Aplicación de pretratamientos enzimáticos y de ultrasonido en la extracción de cafeína con CO2 supercrítico en pulpa de café
| dc.contributor.advisor | Cadena Chamorro, Edith Marleny | |
| dc.contributor.author | Torres De La Ossa, Juan Diego | |
| dc.contributor.educationalvalidator | Ocampo Carmona, Luz Marina | |
| dc.contributor.orcid | Torres-de-la-Ossa, Juan Diego [0000000275270473] | |
| dc.contributor.orcid | Cadena Ch., Edith M. [0000000271432009] | |
| dc.contributor.orcid | Ocampo Carmona, Luz Marian [0000000281171391] | |
| dc.contributor.researchgroup | Ciencia y Tecnología de Materiales | |
| dc.contributor.researchgroup | Biofibras y Derivados Vegetales | |
| dc.date.accessioned | 2026-02-04T18:33:27Z | |
| dc.date.available | 2026-02-04T18:33:27Z | |
| dc.date.issued | 2025-11-20 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | La pulpa de café, que representa alrededor del 40 % del peso del fruto, constituye un subproducto abundante del beneficio que, al no ser tratado, genera problemas ambientales. Su composición lignocelulósica y el contenido de metabolitos bioactivos le confieren un alto potencial de valorización. El objetivo de este trabajo fue evaluar procesos enzimáticos hidrolíticos y su integración con tecnologías físicas y verdes de extracción, orientados a la recuperación de cafeína a partir de residuos del café y al aprovechamiento de los residuos resultantes. Se aplicaron tratamientos enzimáticos con Cellic CTeC y Viscozyme, así como la combinación con ultrasonido y extracción con CO₂ supercrítico, complementados con análisis de superficie de respuesta y caracterización composicional. Los resultados mostraron que la hidrólisis enzimática incrementó la liberación de azúcares, mientras que Cellic CTeC promovió mayor liberación de cafeína. El pretratamiento de ultrasonido no evidenció sinergia. La integración del tratamiento enzimático con CO₂ supercrítico mejoró la accesibilidad al alcaloide, con condiciones óptimas estimadas en 70,1 °C, 190 bar y 12,5 U/g. La caracterización lignocelulósica del residuo reveló un aumento en celulosa y hemicelulosa y una reducción de cenizas, favoreciendo su aprovechamiento en bioconversión. En conclusión, los resultados confirman que la valorización de la pulpa de café mediante estrategias integradas de hidrólisis enzimática y extracción verde es técnicamente viable y se alinea con un enfoque de biorefinería orientado a la recuperación de compuestos de interés y a la generación de residuos con valor agregado.. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Coffee pulp, which represents approximately 40% of the fruit’s weight, is an abundant byproduct of wet processing that, if not properly treated, generates environmental problems. Its lignocellulosic composition and the presence of bioactive metabolites confer high potential for valorization. The aim of this study was to evaluate hydrolytic enzymatic processes and their integration with physical and green extraction technologies, targeting caffeine recovery from coffee residues and the utilization of the resulting by-products. Enzymatic treatments with Cellic CTeC and Viscozyme were applied, along with combinations of ultrasound and supercritical CO₂ extraction, complemented by response surface methodology and compositional characterization. Results showed that enzymatic hydrolysis enhanced the release of structural sugars, while Cellic CTeC promoted greater caffeine liberation. Ultrasonic pretreatment did not exhibit a synergistic effect. The integration of enzymatic treatment with supercritical CO₂ improved alkaloid accessibility, with optimal conditions estimated at 70.1 °C, 190 bar, and 12.5 U/g. The lignocellulosic characterization of the residue revealed an increase in cellulose and hemicellulose and a reduction in ash content, favoring its use in bioconversion processes. In conclusion, the findings confirm that the valorization of coffee pulp through integrated strategies of enzymatic hydrolysis and green extraction is technically feasible and aligns with a biorefinery approach aimed at recovering valuable compounds and generating residues with added value | fra |
| dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | |
| dc.description.researcharea | Aprovechamiento y valorización de residuos | |
| dc.description.sponsorship | El presente trabajo de investigación se desarrolló en el marco del proyecto titulado “Aprovechamiento de residuos del café en el desarrollo de líquidos iónicos base cafeína para la desulfuración de combustibles” (código Hermes 57586), financiado en la Convocatoria Nacional para el Fomento de Alianzas Estratégicas Interdisciplinarias que articulan los procesos misionales de la Universidad Nacional de Colombia (2022–2024). | |
| dc.description.sponsorship | Este trabajo se desarrolló con el apoyo de los grupos de investigación Ciencia y Tecnología de Materiales y Biofibras y Derivados Vegetales. Así mismo, con el apoyo del equipo del Laboratorio de Procesos Agrícolas. | |
| dc.format.extent | 1 recurso en líne (121 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89395 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | |
| dc.relation.references | F. M. Damatta, C. P. Ronchi, M. Maestri, and R. S. Barros, “Ecophysiology of coffee growth and production,” Braz. J. Plant Physiol, vol. 19, no. 4, pp. 485–510, 2007, doi: https://doi.org/10.1590/S1677-04202007000400014. | |
| dc.relation.references | R. Velásquez, “Guía de variedades café en Guatemala,” Asociación Nacional del Café, Anacafé, 2019. | |
| dc.relation.references | D. Echeverri, L. Buitrago, F. Montes, I. Mejía, and M. del P. Gonzáles, “CAFÉ PARA CARDIÓLOGOS COFFEE FOR CARDIOLOGISTS,” Revista Colombiana de Cardiología, vol. 11, no. 8, pp. 357–365, Mar. 2005. | |
| dc.relation.references | Federación Nacional de Cafeteros, “Manual del cafetero colombiano,” Editorial Argra, 1958, Accessed: Oct. 29, 2023. [Online]. Available: https://biblioteca.cenicafe.org/handle/10778/831 | |
| dc.relation.references | Federación Nacional de Cafeteros de Colombia, “Informe del Gerente 90 Congreso Nacional de Cafeteros,” Bogotá, Colombia, Nov. 2022. Accessed: Oct. 29, 2023. [Online]. Available: https://federaciondecafeteros.org/ | |
| dc.relation.references | Federación Nacional de Cafeteros de Colombia, “Guía ambiental para el sector cafetero: 6. Descripción del proceso productivo y del beneficio del café.” | |
| dc.relation.references | Comité de cafeteros de Antioquia, “Conozca las cifras más relevantes de la Caficultura en Colombia,” Conozca las cifras más relevantes de la Caficultura en Colombia. Accessed: Oct. 29, 2023. [Online]. Available: https://fncantioquia.org/conozca-las-cifras-mas-relevantes-de-la-caficultura-en-colombia/ | |
| dc.relation.references | L. G. y B. Comité de Cafeteros del Cesar, “Comité de Cafeteros del Cesar, La Guajira y Bolívar.” | |
| dc.relation.references | Federación Nacional de Cafeteros, “Informes comités departamentales 2012,” 2012, Bogotá. Accessed: Oct. 08, 2023. [Online]. Available: https://federaciondecafeteros.org/static/files/Informe_Comites_2012.pdf | |
| dc.relation.references | P. Ghosh and N. Venkatachalapathy, “Processing and Drying of Coffee-A Review,” 2014. [Online]. Available: https://www.researchgate.net/publication/269986518 | |
| dc.relation.references | N. Rodriguez Valencia, J. R. Sanz Uribe, C. E. Oliveros Tascón, and C. A. Raírez Gómez, “Beneficio del café en Colombia,” 2015. Accessed: Oct. 10, 2023. [Online]. Available: https://es.scribd.com/embeds/60505537/content | |
| dc.relation.references | A. Parra-Coronado, O. L. García-Navarrete, F. A. Vanegas-Izquierdo, J. A. Gamboa-Gamboa, A. F. González-Mora, and D. A. Ramírez-González, “Preliminary study of drying of natural coffee by cyclical pressure changes,” DYNA (Colombia), vol. 87, no. 214, pp. 53–60, 2020, doi: 10.15446/DYNA.V87N214.83414. | |
| dc.relation.references | Federación Nacional de Cafeteros, “Estadísticas cafeteras.” [Online]. Available: https://federaciondecafeteros.org/wp/estadisticas-cafeteras/ | |
| dc.relation.references | N. Rodríguez, V. ; Diego, A. Zambrano, F. ; César, and A. Ramírez Gómez, “Manejo y disposición de los subproductos y de las aguas residuales del beneficio del café,” Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura, vol. 3, pp. 111–136, 2013, doi: 10.38141/cenbook-0026_31. | |
| dc.relation.references | R. A. Buffo and C. Cardelli-Freire, “Coffee flavour: An overview,” Mar. 2004. doi: 10.1002/ffj.1325. | |
| dc.relation.references | K. Speer and I. Kölling-Speer, “The lipid fraction of the coffee bean,” 2006. | |
| dc.relation.references | S. M. F. Bessada, R. C. Alves, and M. B. P. P. Oliveira, “Coffee silverskin: A review on potential cosmetic applications,” Mar. 01, 2018, MDPI AG. doi: 10.3390/cosmetics5010005. | |
| dc.relation.references | R. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda, and B. Dave Oomah, “Spent coffee grounds: A review on current research and future prospects,” 2015, Elsevier Ltd. doi: 10.1016/j.tifs.2015.04.012. | |
| dc.relation.references | T. M. Pacheco, S. Torrez Álvarez, and G. R. Almanza, “Cuantificación de compuestos bioactivos en cáscara de Coffea Arábica en Bolivia,” Revista Boliviana de Química, vol. 35, no. 5, pp. 117–126, 2018, Accessed: Apr. 10, 2024. [Online]. Available: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S0250-54602018000500001&lng=es&nrm=iso&tlng=es | |
| dc.relation.references | P. Vitaglione et al., “Protocatechuic Acid Is the Major Human Metabolite of Cyanidin-Glucosides 1-3,” J Nutr, vol. 137, pp. 2043–2048, 2007, doi: https://doi.org/10.1093/jn/137.9.2043. | |
| dc.relation.references | Y. Semaming, P. Pannengpetch, S. C. Chattipakorn, and N. Chattipakorn, “Pharmacological properties of protocatechuic acid and its potential roles as complementary medicine,” 2015, Hindawi Publishing Corporation. doi: 10.1155/2015/593902. | |
| dc.relation.references | H. Morishita and M. Ohnishi, “Absorption, metabolism and biological activities of chlorogenic acids and related compounds,” Studies in Natural Products Chemistry, vol. 25, 2001. | |
| dc.relation.references | G. A. Spiller, Caffeine. CRC Press, 1998. | |
| dc.relation.references | PubChem, “Caffeine.” Accessed: Sep. 14, 2025. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Caffeine | |
| dc.relation.references | V. Kumar and G. A. Ravishankar, “Current trends in producing low levels of caffeine in coffee berry and processed coffee powder,” Food Reviews International, vol. 25, no. 3, pp. 175–197, Jul. 2009, doi: 10.1080/87559120802458099. | |
| dc.relation.references | M. J. Arnaud, “The pharmacology of caffeine,” 1987. doi: 10.1007/978-3-0348-9289-6_9. | |
| dc.relation.references | M. Bakherad, A. Keivanloo, E. Moradian, A. H. Amin, R. Doosti, and M. Armaghan, “Practical and efficient synthesis of tetrahydrobenzo[b]pyran using caffeine supported on silica as an ionic liquid solid acid catalyst,” Journal of the Iranian Chemical Society, vol. 15, no. 12, pp. 2811–2819, Dec. 2018, doi: 10.1007/s13738-018-1468-y. | |
| dc.relation.references | B. Wang, L. Qin, T. Mu, Z. Xue, and G. Gao, “Are Ionic Liquids Chemically Stable?,” May 24, 2017, American Chemical Society. doi: 10.1021/acs.chemrev.6b00594. | |
| dc.relation.references | E. Hataminejad and A. Ezabadi, “Design and exploration of caffeine-based Brönsted acidic ionic liquid (CaffBAIL) for the synthesis of DHPMs, xanthenediones, and acridinediones,” Research on Chemical Intermediates, vol. 48, no. 6, pp. 2535–2556, Jun. 2022, doi: 10.1007/s11164-022-04724-7. | |
| dc.relation.references | M. Salami and A. Ezabadi, “Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes,” Research on Chemical Intermediates, vol. 46, no. 10, pp. 4611–4626, Oct. 2020, doi: 10.1007/s11164-020-04224-6. | |
| dc.relation.references | M. Bakherad, A. Keivanloo, E. Moradian, A. H. Amin, R. Doosti, and M. Armaghan, “Practical and efficient synthesis of tetrahydrobenzo[b]pyran using caffeine supported on silica as an ionic liquid solid acid catalyst,” Journal of the Iranian Chemical Society, vol. 15, no. 12, pp. 2811–2819, Dec. 2018, doi: 10.1007/s13738-018-1468-y. | |
| dc.relation.references | P. P. Salvi, A. M. Mandhare, A. S. Sartape, D. K. Pawar, S. H. Han, and S. S. Kolekar, “An efficient protocol for synthesis of tetrahydrobenzo[b]pyrans using amino functionalized ionic liquid,” Comptes Rendus Chimie, vol. 14, no. 10, pp. 878–882, Oct. 2011, doi: 10.1016/j.crci.2011.02.007. | |
| dc.relation.references | G. Singh, M. Kaur, H. Kaur, and T. S. Kang, “Synthesis and complexation of a new caffeine based surface active ionic liquid with lysozyme in aqueous medium: Physicochemical, computational and antimicrobial studies,” J Mol Liq, vol. 325, Mar. 2021, doi: 10.1016/j.molliq.2020.115156. | |
| dc.relation.references | S. Dalvand, S. Yaghoubi, S. Morteza Mousavi-Khoshdel, and H. Ghafuri, “Investigating the application of caffeine-based ionic liquid modified by zinc bromide as an effective electrode in supercapacitor,” J Energy Storage, vol. 44, p. 103323, Dec. 2021, doi: 10.1016/j.est.2021.103323. | |
| dc.relation.references | J. Azmir et al., “Techniques for extraction of bioactive compounds from plant materials: A review,” J Food Eng, vol. 117, no. 4, pp. 426–436, 2013, doi: 10.1016/j.jfoodeng.2013.01.014. | |
| dc.relation.references | K. Ramalakshmi and B. Raghavan, “Caffeine in coffee: Its removal. Why and how?,” Crit Rev Food Sci Nutr, vol. 39, no. 5, pp. 441–456, 1999, doi: 10.1080/10408699991279231. | |
| dc.relation.references | Sigma Aldrich, “Ficha de datos de seguridad diclorometano.” | |
| dc.relation.references | Sigma Aldrich, “Ficha de datos de seguridad acetato de etilo.” | |
| dc.relation.references | M. Silvarolla B., P. Mazzafera, and L. Fazuoli C., “A naturally decaffeinated arabica coffee,” Nature, vol. 429, no. 6994, pp. 826–826, 2004. | |
| dc.relation.references | R. J. (Ronald J. Clarke and O. G. Vitzthum, Coffee : recent developments. Blackwell Science, 2001. | |
| dc.relation.references | J. A. Quintero-Jaramillo, J. I. Carrero-Mantilla, and N. R. Sanabria-Gonzalez, “A review of caffeine adsorption studies onto various types of adsorbents,” 2021, Hindawi Limited. doi: 10.1155/2021/9998924. | |
| dc.relation.references | G. G. Lenzi et al., “Caffeine adsorption onto Bentonite clay in suspension and immobilized,” Brazilian Archives of Biology and Technology, vol. 63, 2020, doi: 10.1590/1678-4324-2020180637. | |
| dc.relation.references | M. Herrero, J. A. Mendiola, A. Cifuentes, and E. Ibáñez, “Supercritical fluid extraction: Recent advances and applications,” Apr. 2010. doi: 10.1016/j.chroma.2009.12.019. | |
| dc.relation.references | B. A. Shintaku and M. Meireles, “OBTAINING EXTRACT FROM THE RESIDUE OF THE SUGARCANE AND ALCOHOL INDUSTRY USING SUPERCRITICAL CO 2,” 2013. [Online]. Available: https://cabidigitallibrary.org | |
| dc.relation.references | J. B. Hannay and J. Hogarth, “VI. On the solubility of solids in gases,” Proceedings of the Royal Society of London, vol. 29, no. 196–199, pp. 324–326, Dec. 1879, doi: 10.1098/rspl.1879.0054. | |
| dc.relation.references | H. Peker, M. P. Srinivasan, J. M. Smith, and B. J. Mccoy, “Caffeine Extraction Rates from Su percritical Carbon Coffee Beans with Dioxide,” AIChE Journal, vol. 38, no. 5, pp. 761–770, 1992. | |
| dc.relation.references | S. MacHmudah, K. Kitada, M. Sasaki, M. Goto, J. Munemasa, and M. Yamagata, “Simultaneous extraction and separation process for coffee beans with supercritical CO2 and water,” Ind Eng Chem Res, vol. 50, no. 4, pp. 2227–2235, Feb. 2011, doi: 10.1021/ie101252w. | |
| dc.relation.references | A. Vandeponseele, M. Draye, C. Piot, and G. Chatel, “Subcritical water and supercritical carbon dioxide: Efficient and selective eco-compatible solvents for coffee and coffee by-products valorization,” Dec. 21, 2020, Royal Society of Chemistry. doi: 10.1039/d0gc03146a. | |
| dc.relation.references | J. Menzio, A. Binello, A. Barge, and G. Cravotto, “Highly-efficient caffeine recovery from green coffee beans under ultrasound-assisted SC-CO2 extraction,” Processes, vol. 8, no. 9, Sep. 2020, doi: 10.3390/pr8091062. | |
| dc.relation.references | A. B. A. De Azevedo, P. Mazzafera, R. S. Mohamed, S. A. B. Vieira De Melo, and T. G. Kieckbusch, “Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical CO2 and co-solvents,” vol. 25, no. 03, pp. 543–552, [Online]. Available: www.abeq.org.br/bjche | |
| dc.relation.references | H. Içen and M. Gürü, “Effect of ethanol content on supercritical carbon dioxide extraction of caffeine from tea stalk and fiber wastes,” Journal of Supercritical Fluids, vol. 55, no. 1, pp. 156–160, Nov. 2010, doi: 10.1016/j.supflu.2010.07.009. | |
| dc.relation.references | J. Tello, M. Viguera, and L. Calvo, “Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide,” Journal of Supercritical Fluids, vol. 59, pp. 53–60, Nov. 2011, doi: 10.1016/j.supflu.2011.07.018. | |
| dc.relation.references | K. S. Andrade, R. T. Gonalvez, M. Maraschin, R. M. Ribeiro-Do-Valle, J. Martínez, and S. R. S. Ferreira, “Supercritical fluid extraction from spent coffee grounds and coffee husks: Antioxidant activity and effect of operational variables on extract composition,” Talanta, vol. 88, pp. 544–552, Jan. 2012, doi: 10.1016/j.talanta.2011.11.031. | |
| dc.relation.references | D. V. Bermejo, E. Ibáñez, G. Reglero, and T. Fornari, “Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea,” Journal of Supercritical Fluids, vol. 107, pp. 507–512, Jan. 2016, doi: 10.1016/j.supflu.2015.07.008. | |
| dc.relation.references | U. Kopcak and R. S. Mohamed, “Caffeine solubility in supercritical carbon dioxide/co-solvent mixtures,” Journal of Supercritical Fluids, vol. 34, no. 2 SPEC. ISS., pp. 209–214, 2005, doi: 10.1016/j.supflu.2004.11.016. | |
| dc.relation.references | A. Zoghlami and G. Paës, “Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis,” Dec. 18, 2019, Frontiers Media S.A. doi: 10.3389/fchem.2019.00874. | |
| dc.relation.references | P. D. Patil, S. P. Patil, R. K. Kelkar, N. P. Patil, P. V. Pise, and S. S. Nadar, “Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds,” Oct. 01, 2021, Elsevier Ltd. doi: 10.1016/j.tifs.2021.07.032. | |
| dc.relation.references | S. J. Marathe, S. B. Jadhav, S. B. Bankar, and R. S. Singhal, “Enzyme-Assisted Extraction of Bioactives,” in Food Bioactives: Extraction and Biotechnology Applications, Springer International Publishing, 2017, pp. 171–201. doi: 10.1007/978-3-319-51639-4_8. | |
| dc.relation.references | M. Mushtaq, B. Sultana, S. Akram, F. Anwar, A. Adnan, and S. S. H. Rizvi, “Enzyme-assisted supercritical fluid extraction: an alternative and green technology for non-extractable polyphenols,” Anal Bioanal Chem, vol. 409, no. 14, pp. 3645–3655, May 2017, doi: 10.1007/s00216-017-0309-7. | |
| dc.relation.references | M. Mushtaq, B. Sultana, F. Anwar, A. Adnan, and S. S. H. Rizvi, “Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel,” Journal of Supercritical Fluids, vol. 104, pp. 122–131, Sep. 2015, doi: 10.1016/j.supflu.2015.05.020. | |
| dc.relation.references | S. R. Hassan and A. M. Al-Yaqoobi, “Assessment of Ultrasound-Assisted Extraction of Caffeine and its Bioactivity,” Journal of Ecological Engineering, vol. 24, no. 3, pp. 126–133, 2023, doi: 10.12911/22998993/157540. | |
| dc.relation.references | E. S. Dassoff and Y. O. Li, “Mechanisms and effects of ultrasound-assisted supercritical CO 2 extraction,” Apr. 01, 2019, Elsevier Ltd. doi: 10.1016/j.tifs.2019.03.001. | |
| dc.relation.references | J. Azmir et al., “Techniques for extraction of bioactive compounds from plant materials: A review,” J Food Eng, vol. 117, no. 4, pp. 426–436, 2013, doi: 10.1016/j.jfoodeng.2013.01.014. | |
| dc.relation.references | J. Menzio, A. Binello, A. Barge, and G. Cravotto, “Highly-efficient caffeine recovery from green coffee beans under ultrasound-assisted SC-CO2 extraction,” Processes, vol. 8, no. 9, Sep. 2020, doi: 10.3390/pr8091062. | |
| dc.relation.references | MRS Scientific, “BATH ULTRASONIC BRANSON MODEL M1800H-E – MRS Scientific.” Accessed: Sep. 14, 2025. [Online]. Available: https://www.mrs-scientific.com/equipment/general-purpose-equipment/baths/ultrasonic-baths/bath-ultrasonic-branson-model-m1800h-e/ | |
| dc.relation.references | E. Arango-Agudelo, Y. Rendón-Muñoz, E. Cadena-Chamorro, J. F. Santa, and R. Buitrago-Sierra, “Evaluation of Colombian Coffee Waste to Produce Antioxidant Extracts,” Bioresources, vol. 18, no. 3, pp. 5703–5723, 2023, doi: 10.15376/biores.18.3.5703-5723. | |
| dc.relation.references | P. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition - A review,” Sep. 2012. doi: 10.1016/j.resconrec.2012.06.005. | |
| dc.relation.references | P. Esquivel and V. M. Jiménez, “Functional properties of coffee and coffee by-products,” Food Research International, vol. 46, no. 2, pp. 488–495, May 2012, doi: 10.1016/j.foodres.2011.05.028. | |
| dc.relation.references | L. F. Ballesteros, J. A. Teixeira, and S. I. Mussatto, “Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin,” Food Bioproc Tech, vol. 7, no. 12, pp. 3493–3503, Dec. 2014, doi: 10.1007/s11947-014-1349-z. | |
| dc.relation.references | N. Rodríguez-Valencia, Aplicación de la bioeconomía circular en el proceso de beneficio de café con cero residuos. Cenicafé, 2023. doi: 10.38141/cenbook-0032. | |
| dc.relation.references | P. S. Murthy and M. Madhava Naidu, “Sustainable management of coffee industry by-products and value addition - A review,” Sep. 2012. doi: 10.1016/j.resconrec.2012.06.005. | |
| dc.relation.references | M. Dias, M. M. Melo, R. F. Schwan, and C. F. Silva, “A new alternative use for coffee pulp from semi-dry process to β-glucosidase production by Bacillus subtilis,” Lett Appl Microbiol, vol. 61, no. 6, pp. 588–595, Dec. 2015, doi: 10.1111/lam.12498. | |
| dc.relation.references | E. Rojas-Orduña, M. Hernández-Carrión, J. D. Gómez-Franco, C. E. Narváez-Cuenca, and A. del P. Sánchez-Camargo, “Utilization of red and yellow Coffea arabica var. Caturra pulp: macronutrient analysis, carotenoid extraction, and encapsulation for dairy product enrichment,” Front Nutr, vol. 10, 2023, doi: 10.3389/fnut.2023.1231049. | |
| dc.relation.references | S. Cañas et al., “Gastrointestinal Digestion and Absorption of Antioxidant Phenolic Compounds and Caffeine from the Coffee Pulp under Simulated Conditions,” MDPI AG, May 2022, p. 1. doi: 10.3390/iecn2022-12395. | |
| dc.relation.references | J. A. Venegas-Sánchez and L. Díaz-Gómez, “Deslignificación de olote de maíz por ultrasonido,” Revista Tecnología en Marcha, Dec. 2023, doi: 10.18845/tm.v36i10.7009. | |
| dc.relation.references | T. Widjaja, A. Altway, Z. Lini, and T. Iswanto, “Two-stage pre-treatment of coffee pulp waste to optimize the reducing sugar production using enzymatic hydrolysis,” 2019. | |
| dc.relation.references | J. A. Serna-Jiménez et al., “Advanced extraction of caffeine and polyphenols from coffee pulp: Comparison of conventional and ultrasound-assisted methods,” LWT, vol. 177, Mar. 2023, doi: 10.1016/j.lwt.2023.114571. | |
| dc.relation.references | IARC, IARC monographs on the evaluation of carcinogenic risks to humans . Vol. 51 : Coffee, Tea, Mate, Methylxanthines and Methylglyoxal. IARC, 1991. | |
| dc.relation.references | C. Pereira-Leite, M. Bom, A. Ribeiro, C. Almeida, and C. Rosado, “Exploring Stearic-Acid-Based Nanoparticles for Skin Applications—Focusing on Stability and Cosmetic Benefits,” Cosmetics, vol. 10, no. 4, Aug. 2023, doi: 10.3390/cosmetics10040099. | |
| dc.relation.references | X. Wang, Y. Jia, and H. He, “The Role of Linoleic Acid in Skin and Hair Health: A Review,” Jan. 01, 2025, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ijms26010246. | |
| dc.relation.references | G. M. Ameca, M. E. O. Cerrilla, P. Z. Córdoba, A. D. Cruz, M. S. Hernández, and J. H. Haro, “Chemical composition and antioxidant capacity of coffee pulp,” Ciencia e Agrotecnologia, vol. 42, no. 3, pp. 307–313, May 2018, doi: 10.1590/1413-70542018423000818. | |
| dc.relation.references | MARIANA DEL PILAR CERQUERA VARGAS, “Evaluación de las diferentes estrategias de aprovechamiento de la pulpa de café en el Huila,” FUNDACIÓN UNIVERSIDAD DE AMÉRICA, Bogotá, 2022. | |
| dc.relation.references | M. M. Urugo et al., “Green valorization of coffee industry residues: Emerging innovations and their role in sustainable food and feed applications,” Dec. 01, 2025, Elsevier B.V. doi: 10.1016/j.afres.2025.101181. | |
| dc.relation.references | V. Matuk-Velasco, G. Inés Puerta-Quintero, and N. Rodríguez-Valencia, “Impacto biologico de los efluentes del beneficio humedo del café,” 1997. | |
| dc.relation.references | R. Cervantes Beyra et al., “Efecto de la pulpa de Coffea arabica L. sobre la microflora de tres unidades de suelos,” Rev. Protección Veg, vol. 30, no. 2, pp. 115–122, 2015. | |
| dc.relation.references | Francisco David Ramos Cuesta, “Compostaje pulpa de café, una alternativa de transición de los fertilizantes tradicionales,” Agricolae Habitat, 2022, doi: 10.13140/RG.2.2.20638.6176. | |
| dc.relation.references | D. L. G. Aguilar, J. P. R. Miranda, J. A. E. Muñoz, and P. Jhon Fredy Betancur, “Coffee pulp: A sustainable alternative removal of Cr (VI) in wastewaters,” Processes, vol. 7, no. 7, Jul. 2019, doi: 10.3390/pr7070403. | |
| dc.relation.references | D. L. Gómez-Aguilar, J. A. Esteban-Muñoz, J. P. Rodríguez-Miranda, D. Baracaldo-Guzmán, and O. J. Salcedo-Parra, “Desorption of Coffee Pulp Used as an Adsorbent Material for Cr(III and VI) Ions in Synthetic Wastewater: A Preliminary Study,” Molecules, vol. 27, no. 7, Apr. 2022, doi: 10.3390/molecules27072170. | |
| dc.relation.references | D. L. G. Aguilar, J. P. R. Miranda, D. B. Guzmán, and J. A. E. Muñoz, “Using coffee pulp as bioadsorbent for the removal of manganese (Mn (II)) from synthetic wastewater,” Water (Switzerland), vol. 12, no. 9, Sep. 2020, doi: 10.3390/w12092500. | |
| dc.relation.references | M. El Achaby et al., “Bio-sourced porous cellulose microfibrils from coffee pulp for wastewater treatment,” Cellulose, vol. 26, no. 6, pp. 3873–3889, Apr. 2019, doi: 10.1007/s10570-019-02344-w. | |
| dc.relation.references | M. Gonçalves, M. C. Guerreiro, P. H. Ramos, L. C. A. De Oliveira, and K. Sapag, “Activated carbon prepared from coffee pulp: Potential adsorbent of organic contaminants in aqueous solution,” Water Science and Technology, vol. 68, no. 5, pp. 1085–1090, 2013, doi: 10.2166/wst.2013.349. | |
| dc.relation.references | E. Carvajal-Flórez and S. M. Oakley, “Coffee pulp characterization and treatment as adsorbent material for heavy metal removal from landfill leachates,” International Journal of Environmental Science and Technology, vol. 20, no. 8, pp. 8241–8260, Aug. 2023, doi: 10.1007/s13762-022-04557-2. | |
| dc.relation.references | R. Cubero-Abarca, R. Moya, J. Valaret, and M. Tomazello Filho, “USE OF COFFEE (Coffea arabica) PULP FOR THE PRODUCTION OF BRIQUETTES AND PELLETS FOR HEAT GENERATION Uso de pulpa de café (Coffea arabica) para a fabricação de briquetes e pellets para geração de calor,” 2014. [Online]. Available: http://pelletics.com/ | |
| dc.relation.references | E. G. T. Menezes, J. R. Do Carmo, A. G. T. Menezes, J. G. L. F. Alves, C. J. Pimenta, and F. Queiroz, “Use of different extracts of coffee pulp for the production of bioethanol,” Appl Biochem Biotechnol, vol. 169, no. 2, pp. 673–687, Jan. 2013, doi: 10.1007/s12010-012-0030-0. | |
| dc.relation.references | T. Widjaja, A. Altway, S. Nurkhamidah, L. Edahwati, F. Zata Lini, and F. Oktafia, “THE EFFECT OF PRETREATMENT AND VARIETY OF MICROORGANISMS TO THE PRODUCTION OF ETHANOL FROM COFFEE PULP,” vol. 11, no. 2, 2016, [Online]. Available: www.arpnjournals.com | |
| dc.relation.references | R. Gurram, M. Al-Shannag, S. Knapp, T. Das, E. Singsaas, and M. Alkasrawi, “Technical possibilities of bioethanol production from coffee pulp: A renewable feedstock,” Clean Technol Environ Policy, vol. 18, no. 1, pp. 269–278, Jan. 2016, doi: 10.1007/s10098-015-1015-9. | |
| dc.relation.references | D. Shenoy et al., “A study on bioethanol production from cashew apple pulp and coffee pulp waste,” Biomass Bioenergy, vol. 35, no. 10, pp. 4107–4111, Oct. 2011, doi: 10.1016/j.biombioe.2011.05.016. | |
| dc.relation.references | J. Sadhukhan, E. Martinez-Hernandez, M. A. Amezcua-Allieri, J. Aburto, and J. A. Honorato S, “Economic and environmental impact evaluation of various biomass feedstock for bioethanol production and correlations to lignocellulosic composition,” Bioresour Technol Rep, vol. 7, Sep. 2019, doi: 10.1016/j.biteb.2019.100230. | |
| dc.relation.references | D. Orrego, A. D. Zapata-Zapata, and D. Kim, “Optimization and scale-up of coffee mucilage fermentation for ethanol production,” Energies (Basel), vol. 11, no. 4, Apr. 2018, doi: 10.3390/en11040786. | |
| dc.relation.references | B. Chala, H. Oechsner, S. Latif, and J. Müller, “Biogas potential of coffee processing waste in Ethiopia,” Sustainability (Switzerland), vol. 10, no. 8, Jul. 2018, doi: 10.3390/su10082678. | |
| dc.relation.references | T. Selvankumar et al., “Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp,” 3 Biotech, vol. 7, no. 4, Aug. 2017, doi: 10.1007/s13205-017-0884-5. | |
| dc.relation.references | G. Corro, U. Pal, F. Bañuelos, and M. Rosas, “Generation of biogas from coffee-pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions,” Energy Convers Manag, vol. 74, pp. 471–481, 2013, doi: 10.1016/j.enconman.2013.07.017. | |
| dc.relation.references | G. Corro, U. Pal, and S. Cebada, “Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment,” Energy Sci Eng, vol. 2, no. 4, pp. 177–187, Oct. 2014, doi: 10.1002/ese3.44. | |
| dc.relation.references | R. Miñón-Fuentes and O. Aguilar-Juárez, “Hydrogen production from coffee pulp by dark fermentation,” Water Science and Technology, vol. 80, no. 9, pp. 1692–1701, Nov. 2019, doi: 10.2166/wst.2019.416. | |
| dc.relation.references | A. C. Villa Montoya, R. Cristina da Silva Mazareli, E. L. Silva, and M. B. A. Varesche, “Improving the hydrogen production from coffee waste through hydrothermal pretreatment, co-digestion and microbial consortium bioaugmentation,” Biomass Bioenergy, vol. 137, Jun. 2020, doi: 10.1016/j.biombioe.2020.105551. | |
| dc.relation.references | A. K. Vuppaladadiyam et al., “A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges,” Jun. 01, 2023, Elsevier B.V. doi: 10.1016/j.joei.2023.101236. | |
| dc.relation.references | M. M. Parascanu, M. Puig-Gamero, G. Soreanu, J. L. Valverde, and L. Sanchez-Silva, “Comparison of three Mexican biomasses valorization through combustion and gasification: Environmental and economic analysis,” Energy, vol. 189, Dec. 2019, doi: 10.1016/j.energy.2019.116095. | |
| dc.relation.references | C. L. Mendoza Martinez, J. Saari, Y. Melo, M. Cardoso, G. M. de Almeida, and E. Vakkilainen, “Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case,” Mar. 01, 2021, Elsevier Ltd. doi: 10.1016/j.rser.2020.110585. | |
| dc.relation.references | A. S. G. Costa et al., “Coffee Pulp from Azores: A Novel Phytochemical-Rich Food with Potential Anti-Diabetic Properties,” Foods, vol. 14, no. 2, Jan. 2025, doi: 10.3390/foods14020306. | |
| dc.relation.references | G. Munguía-Ameca, M. E. Ortega-Cerrilla, J. G. Herrera-Haro, R. Bárcena-Gama, C. Nava-Cuéllar, and P. Zetina-Córdoba, “Growth Performance, Rumen Fermentation, In Vivo Digestibility, and Meat Quality of Pelibuey Lambs Fed a Diet with Ensiled Coffee Pulp,” Animals, vol. 13, no. 22, Nov. 2023, doi: 10.3390/ani13223462. | |
| dc.relation.references | W. Tapingkae et al., “The Use of Coffee Cherry Pulp Extract as an Alternative to an Antibiotic Growth Promoter in Broiler Diets,” Animals, vol. 15, no. 2, Jan. 2025, doi: 10.3390/ani15020244. | |
| dc.relation.references | K. Huanhong et al., “Dietary supplementation of coffee pulp extract enhances growth performance and intestinal morphology in broiler chicken,” Poult Sci, vol. 104, no. 3, Mar. 2025, doi: 10.1016/j.psj.2025.104873. | |
| dc.relation.references | S. Antúnez et al., “Effect of Different Levels of Extruded Coffee (Coffea arabica) Pulp Flour on the Productive Performance and Intestinal Morphometry of Cobb 500 Broiler Chickens,” Animals, vol. 14, no. 8, Apr. 2024, doi: 10.3390/ani14081170. | |
| dc.relation.references | A. Gil-Ramírez et al., “Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy,” Foods, vol. 13, no. 18, Sep. 2024, doi: 10.3390/foods13183006. | |
| dc.relation.references | A. Picon, Y. Campanero, C. Sánchez, I. Álvarez, and E. Rodríguez-Mínguez, “Valorization of Coffee Cherry By-Products Through Fermentation by Human Intestinal Lactobacilli in Functional Fermented Milk Beverages,” Foods, vol. 14, no. 1, Jan. 2025, doi: 10.3390/foods14010044. | |
| dc.relation.references | K. M. I. Bashir et al., “Validating the Health Benefits of Coffee Berry Pulp Extracts in Mice with High-Fat Diet-Induced Obesity and Diabetes,” Antioxidants, vol. 13, no. 1, Jan. 2024, doi: 10.3390/antiox13010010. | |
| dc.relation.references | D. Turck et al., “Safety of dried coffee husk (cascara) from Coffea arabica L. as a Novel food pursuant to Regulation (EU) 2015/2283,” EFSA Journal, vol. 20, no. 2, Feb. 2022, doi: 10.2903/j.efsa.2022.7085. | |
| dc.relation.references | A. Pérez Calvo, N. Paz Ruiz, and Z. Delgado Espinoza, “Coffee Pulp: A Sustainable and Affordable Source for Developing Functional Foods,” Processes, vol. 11, no. 6, Jun. 2023, doi: 10.3390/pr11061693. | |
| dc.relation.references | S. Patil, V. Pimpley, K. Warudkar, and P. S. Murthy, “Valorisation of Coffee Pulp for Development of Innovative Probiotic Beverage Using Kefir: Physicochemical, Antioxidant, Sensory Analysis and Shelf Life Studies,” Waste Biomass Valorization, vol. 13, no. 2, pp. 905–916, Feb. 2022, doi: 10.1007/s12649-021-01554-3. | |
| dc.relation.references | J. DePaula et al., “Volatile Fingerprinting and Sensory Profiles of Coffee Cascara Teas Produced in Latin American Countries,” Foods, vol. 11, no. 19, Oct. 2022, doi: 10.3390/foods11193144. | |
| dc.relation.references | S. Rosales Delgado, A. F. Alzate Arbeláez, K. Zapata Acosta, F. B. Cortés, and B. A. Rojano, “Improvement of probiotic viability through the design of novel biomaterials using coffee pulp wastes and Lactobacillus rhamnosus,” Food Science and Technology International, vol. 29, no. 6, pp. 573–585, Sep. 2023, doi: 10.1177/10820132221100683. | |
| dc.relation.references | L. H. Reichembach, P. Guerrero, C. L. de Oliveira Petkowicz, and K. de la Caba, “Valorization of pectins from coffee wastes for the development of pectin-chitosan films,” Carbohydr Polym, vol. 334, Jun. 2024, doi: 10.1016/j.carbpol.2024.122057. | |
| dc.relation.references | S. Malarat et al., “Preparation of Nanocellulose from Coffee Pulp and Its Potential as a Polymer Reinforcement,” ACS Omega, vol. 8, no. 28, pp. 25122–25133, Jul. 2023, doi: 10.1021/acsomega.3c02016. | |
| dc.relation.references | S. R. Sommano et al., “Utilization of coffee pulp for the production of sustainable cellulosic composite and plant-based hydrogel as a potential human wound dressing,” Food Structure, vol. 37, Jul. 2023, doi: 10.1016/j.foostr.2023.100347. | |
| dc.relation.references | A. Vallejos-Jiménez et al., “Development of Novel Pectin-Based Films from Coffee Waste: Mucilage and Pulp,” Waste Biomass Valorization, 2025, doi: 10.1007/s12649-025-02926-9. | |
| dc.relation.references | E. Král, J. L. Rukov, and A. C. Mendes, “Coffee Cherry on the Top: Disserting Valorization of Coffee Pulp and Husk,” Mar. 01, 2024, Springer. doi: 10.1007/s12393-023-09352-4. | |
| dc.relation.references | J. A. Serna-Jiménez, J. A. Siles, M. de los Ángeles Martín, and A. F. Chica, “A Review on the Applications of Coffee Waste Derived from Primary Processing: Strategies for Revalorization,” Nov. 01, 2022, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pr10112436. | |
| dc.relation.references | M. Rebollo-Hernanz et al., “Biorefinery and Stepwise Strategies for Valorizing Coffee By-Products as Bioactive Food Ingredients and Nutraceuticals,” Jul. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app13148326. | |
| dc.relation.references | S. R. Hughes et al., “Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept,” Oct. 01, 2014, Springer Verlag. doi: 10.1007/s00253-014-5991-1. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
| dc.subject.lemb | Conversión de residuos de café | |
| dc.subject.lemb | Residuos de café | |
| dc.subject.lemb | Pulpa de café | |
| dc.subject.lemb | Hidrolisis enzimatica | |
| dc.subject.lemb | Cafeina | |
| dc.subject.proposal | Pulpa de café | spa |
| dc.subject.proposal | Hidrólisis enzimática | spa |
| dc.subject.proposal | Cafeína | spa |
| dc.subject.proposal | Extracción con fluidos supercríticos | spa |
| dc.subject.proposal | Valorización de subproductos | spa |
| dc.subject.proposal | Coffee pulp | |
| dc.subject.proposal | Enzymatic hydrolysis | |
| dc.subject.proposal | Caffeine | |
| dc.subject.proposal | Supercritical fluid extraction | |
| dc.subject.proposal | By-product valorization | |
| dc.title | Aplicación de pretratamientos enzimáticos y de ultrasonido en la extracción de cafeína con CO2 supercrítico en pulpa de café | spa |
| dc.title.translated | Application of enzymatic and ultrasound pretreatments in supercritical CO₂ extraction of caffeine from coffee pulp | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.fundername | Universidad Nacional de Colombia |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1063308790.2026.pdf
- Tamaño:
- 1.65 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

