Prevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotes

dc.contributor.advisorMuñoz Flórez, Jaime Eduardo
dc.contributor.authorOsorio Rueda, Juan Gabriel
dc.contributor.educationalvalidatorMontoya Lerma, James
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológicaspa
dc.date.accessioned2022-08-25T21:09:36Z
dc.date.available2022-08-25T21:09:36Z
dc.date.issued2022-08-24
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLas bacterias simbiontes habitan una gran parte de los artrópodos en el mundo, incluidas las hormigas (Hymenoptera: Formicidae). Algunos de estos endosimbiontes manipulan la reproducción, como los géneros Rickettsia y Wolbachia, destacándose en muchos aspectos de la vida del huésped. Aunque tienen un potencial biotecnológico en el manejo integrado de plagas, se desconoce el estatus de infección y prevalencia en el ciclo de vida de especies de alto impacto económico como la hormiga arriera Atta cephalotes. Se evaluaron un conjunto de cebadores específicos para Rickettsia, gen Rb, y Wolbachia, gen wsp, empleando una PCR anidada con la finalidad de detectar estos niveles de infección en los estadios larva, pupa y adulto de muestras colectadas en diferentes nidos de esta hormiga arriera en el Valle del Cauca. Encontramos para una banda de 900 pb que la infección por Rickettsia (27.7% de los nidos) es relativamente común en comparación con Wolbachia quien no fue detectada en este estudio. Se identificó una probable especie procariota endosimbionte Rickettsia sp. y a pesar del desconocimiento de los efectos fisiológicos de este microrganismo sobre la hormiga arriera, comprende uno de los primeros pasos en Colombia para profundizar en la biología y ecología de esta fascinante interacción. (Texto tomado de la fuente)spa
dc.description.abstractSymbiotic bacteria inhabit a large part of the world's arthropods, including ants (Hymenoptera: Formicidae). Some of these endosymbionts manipulate reproduction, such as the Rickettsia and Wolbachia genera, excelling in many aspects of host life. Although they have biotechnological potential in integrated pest management, the infection status and prevalence in the life cycle of species with a high economic impact, such as the leafcutter ant Atta cephalotes, are unknown. A set of specific primers for Rickettsia, Rb gene, and Wolbachia, wsp gene, were evaluated using a nested PCR to detect these levels of infection in the larval, pupal, and adult stages of samples collected in different nests of this leafcutter ant. in the Valle del Cauca. We found for a 900 bp band that Rickettsia infection (27.7% of nests) is relatively common compared to Wolbachia which was not detected in this study. A probable endosymbiotic prokaryotic species Rickettsia sp. and despite the lack of knowledge of the physiological effects of this microorganism on the ant, it comprises one of the first steps in Colombia to deepen the biology and ecology of this fascinating interaction.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsSe evaluaron un conjunto de cebadores específicos para Rickettsia, gen Rb, y Wolbachia, gen wsp, empleando una PCR anidada con la finalidad de detectar estos niveles de infección en los estadios larva, pupa y adulto de muestras colectadas en diferentes nidos de esta hormiga arriera en el Valle del Cauca.spa
dc.format.extentxiv, 43 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82123
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAdams, R. M. M., Mueller, U. G., Holloway, A. K., Green, A. M., & Narozniak, J. (2000). Garden sharing and garden stealing in fungus-growing ants. Naturwissenschaften, 87(11), 491–493. https://doi.org/10.1007/s001140050765spa
dc.relation.referencesAhrens, M. E., & Shoemaker, D. (2005). Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta. BMC Evolutionary Biology, 5, 35. https://doi.org/10.1186/1471-2148-5-35spa
dc.relation.referencesAlvarado, A., Berish, C. W., & Peralta, F. (1981). Leaf-Cutter Ant (Atta cephalotes) Influence on the Morphology of Andepts in Costa Rica. Soil Science Society of America Journal, 45(4). https://doi.org/10.2136/sssaj1981.03615995004500040023xspa
dc.relation.referencesAndersen, S. B., Boye, M., Nash, D. R., & Boomsma, J. J. (2012). Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: Potential for a nutritional symbiosis. Journal of Evolutionary Biology, 25(7), 1340–1350. https://doi.org/10.1111/j.1420-9101.2012.02521.xspa
dc.relation.referencesBerasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. Applied Microbiology and Biotechnology, 100(4), 1567–1577. https://doi.org/10.1007/s00253-015-7186-9spa
dc.relation.referencesBertorelli, M. V, Montilla, J., & Hernández, J. (2006). Efecto de la defoliación por hormigas cortadoras de hojas (Formicidae: Attini) sobre el rendimiento de la yuca (Manihot esculenta CRANTZ). Revista de La Facultad de Agronomía, 23(3), 310–318.spa
dc.relation.referencesBigi, M. F. M. A., Torkomian, V. L. V., De Groote, S. T. C. S., Hebling, M. J. A., Bueno, O. C., Pagnocca, F. C., Fernandes, J. B., Vieira, P. C., & Da Silva, M. F. G. F. (2004). Activity of Ricinus communis (euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (hymenoptera: formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Management Science, 60(9), 933–938. https://doi.org/10.1002/ps.892spa
dc.relation.referencesBrady, S. G., Schultz, T. R., Fisher, B. L., & Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America, 103(48). https://doi.org/10.1073/pnas.0605858103spa
dc.relation.referencesBrownlie, J. C., & Johnson, K. N. (2009). Symbiont-mediated protection in insect hosts. Trends in Microbiology, 17(8), 348–354. https://doi.org/10.1016/j.tim.2009.05.005spa
dc.relation.referencesCasiraghi, M., Bordenstein, S. R., Baldo, L., Lo, N., Beninati, T., Wernegreen, J. J., Werren, J. H., & Bandi, C. (2005). Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: Clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology, 151(12), 4015–4022. https://doi.org/10.1099/mic.0.28313-0spa
dc.relation.referencesCass, B. N., Himler, A. G., Bondy, E. C., Bergen, J. E., Fung, S. K., Kelly, S. E., & Hunter, M. S. (2016). Conditional fitness benefits of the Rickettsia bacterial symbiont in an insect pest. Oecologia, 180(1), 169–179. https://doi.org/10.1007/s00442-015-3436-xspa
dc.relation.referencesChiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M., & Ghanim, M. (2007). Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97(04), 407. https://doi.org/10.1017/S0007485307005159spa
dc.relation.referencesCordaux, R., Bouchon, D., & Grève, P. (2011). The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends in Genetics, 27(8), 332–341. https://doi.org/10.1016/j.tig.2011.05.002spa
dc.relation.referencesDalling, J. W., & Wirth, R. (1998). Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. Journal of Tropical Ecology, 14(5). https://doi.org/10.1017/S0266467498000492spa
dc.relation.referencesDella Lucia, T. M. C. (2003). Hormigas de importancia económica en la región Neotropical. In Introducción a las hormigas de la región neotropical.spa
dc.relation.referencesDella Lucia, T. M., Gandra, L. C., & Guedes, R. N. (2014). Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Management Science, 70(1), 14–23. https://doi.org/10.1002/ps.3660spa
dc.relation.referencesDuron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J., & Hurst, G. D. (2008). The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 6(1), 27. https://doi.org/10.1186/1741-7007-6-27spa
dc.relation.referencesDuron, O., Hurst, G. D. D., Hornett, E. A., Josling, J. A., & Engelstädter, J. (2008). High incidence of the maternally inherited bacterium Cardinium in spiders. Molecular Ecology, 17(6), 1427–1437. https://doi.org/10.1111/j.1365-294X.2008.03689.xspa
dc.relation.referencesFernandez, F., Castro-Huertas, V., & Serna, F. (2015). Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). In Fauna de Colombi (Issue 5).spa
dc.relation.referencesFolgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. In Biodiversity and Conservation (Vol. 7, Issue 9). https://doi.org/10.1023/A:1008891901953spa
dc.relation.referencesFowler, H. G., Delabie, J. H. C., Oliveira, H., & Forti, L. C. (2002). Exotic and native tramp ants (Hymenoptera: Formicidae) in Bahian cocoa farms. Cientifica, 30(1-2).spa
dc.relation.referencesFrost, C. L., FernÁndez-MarÍn, H., Smith, J. E., & Hughes, W. O. H. (2010). Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Molecular Ecology, 19(18), 4077–4085. https://doi.org/10.1111/j.1365-294X.2010.04764.xspa
dc.relation.referencesGiorgini, M., Bernardo, U., Monti, M. M., Nappo, A. G., & Gebiola, M. (2010). Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp pnigalio soemius (hymenoptera: Eulophidae). Applied and Environmental Microbiology, 76(8), 2589–2599. https://doi.org/10.1128/AEM.03154-09spa
dc.relation.referencesGonzález Tortuero, E., & Martínez Pérez, F. D. (2010). Consecuencias Evolutivas Y Biológicas Causadas Por Bacterias Del Género Wolbachia En Artrópodos. Boletín de La Sociedad Entomológica Aragonesa, 46, 189–202.spa
dc.relation.referencesGurung, K., Wertheim, B., & Falcao Salles, J. (2019). The microbiome of pest insects: it is not just bacteria. Entomologia Experimentalis et Applicata, 167(3), 156–170. https://doi.org/10.1111/eea.12768spa
dc.relation.referencesHaine, E. R. (2008). Symbiont-mediated protection. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 353–361. https://doi.org/10.1098/rspb.2007.1211spa
dc.relation.referencesHaines, B. (1975). Impact of Leaf-Cutting Ants on Vegetation Development at Barro Colorado Island. https://doi.org/10.1007/978-3-642-88533-4_8spa
dc.relation.referencesHeil, M., & McKey, D. (2003). Protective Ant-plant Interactions as Model Systems in Ecological and Evolutionary Research. In Annual Review of Ecology, Evolution, and Systematics (Vol. 34). https://doi.org/10.1146/annurev.ecolsys.34.011802.132410spa
dc.relation.referencesHoffmann, A. A., Ross, P. A., & Rašić, G. (2015). Wolbachia strains for disease control: Ecological and evolutionary considerations. Evolutionary Applications, 8(8), 751–768. https://doi.org/10.1111/eva.12286spa
dc.relation.referencesHölldobler, B., & Wilson, E. O. (2011). The leafcutter ants, civilization by instinct, Bert Hölldobler and Edward O. Wilson. 160.spa
dc.relation.referencesJiggins, F. M., & Hurst, G. D. D. (2011). Rapid Insect Evolution by Symbiont Transfer. Science, 332(6026), 185–186. https://doi.org/10.1126/science.1205386spa
dc.relation.referencesKikuchi, Y. (2009). Endosymbiotic Bacteria in Insects: Their Diversity and Culturability. Microbes and Environments, 24(3), 195–204. https://doi.org/10.1264/jsme2.ME09140Sspa
dc.relation.referencesLiberti, J., Sapountzis, P., Hansen, L. H., Sørensen, S. J., Adams, R. M. M., & Boomsma, J. J. (2015). Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts. Molecular Ecology, 24(12), 3151–3169. https://doi.org/10.1111/mec.13216spa
dc.relation.referencesMartins, C., Souza, R. F., & Bueno, O. C. (2012). Presence and distribution of the endosymbiont Wolbachia among Solenopsis spp. (Hymenoptera: Formicidae) from Brazil and its evolutionary history. Journal of Invertebrate Pathology, 109(3), 287–296. https://doi.org/10.1016/j.jip.2012.01.001spa
dc.relation.referencesMontoya-Lerma, J., Giraldo-Echeverri, C., Armbrecht, I., Farji-Brener, A., & Calle, Z. (2012). Leaf-cutting ants revisited: Towards rational management and control. International Journal of Pest Management, 58(3), 225–247. https://doi.org/10.1080/09670874.2012.663946spa
dc.relation.referencesNorth, R. D., Howse, P. E., & Jackson, C. W. (2000). Agonistic Behavior of the Leaf-Cutting Ant Atta sexdens rubropilosa Elicited by Caryophyllene. Journal of Insect Behavior, 13(1), 1–13. https://doi.org/10.1023/A:1007749723868spa
dc.relation.referencesOliveira, M. de F. S. dos S. de. (2006). Controle de formigas cortadeiras (Hymenoptera: Formicidae) com produtos naturais. Universidade Estadual Paulista (UNESP).spa
dc.relation.referencesOrtiz, A., & Orduz, S. (2001). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085spa
dc.relation.referencesOrtiz, Adriana, & Orduz, S. (2000). In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathologia, 150(2), 53–60. https://doi.org/10.1023/A:1010843413085spa
dc.relation.referencesPark, S., Noh, P., & Kang, J. (2020). Endosymbionts and Phage WO Infections in Korean ant Species ( Hymenoptera : Formicidae ). 1(1), 52–57. https://doi.org/10.22920/PNIE.2020.1.1.52spa
dc.relation.referencesReyes, R. D. H., & Cafaro, M. J. (2015). Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity. Journal of Basic Microbiology, 55(1), 11–21. https://doi.org/10.1002/jobm.201300785spa
dc.relation.referencesRussell, J. A. (2012). The ants (Hymenoptera: Formicidae) are unique and enigmatic hosts of prevalent Wolbachia (Alphaproteobacteria) symbionts. Myrmecological News, 16(January), 7–23.spa
dc.relation.referencesRussell, J. A., Goldman-Huertas, B., Moreau, C. S., Baldo, L., Stahlhut, J. K., Werren, J. H., & Pierce, N. E. (2009). Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution, 63(3), 624–640. https://doi.org/10.1111/j.1558-5646.2008.00579.xspa
dc.relation.referencesScarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. https://doi.org/310/5755/1781 [pii]\n10.1126/science.1120180spa
dc.relation.referencesSCHULTZ, T. R., & MEIER, R. (1995). A phylogenetic analysis of the fungus‐growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae. Systematic Entomology, 20(4), 337–370. https://doi.org/10.1111/j.1365-3113.1995.tb00100.xspa
dc.relation.referencesSilva, A., Rodrigues, A., Bacci, M., Pagnocca, F. C., & Bueno, O. C. (2006). Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi. Mycopathologia, 162(2), 115–119. https://doi.org/10.1007/s11046-006-0037-6spa
dc.relation.referencesSirviö, A., & Pamilo, P. (2010). Multiple endosymbionts in populations of the ant Formica cinerea. BMC Evolutionary Biology, 10(1), 335. https://doi.org/10.1186/1471-2148-10-335spa
dc.relation.referencesSosa-Calvo, J., Schultz, T. R., Brandão, C. R. F., Klingenberg, C., Feitosa, R. M., Rabeling, C., Bacci, M., Lopes, C. T., & Vasconcelos, H. L. (2013). Cyatta abscondita: Taxonomy, evolution, and natural history of a new fungus-farming ant genus from Brazil. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080498spa
dc.relation.referencesStadler, B., & Dixon, A. F. G. (2005). Ecology and evolution of aphid-ant interactions. In Annual Review of Ecology, Evolution, and Systematics (Vol. 36). https://doi.org/10.1146/annurev.ecolsys.36.091704.175531spa
dc.relation.referencesTurelli, M. (1994). Evolution of imcompatibility-inducing microbes and their hosts. Evolution, 48(5), 1500–1513. https://doi.org/10.1111/j.1558-5646.1994.tb02192.xspa
dc.relation.referencesUnckless, R. L., Boelio, L. M., Herren, J. K., & Jaenike, J. (2009). Wolbachia as populations within individual insects: Causes and consequences of density variation in natural populations. Proceedings of the Royal Society B: Biological Sciences, 276(1668), 2805–2811. https://doi.org/10.1098/rspb.2009.0287spa
dc.relation.referencesVan Borm, S., Wenseleers, T., Billen, J., & Boomsma, J. J. (2001). Wolbachia in leafcutter ants: A widespread symbiont that may induce male killing or incompatible matings. Journal of Evolutionary Biology, 14(5), 805–814. https://doi.org/10.1046/j.1420-9101.2001.00321.xspa
dc.relation.referencesVarón, E. H., Hanson, P., Longino, J. T., Borbón, O., Carballo, M., & Hilje, L. (2007). Distribución espacio-temporal de hormigas en un gradiente de luz, dentro de un sistema agroforestal de café, en Turrialba, Costa Rica. Revista de Biologia Tropical, 55(3–4). https://doi.org/10.15517/rbt.v55i3-4.5968spa
dc.relation.referencesWang, L., Jiang, J., Xu, Y., Zeng, L., & Lu, Y. (2016). Occurrence of three intracellular symbionts (Wolbachia, Arsenophonus, Cardinium) among ants in southern China. Journal of Asia-Pacific Entomology, 19(4), 981–988. https://doi.org/10.1016/j.aspen.2016.07.019spa
dc.relation.referencesWeber, N. A. (1982). Fungus Ants. In Social Insects (pp. 255–363). Elsevier. https://doi.org/10.1016/b978-0-12-342204-0.50011-5spa
dc.relation.referencesWeinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z., & Welch, J. J. (2015). The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences, 282(1807), 3–8. https://doi.org/10.1098/rspb.2015.0249spa
dc.relation.referencesWenseleers, T., Sundström, L., & Billen, J. (2002). Deleterious Wolbachia in the ant Formica truncorum. Proceedings of the Royal Society B: Biological Sciences, 269(1491), 623–629. https://doi.org/10.1098/rspb.2001.1927spa
dc.relation.referencesWerren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969spa
dc.relation.referencesWilson, E. O. (1992). The diversity of life. Harvard University Press.spa
dc.relation.referencesZhang, B., Leonard, S. P., Li, Y., & Moran, N. A. (2019). Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of the National Academy of Sciences of the United States of America, 5. https://doi.org/10.1073/pnas.1915307116spa
dc.relation.referencesZientz, E., Feldhaar, H., Stoll, S., & Gross, R. (2005). Insights into the microbial world associated with ants. Archives of Microbiology, 184(4), 199–206. https://doi.org/10.1007/s00203-005-0041-0spa
dc.relation.referencesZug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6), 7–9. https://doi.org/10.1371/journal.pone.0038544spa
dc.relation.referencesZug, R., & Hammerstein, P. (2015). Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews of the Cambridge Philosophical Society, 90(1), 89–111. https://doi.org/10.1111/brv.12098spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.proposalEndosimbiontesspa
dc.subject.proposalWolbachiaspa
dc.subject.proposalRickettsiaspa
dc.subject.proposalHormigaspa
dc.subject.proposalInfecciónspa
dc.subject.proposalEndosymbiontseng
dc.subject.proposalWolbachiaeng
dc.subject.proposalRickettsiaeng
dc.subject.proposalAnteng
dc.subject.proposalInfectioneng
dc.titlePrevalencia y estatus de infección de los endosimbiontes Wolbachia spp. y Rickettsia spp. en poblaciones de Atta cephalotesspa
dc.title.translatedPrevalence and infection status of endosymbionts Wolbachia spp. and Rickettsia spp. in populations of Atta cephaloteseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1093738930.2022.pdf
Tamaño:
2.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Biológicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: