History, techniques, and current status. Atmospheric Environment, 60, 632–655. https://doi.org/10.1016/j.atmosenv.2012.06.031 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva pública | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
| dc.subject.proposal | Impactos en salud | spa |
| dc.subject.proposal | DAUMOD-GRS | spa |
| dc.subject.proposal | O3 | spa |
| dc.subject.proposal | NO2 | spa |
| dc.subject.proposal | AIRQ+ | spa |
| dc.subject.proposal | Health impacts | eng |
| dc.subject.proposal | DAUMOD-GRS | eng |
| dc.subject.proposal | O3 | eng |
| dc.subject.proposal | NO2 | eng |
| dc.subject.proposal | AIRQ+ | eng |
| dc.subject.unesco | Deterioro ambiental | spa |
| dc.subject.unesco | Environmental degradation | eng |
| dc.subject.unesco | Política ambiental | spa |
| dc.subject.unesco | Environmental policy | eng |
| dc.subject.unesco | Medio urbano | spa |
| dc.subject.unesco | Urban environment | eng |
| dc.title | Impactos del dióxido de nitrógeno (NO2) y ozono (O3) en salud para la ciudad de Bogotá | spa |
| dc.title.translated | Health impacts of nitrogen dioxide (NO2) and ozone (O3) in the city of Bogotá | eng |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Thesis_Monica Herrera_9092025.pdf
- Tamaño:
- 6.22 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

