Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes
dc.contributor.advisor | Muñoz Flórez, Jaime Eduardo | |
dc.contributor.author | Osorio Rueda, Juan Gabriel | |
dc.contributor.educationalvalidator | Montoya Lerma, James | |
dc.contributor.researchgroup | Grupo de Investigación en Diversidad Biológica | spa |
dc.date.accessioned | 2022-08-25T21:09:36Z | |
dc.date.available | 2022-08-25T21:09:36Z | |
dc.date.issued | 2022-08-24 | |
dc.description | Ilustraciones, tablas | spa |
dc.description.abstract | Las bacterias simbiontes habitan una gran parte de los artrópodos en el mundo, incluidas las hormigas (Hymenoptera: Formicidae). Algunos de estos endosimbiontes manipulan la reproducción, como los géneros Rickettsia y Wolbachia, destacándose en muchos aspectos de la vida del huésped. Aunque tienen un potencial biotecnológico en el manejo integrado de plagas, se desconoce el estatus de infección y prevalencia en el ciclo de vida de especies de alto impacto económico como la hormiga arriera Atta cephalotes. Se evaluaron un conjunto de cebadores específicos para Rickettsia, gen Rb, y Wolbachia, gen wsp, empleando una PCR anidada con la finalidad de detectar estos niveles de infección en los estadios larva, pupa y adulto de muestras colectadas en diferentes nidos de esta hormiga arriera en el Valle del Cauca. Encontramos para una banda de 900 pb que la infección por Rickettsia (27.7% de los nidos) es relativamente común en comparación con Wolbachia quien no fue detectada en este estudio. Se identificó una probable especie procariota endosimbionte Rickettsia sp. y a pesar del desconocimiento de los efectos fisiológicos de este microrganismo sobre la hormiga arriera, comprende uno de los primeros pasos en Colombia para profundizar en la biología y ecología de esta fascinante interacción. (Texto tomado de la fuente) | spa |
dc.description.abstract | Symbiotic bacteria inhabit a large part of the world's arthropods, including ants (Hymenoptera: Formicidae). Some of these endosymbionts manipulate reproduction, such as the Rickettsia and Wolbachia genera, excelling in many aspects of host life. Although they have biotechnological potential in integrated pest management, the infection status and prevalence in the life cycle of species with a high economic impact, such as the leafcutter ant Atta cephalotes, are unknown. A set of specific primers for Rickettsia, Rb gene, and Wolbachia, wsp gene, were evaluated using a nested PCR to detect these levels of infection in the larval, pupal, and adult stages of samples collected in different nests of this leafcutter ant. in the Valle del Cauca. We found for a 900 bp band that Rickettsia infection (27.7% of nests) is relatively common compared to Wolbachia which was not detected in this study. A probable endosymbiotic prokaryotic species Rickettsia sp. and despite the lack of knowledge of the physiological effects of this microorganism on the ant, it comprises one of the first steps in Colombia to deepen the biology and ecology of this fascinating interaction. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Biológicas | spa |
dc.description.methods | Se evaluaron un conjunto de cebadores específicos para Rickettsia, gen Rb, y Wolbachia, gen wsp, empleando una PCR anidada con la finalidad de detectar estos niveles de infección en los estadios larva, pupa y adulto de muestras colectadas en diferentes nidos de esta hormiga arriera en el Valle del Cauca. | spa |
dc.format.extent | xiv, 43 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82123 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira | spa |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias | spa |
dc.publisher.place | Palmira Valle del Cauca, Colombia | spa |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas | spa |
dc.relation.references | Adams, R. M. M., Mueller, U. G., Holloway, A. K., Green, A. M., & Narozniak, J. (2000). Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften, 87(11), 491–493. https://doi.org/10.1007/s001140050765 | spa |
dc.relation.references | Ahrens, M. E., & Shoemaker, D. (2005). Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evolutionary Biology, 5, 35. https://doi.org/10.1186/1471-2148-5-35 | spa |
dc.relation.references | Alvarado, A., Berish, C. W., & Peralta, F. (1981). Leaf-Cutter Ant (Atta cephalotes) Influence on the Morphology of Andepts in Costa Rica. Soil Science Society of America Journal, 45(4). https://doi.org/10.2136/sssaj1981.03615995004500040023x | spa |
dc.relation.references | Andersen, S. B., Boye, M., Nash, D. R., & Boomsma, J. J. (2012). Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: Potential for a nutritional symbiosis. Journal of Evolutionary Biology, 25(7), 1340–1350. https://doi.org/10.1111/j.1420-9101.2012.02521.x | spa |
dc.relation.references | Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology, 100(4), 1567–1577. https://doi.org/10.1007/s00253-015-7186-9 | spa |
dc.relation.references | Bertorelli, M. V, Montilla, J., & Hernández, J. (2006). Efecto de la defoliación por hormigas cortadoras de hojas (Formicidae: Attini) sobre el rendimiento de la yuca (Manihot esculenta CRANTZ). Revista de La Facultad de Agronomía, 23(3), 310–318. | spa |
dc.relation.references | Bigi, M. F. M. A., Torkomian, V. L. V., De Groote, S. T. C. S., Hebling, M. J. A., Bueno, O. C., Pagnocca, F. C., Fernandes, J. B., Vieira, P. C., & Da Silva, M. F. G. F. (2004). Activity of Ricinus communis (euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (hymenoptera: formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Management Science, 60(9), 933–938. https://doi.org/10.1002/ps.892 | spa |
dc.relation.references | Brady, S. G., Schultz, T. R., Fisher, B. L., & Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America, 103(48). https://doi.org/10.1073/pnas.0605858103 | spa |
dc.relation.references | Brownlie, J. C., & Johnson, K. N. (2009). Symbiont-mediated protection in insect hosts. Trends in Microbiology, 17(8), 348–354. https://doi.org/10.1016/j.tim.2009.05.005 | spa |
dc.relation.references | Casiraghi, M., Bordenstein, S. R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J. J., Werren, J. H., & Bandi, C. (2005). Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology, 151(12), 4015–4022. https://doi.org/10.1099/mic.0.28313-0 | spa |
dc.relation.references | Cass, B. N., Himler, A. G., Bondy, E. C., Bergen, J. E., Fung, S. K., Kelly, S. E., & Hunter, M. S. (2016). Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia, 180(1), 169–179. https://doi.org/10.1007/s00442-015-3436-x | spa |
dc.relation.references | Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M., & Ghanim, M. (2007). Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97(04), 407. https://doi.org/10.1017/S0007485307005159 | spa |
dc.relation.references | Cordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27(8), 332–341. https://doi.org/10.1016/j.tig.2011.05.002 | spa |
dc.relation.references | Dalling, J. W., & Wirth, R. (1998). Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. Journal of Tropical Ecology, 14(5). https://doi.org/10.1017/S0266467498000492 | spa |
dc.relation.references | Della Lucia, T. M. C. (2003). Hormigas de importancia económica en la región Neotropical. In Introducción a las hormigas de la región neotropical. | spa |
dc.relation.references | Della Lucia, T. M., Gandra, L. C., & Guedes, R. N. (2014). Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Management Science, 70(1), 14–23. https://doi.org/10.1002/ps.3660 | spa |
dc.relation.references | Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27 | spa |
dc.relation.references | Duron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A., & Engelstädter, J. (2008). High incidence of the maternally inherited bacterium Cardinium in spiders. Molecular Ecology, 17(6), 1427–1437. https://doi.org/10.1111/j.1365-294X.2008.03689.x | spa |
dc.relation.references | Fernandez, F., Castro-Huertas, V., & Serna, F. (2015). Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). In Fauna de Colombi (Issue 5). | spa |
dc.relation.references | Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. In Biodiversity and Conservation (Vol. 7, Issue 9). https://doi.org/10.1023/A:1008891901953 | spa |
dc.relation.references | Fowler, H. G., Delabie, J. H. C., Oliveira, H., & Forti, L. C. (2002). Exotic and native tramp ants (Hymenoptera: Formicidae) in Bahian cocoa farms. Cientifica, 30(1-2). | spa |
dc.relation.references | Frost, C. L., FernÁndez-MarÍn, H., Smith, J. E., & Hughes, W. O. H. (2010). Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Molecular Ecology, 19(18), 4077–4085. https://doi.org/10.1111/j.1365-294X.2010.04764.x | spa |
dc.relation.references | Giorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp pnigalio soemius (hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76(8), 2589–2599. https://doi.org/10.1128/AEM.03154-09 | spa |
dc.relation.references | González Tortuero, E., & Martínez Pérez, F. D. (2010). Consecuencias Evolutivas Y Biológicas Causadas Por Bacterias Del Género Wolbachia En Artrópodos. Boletín de La Sociedad Entomológica Aragonesa, 46, 189–202. | spa |
dc.relation.references | Gurung, K., Wertheim, B., & Falcao Salles, J. (2019). The microbiome of pest insects: it is not just bacteria. Entomologia Experimentalis et Applicata, 167(3), 156–170. https://doi.org/10.1111/eea.12768 | spa |
dc.relation.references | Haine, E. R. (2008). Symbiont-mediated protection. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 353–361. https://doi.org/10.1098/rspb.2007.1211 | spa |
dc.relation.references | Haines, B. (1975). Impact of Leaf-Cutting Ants on Vegetation Development at Barro Colorado Island. https://doi.org/10.1007/978-3-642-88533-4_8 | spa |
dc.relation.references | Heil, M., & McKey, D. (2003). Protective Ant-plant Interactions as Model Systems in Ecological and Evolutionary Research. In Annual Review of Ecology, Evolution, and Systematics (Vol. 34). https://doi.org/10.1146/annurev.ecolsys.34.011802.132410 | spa |
dc.relation.references | Hoffmann, A. A., Ross, P. A., & Rašić, G. (2015). Wolbachia strains for disease control: Ecological and evolutionary considerations. Evolutionary Applications, 8(8), 751–768. https://doi.org/10.1111/eva.12286 | spa |
dc.relation.references | Hölldobler, B., & Wilson, E. O. (2011). The leafcutter ants, civilization by instinct, Bert Hölldobler and Edward O. Wilson. 160. | spa |
dc.relation.references | Jiggins, F. M., & Hurst, G. D. D. (2011). Rapid Insect Evolution by Symbiont Transfer. Science, 332(6026), 185–186. https://doi.org/10.1126/science.1205386 | spa |
dc.relation.references | Kikuchi, Y. (2009). Endosymbiotic Bacteria in Insects: Their Diversity and Culturability. Microbes and Environments, 24(3), 195–204. https://doi.org/10.1264/jsme2.ME09140S | spa |
dc.relation.references | Liberti, J., Sapountzis, P., Hansen, L. H., Sørensen, S. J., Adams, R. M. M., & Boomsma, J. J. (2015). Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts. Molecular Ecology, 24(12), 3151–3169. https://doi.org/10.1111/mec.13216 | spa |
dc.relation.references | Martins, C., Souza, R. F., & Bueno, O. C. (2012). Presence and distribution of the endosymbiont Wolbachia among Solenopsis spp. (Hymenoptera: Formicidae) from Brazil and its evolutionary history. Journal of Invertebrate Pathology, 109(3), 287–296. https://doi.org/10.1016/j.jip.2012.01.001 | spa |
dc.relation.references | Montoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A., & Calle, Z. (2012). Leaf-cutting ants revisited: Towards rational management and control. International Journal of Pest Management, 58(3), 225–247. https://doi.org/10.1080/09670874.2012.663946 | spa |
dc.relation.references | North, R. D., Howse, P. E., & Jackson, C. W. (2000). Agonistic Behavior of the Leaf-Cutting Ant Atta sexdens rubropilosa Elicited by Caryophyllene. Journal of Insect Behavior, 13(1), 1–13. https://doi.org/10.1023/A:1007749723868 | spa |
dc.relation.references | Oliveira, M. de F. S. dos S. de. (2006). Controle de formigas cortadeiras (Hymenoptera: Formicidae) com produtos naturais. Universidade Estadual Paulista (UNESP). | spa |
dc.relation.references | Ortiz, A., & Orduz, S. (2001). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085 | spa |
dc.relation.references | Ortiz, Adriana, & Orduz, S. (2000). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085 | spa |
dc.relation.references | Park, S., Noh, P., & Kang, J. (2020). Endosymbionts and Phage WO Infections in Korean ant Species ( Hymenoptera : Formicidae ). 1(1), 52–57. https://doi.org/10.22920/PNIE.2020.1.1.52 | spa |
dc.relation.references | Reyes, R. D. H., & Cafaro, M. J. (2015). Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity. Journal of Basic Microbiology, 55(1), 11–21. https://doi.org/10.1002/jobm.201300785 | spa |
dc.relation.references | Russell, J. A. (2012). The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecological News, 16(January), 7–23. | spa |
dc.relation.references | Russell, J. A., Goldman-Huertas, B., Moreau, C. S., Baldo, L., Stahlhut, J. K., Werren, J. H., & Pierce, N. E. (2009). Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution, 63(3), 624–640. https://doi.org/10.1111/j.1558-5646.2008.00579.x | spa |
dc.relation.references | Scarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. https://doi.org/310/5755/1781 [pii]\n10.1126/science.1120180 | spa |
dc.relation.references | SCHULTZ, T. R., & MEIER, R. (1995). A phylogenetic analysis of the fungus‐growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae. Systematic Entomology, 20(4), 337–370. https://doi.org/10.1111/j.1365-3113.1995.tb00100.x | spa |
dc.relation.references | Silva, A., Rodrigues, A., Bacci, M., Pagnocca, F. C., & Bueno, O. C. (2006). Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia, 162(2), 115–119. https://doi.org/10.1007/s11046-006-0037-6 | spa |
dc.relation.references | Sirviö, A., & Pamilo, P. (2010). Multiple endosymbionts in populations of the ant Formica cinerea. BMC Evolutionary Biology, 10(1), 335. https://doi.org/10.1186/1471-2148-10-335 | spa |
dc.relation.references | Sosa-Calvo, J., Schultz, T. R., Brandão, C. R. F., Klingenberg, C., Feitosa, R. M., Rabeling, C., Bacci, M., Lopes, C. T., & Vasconcelos, H. L. (2013). Cyatta abscondita: Taxonomy, evolution, and natural history of a new fungus-farming ant genus from Brazil. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080498 | spa |
dc.relation.references | Stadler, B., & Dixon, A. F. G. (2005). Ecology and evolution of aphid-ant interactions. In Annual Review of Ecology, Evolution, and Systematics (Vol. 36). https://doi.org/10.1146/annurev.ecolsys.36.091704.175531 | spa |
dc.relation.references | Turelli, M. (1994). Evolution of imcompatibility-inducing microbes and their hosts. Evolution, 48(5), 1500–1513. https://doi.org/10.1111/j.1558-5646.1994.tb02192.x | spa |
dc.relation.references | Unckless, R. L., Boelio, L. M., Herren, J. K., & Jaenike, J. (2009). Wolbachia as populations within individual insects: Causes and consequences of density variation in natural populations. Proceedings of the Royal Society B: Biological Sciences, 276(1668), 2805–2811. https://doi.org/10.1098/rspb.2009.0287 | spa |
dc.relation.references | Van Borm, S., Wenseleers, T., Billen, J., & Boomsma, J. J. (2001). Wolbachia in leafcutter ants: A widespread symbiont that may induce male killing or incompatible matings. Journal of Evolutionary Biology, 14(5), 805–814. https://doi.org/10.1046/j.1420-9101.2001.00321.x | spa |
dc.relation.references | Varón, E. H., Hanson, P., Longino, J. T., Borbón, O., Carballo, M., & Hilje, L. (2007). Distribución espacio-temporal de hormigas en un gradiente de luz, dentro de un sistema agroforestal de café, en Turrialba, Costa Rica. Revista de Biologia Tropical, 55(3–4). https://doi.org/10.15517/rbt.v55i3-4.5968 | spa |
dc.relation.references | Wang, L., Jiang, J., Xu, Y., Zeng, L., & Lu, Y. (2016). Occurrence of three intracellular symbionts (Wolbachia, Arsenophonus, Cardinium) among ants in southern China. Journal of Asia-Pacific Entomology, 19(4), 981–988. https://doi.org/10.1016/j.aspen.2016.07.019 | spa |
dc.relation.references | Weber, N. A. (1982). Fungus Ants. In Social Insects (pp. 255–363). Elsevier. https://doi.org/10.1016/b978-0-12-342204-0.50011-5 | spa |
dc.relation.references | Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 3–8. https://doi.org/10.1098/rspb.2015.0249 | spa |
dc.relation.references | Wenseleers, T., Sundström, L., & Billen, J. (2002). Deleterious Wolbachia in the ant Formica truncorum. Proceedings of the Royal Society B: Biological Sciences, 269(1491), 623–629. https://doi.org/10.1098/rspb.2001.1927 | spa |
dc.relation.references | Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969 | spa |
dc.relation.references | Wilson, E. O. (1992). The diversity of life. Harvard University Press. | spa |
dc.relation.references | Zhang, B., Leonard, S. P., Li, Y., & Moran, N. A. (2019). Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of the National Academy of Sciences of the United States of America, 5. https://doi.org/10.1073/pnas.1915307116 | spa |
dc.relation.references | Zientz, E., Feldhaar, H., Stoll, S., & Gross, R. (2005). Insights into the microbial world associated with ants. Archives of Microbiology, 184(4), 199–206. https://doi.org/10.1007/s00203-005-0041-0 | spa |
dc.relation.references | Zug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6), 7–9. https://doi.org/10.1371/journal.pone.0038544 | spa |
dc.relation.references | Zug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews of the Cambridge Philosophical Society, 90(1), 89–111. https://doi.org/10.1111/brv.12098 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales | spa |
dc.subject.proposal | Endosimbiontes | spa |
dc.subject.proposal | Wolbachia | spa |
dc.subject.proposal | Rickettsia | spa |
dc.subject.proposal | Hormiga | spa |
dc.subject.proposal | Infección | spa |
dc.subject.proposal | Endosymbionts | eng |
dc.subject.proposal | Wolbachia | eng |
dc.subject.proposal | Rickettsia | eng |
dc.subject.proposal | Ant | eng |
dc.subject.proposal | Infection | eng |
dc.title | Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes | spa |
dc.title.translated | Prevalence and infection status of endosymbionts Wolbachia spp. and Rickettsia spp. in populations of Atta cephalotes | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1093738930.2022.pdf
- Tamaño:
- 2.99 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Biológicas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: