Paleodiversidad de la flora fósil de la Formación La Paja, Cretácico Inferior de Colombia

dc.contributor.advisorHerrera, Fabiany
dc.contributor.advisorLowy, Petter
dc.contributor.authorPalma Castro, Héctor Daniel
dc.contributor.cvlacPALMA-CASTRO, HÉCTOR DANIEL [0001705304]spa
dc.contributor.googlescholarPalma-Castro Hector Daniel [zIvZwGkAAAAJ&hl]spa
dc.contributor.orcidPalma-Castro Héctor D. [0000000161265545]spa
dc.contributor.researchgatePalma-Castro Héctor Daniel [Hector-Palma-Castro]spa
dc.contributor.researchgroupGrupo de Investigación en Paleobiología e Historia Natural (GIPHiN)spa
dc.coverage.countryColombia
dc.date.accessioned2024-02-07T14:33:57Z
dc.date.available2024-02-07T14:33:57Z
dc.date.issued2024-02
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEsta investigación busca aportar al conocimiento de la flora de la Formación La Paja del Barremiano – Aptiano (Cretácico Inferior) de Colombia, mediante la revisión y análisis de fósiles de plantas presentes en colecciones científicas y en colectas de campo. Siendo el objetivo principal presentar una visión actualizada de la composición florística de la Formación La Paja. Se revisaron colecciones históricas, como la del Padre Gustavo Huertas de la Universidad Nacional de Colombia en Bogotá, y colecciones ubicadas en la región de Villa de Leyva y otras partes del país. Aproximadamente trescientos fósiles fueron analizados, estos se clasificaron en 45 morfotipos, dividiéndolos en 5 morfotipos de hojas, 9 de ramas foliares, 1 fronda de helecho, 25 morfotipos de órganos reproductivos y 5 de maderas fósiles. Respecto a los grupos de plantas que estos morfotipos representan, se encontró una dominancia de coníferas, y en menor número Bennettitales, Cycadales, Pteridophyta, y material indeterminado. Se reporta la posible presencia de Pentoxylales y Gnetales para el Cretácico de Colombia y el norte de Sudamérica. Además de técnicas tradicionales de observación de fósiles, se utilizaron nuevas tecnologías como la microtomografía de rayos-x en un espécimen, demostrando el potencial de este tipo de análisis en fósiles de la Formación La Paja. Aunque existe incertidumbre sobre la afinidad y relaciones filogenéticas de varios de los especímenes analizados en esta investigación, se considera que la combinación de técnicas modernas y clásicas permitirá evaluar esta flora y ver su relación con floras de edad similar en el mundo durante el Cretácico Temprano. Este trabajo se puede considerar como un punto de partida para nuevas investigaciones relacionadas con la flora del Cretácico Temprano del norte de Sudamérica, y principalmente con la flora de la Formación La Paja. (Texto tomado de la fuente)spa
dc.description.abstractThis research aims to contribute to the understanding of the La Paja Formation flora within the Barremian – Aptian stages of the Lower Cretaceous in Colombia. This study involves a comprehensive review and analysis of fossil plants from historical collections and recently collected specimens. The primary objective is to present an updated perspective on the floristic composition of the La Paja Formation. Historical collections, such as the Father Gustavo Huertas’ housed at the Universidad Nacional de Colombia in Bogotá, as well as collections from the Villa de Leyva region and other parts of Colombia, were examined to gather data. Approximately three hundred fossils were analysed, and classified into 45 morphotypes, which were further divided into 5 leaf morphotypes, 9 leafy branch morphotypes, 1 fern frond, 25 reproductive organ morphotypes, and 5 fossil stem morphotypes. These findings reveal a dominance of conifers, with a lesser number of Bennettitales, Cycadales, Pteridophyte, and indeterminate material. Moreover, the potential presence of Pentoxylales and Gnetales during the Lower Cretaceous in Colombia. In addition to traditional fossil observation techniques, innovative techniques, such as X-ray microtomography, were employed in a specimen, supporting its potential for analysis within the La Paja Formation fossils. Although there is uncertainty regarding the affinity and phylogenetic relationships of some of the analyzed fossils in this research, the combination of modern and classical techniques is expected to allow a comprehensive evaluation of this flora and its relation to similar-aged floras worldwide during the Early Cretaceous. This study can be regarded as a starting point for future investigations concerning the Early Cretaceous flora of northern South America, particularly focusing on the flora of the La Paja Formation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.researchareaPaleobotánicaspa
dc.format.extent168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85645
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAndruchow‐Colombo, A., Escapa, I. H., Cúneo, N. R., & Gandolfo, M. A. (2018). Araucaria lefipanensis (Araucariaceae), a new species with dimorphic leaves from the Late Cretaceous of Patagonia, Argentina. American Journal of Botany, 105(6), 1067–1087. https://doi.org/10.1002/ajb2.1113spa
dc.relation.referencesArchangelsky, S. (1976). Vegetales fósiles de la Formación Springhill, Cretácico, en el subsuelo de la Cuenca Magallánica, Chile. Ameghiniana, 13.spa
dc.relation.referencesArchangelsky, S., Barreda, V., Passalia, M. G., Gandolfo, M., Prámparo, M., Romero, E., Cúneo, R., Zamuner, A., Iglesias, A., Llorens, M., Puebla, G. G., Quattrocchio, M., & Volkheimer, W. (2009). Early angiosperm diversification: evidence from southern South America. Cretaceous Research, 30(5), 1073–1082. https://doi.org/10.1016/j.cretres.2009.03.001spa
dc.relation.referencesBatista, M. E. P., Martine, A. M., Saraiva, A. Á. F., Lima, F. J. de, Barros, O. A., Sá, A. A. A., & Loiola, M. I. B. (2021). Brachyphyllum: State of the art and new data regarding B. obesum, the most representative fossil plant in the Araripe Basin, Brazil. Journal of South American Earth Sciences, 110. https://doi.org/10.1016/j.jsames.2021.103405spa
dc.relation.referencesBernardes-De-Oliveira, M. E. C., Sucerquia, P. A., Mohr, B., Dino, R., Antonioli, L., & Garcia, M. J. (2014). Indicadores paleoclimáticos na paleoflora do Crato, final do Aptiano do Gondwana Norocidental. Paleontologia: Cenários de Vida—Paleoclimas, 5, 99–118.spa
dc.relation.referencesBerry, E. W. (1922). Contributions to the Paleobotany of Peru, Bolivia and Chile: Five Papers (Números 15–19). John Hopkins Press.spa
dc.relation.referencesBerry, E. W. (1937). On the presence of the fern Weichselia in Colombia, South America. Journal of the Washington Academy of Sciences, 27(11), 458–461. http://www.jstor.org/stable/24529342spa
dc.relation.referencesBerry, E. W. (1939). The fossil plants from Huallanca, Peru. Johns Hopkins University Studies in Geology, 13, 73–93.spa
dc.relation.referencesBerry, E. W. (1945). The Weichselia Stage in the Andean geosyncline. Johns Hopkins Univ. Studies Geol., 14, 151–169.spa
dc.relation.referencesBiswas, C., & Johri, B. M. (1997). The Gymnosperms. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-13164-0spa
dc.relation.referencesBlakey, R. C. (2008). Gondwana paleogeography from assembly to breakup—A 500 my odyssey. En C. R. Fielding, T. D. Frank, & J. L. Isbell (Eds.), Geological Society of America Special Papers (Vol. 441, pp. 1–28). Geological Society of America.spa
dc.relation.referencesBlanco‐Moreno, C., Decombeix, A., & Prestianni, C. (2021). New insights into the affinities, autoecology, and habit of the Mesozoic fern Weichselia reticulata based on the revision of stems from Bernissart (Mons Basin, Belgium). Papers in Palaeontology, 7(3), 1351–1372. https://doi.org/10.1002/spp2.1344spa
dc.relation.referencesBlanco-Moreno, C., Gomez, B., & Buscalioni, Á. (2018). Palaeobiogeographic and metric analysis of the Mesozoic fern Weichselia. Geobios, 51(6), 571–578. https://doi.org/10.1016/j.geobios.2018.05.001spa
dc.relation.referencesBlanco-Moreno, C., Gomez, B., Marugán-Lobón, J., Daviero-Gomez, V., & Buscalioni, Á. D. (2019). A novel approach for the metric analysis of fern fronds: Growth and architecture of the Mesozoic fern Weichselia reticulata in the light of modern ferns. PLOS ONE, 14(6), e0219192. https://doi.org/10.1371/journal.pone.0219192spa
dc.relation.referencesBoinet, T. (1985). La Frontière méridionale de la plaque Caraibe aux confins colombo-vénézuéliens (Norte de Santander, Colombie): données géologiques. Université Paris VI.spa
dc.relation.referencesBürgl, H. (1954). El Cretáceo inferior en los alrededores de Villa de Leiva (Boyacá). Boletín Geológico, 2(1), 5–22. https://doi.org/10.32685/0120-1425/bolgeol2.1.1954.310spa
dc.relation.referencesBürgl, H. (1957). Bioestratigrafía de la sabana de Bogotá y sus alrededores. Boletín Geológico, 5(2), 113–185. https://doi.org/10.32685/0120-1425/bolgeol5.2.1957.290spa
dc.relation.referencesBürgl, H. (1958). El Jurásico e Infracretaceo del rio Batá, Boyacá. Boletín Geológico, 6(1–3), 164–223. https://doi.org/10.32685/0120-1425/bolgeol6.1-3.1958.328spa
dc.relation.referencesBürgl, H. (1964). El “Jura-Triásico” de Colombia. Boletín Geológico, 12(1–3), 5–31. https://doi.org/10.32685/0120-1425/bolgeol12.1-3.1964.266spa
dc.relation.referencesCantrill, D. J. (1992). Araucarian Foliage from the Lower Cretaceous of Southern Victoria, Australia. International Journal of Plant Sciences, 153(4), 622–645. https://doi.org/10.1086/297084spa
dc.relation.referencesCantrill, D. J., & Falcon-Lang, H. J. (2001). Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 2. Leaves, reproductive structures and roots. Review of Palaeobotany and Palynology, 115(3–4), 119–145. https://doi.org/10.1016/S0034-6667(01)00053-7spa
dc.relation.referencesCantrill, D. J., & Nagalingum, N. S. (2005). Ferns from the Cretaceous of Alexander Island, Antarctica: Implications for Cretaceous phytogeography of the Southern Hemisphere. Review of Palaeobotany and Palynology, 137(3–4), 83–103. https://doi.org/10.1016/j.revpalbo.2005.08.004spa
dc.relation.referencesCarrizo, M. A., & Del Fueyo, G. M. (2015). The Early Cretaceous megaflora of the Springhill Formation, Patagonia. Paleofloristic and Paleonvironmental inferences. Cretaceous Research, 56, 93–109. https://doi.org/10.1016/j.cretres.2015.03.006spa
dc.relation.referencesCarruthers, W. (1870). XVIII. On Fossil Cycadean Stems from the Secondary Rocks of Britain. Transactions of the Linnean Society of London, 26(4), 675–708. https://doi.org/10.1111/j.1096-3642.1870.tb00201.xspa
dc.relation.referencesCésari, S. N., Parica, C. A., Remesal, M. B., & Salani, F. M. (1998). First evidence of Pentoxylales in Antarctica. Cretaceous Research, 19(6), 733–743. https://doi.org/10.1006/cres.1998.0128spa
dc.relation.referencesCoiro, M., Martínez, L. C. A., Upchurch, G. R., & Doyle, J. A. (2020). Evidence for an extinct lineage of angiosperms from the Early Cretaceous of Patagonia and implications for the early radiation of flowering plants. New Phytologist, 228(1), 344–360. https://doi.org/10.1111/nph.16657spa
dc.relation.referencesCoiro, M., Roberts, E. A., Hofmann, C.-Ch., & Seyfullah, L. J. (2022). Cutting the long branches: Consilience as a path to unearth the evolutionary history of Gnetales. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.1082639spa
dc.relation.referencesCrane, P. R., & Lidgard, S. (1989). Angiosperm Diversification and Paleolatitudinal Gradients in Cretaceous Floristic Diversity. Science, 246(4930), 675–678. https://doi.org/10.1126/SCIENCE.246.4930.675spa
dc.relation.referencesDel Fueyo, G. M. (2007). Biodiversidad de las paleofloras de Patagonia austral durante el Cretácico Inferior. Publicación Electrónica de la Asociación Paleontológica Argentina, 11(1).spa
dc.relation.referencesDel Fueyo, G. M., Archangelsky, S., Llorens, M., & Cúneo, R. (2008). Coniferous Ovulate Cones from the Lower Cretaceous of Santa Cruz Province, Argentina. International Journal of Plant Sciences, 169(6), 799–813. https://doi.org/10.1086/533608spa
dc.relation.referencesEdwards, W. N. (1933). On the Cretaceous fern Paradoxopteris and its connexion with Weichselia. Annals of Botany, 47(186), 317–341.spa
dc.relation.referencesEl Atfy, H., Jasper, A., & Uhl, D. (2020). A new record of Paradoxopteris stromeri Hirmer 1927 (Monilophyta, incertae sedis) from the Cenomanian of Sinai, Egypt. Review of Palaeobotany and Palynology, 273, 104148. https://doi.org/10.1016/j.revpalbo.2019.104148spa
dc.relation.referencesEscapa, Cúneo, Rothwell, & Stockey. (2013). Pararaucaria delfueyoi sp. nov. from the Late Jurassic Cañadón Calcáreo Formation, Chubut, Argentina: Insights into the Evolution of the Cheirolepidiaceae. International Journal of Plant Sciences, 174(3), 458–470. https://doi.org/10.1086/668612spa
dc.relation.referencesEscapa, & Leslie. (2017). A new cheirolepidiaceae (Coniferales) from the early jurassic of patagonia (argentina): Reconciling the records of impression and permineralized fossils. American Journal of Botany, 104(2), 322–334. https://doi.org/10.3732/ajb.1600321spa
dc.relation.referencesEscapa, Rothwell, Stockey, & Cúneo. (2012). Seed cone anatomy of Cheirolepidiaceae (Coniferales): Reinterpreting Pararaucaria patagonica Wieland. American Journal of Botany, 99(6), 1058–1068. https://doi.org/10.3732/ajb.1100544spa
dc.relation.referencesEtayo-Serna, F. (1968). Sinopsis estratigráfica de la región de Villa de Leiva y zonas próximas. Boletín de Geología, 21, 19–32. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/7041spa
dc.relation.referencesEtayo-Serna, F. (1979). Zonation of the Cretaceous of central Colombia by Ammonites: Bogotá. Colombia, INGEOMINAS, Publicación Especial, 2, 186.spa
dc.relation.referencesEtayo-Serna, F. (1985a). Documentación paleontológica del infracretacico de San Felix y Valle Alto, Cordillera Central. En F. Etayo-Serna & F. Laverde Montaño (Eds.), Proyecto Cretácico (Vol. 16, p. XXV(1)-XXV(7)). Publicaciones Geológicas Especiales del INGEOMINAS.spa
dc.relation.referencesEtayo-Serna, F. (1985b). Paleontologia estratigrafica del sistema cretacico en la sierra nevada del cocuy. En F. Etayo-Serna & F. Laverde Montaño (Eds.), Proyecto Cretácico, Publicaciones Geológicas Especiales del INGEOMINAS (Vol. 16, p. XV(1)-XV(46)). Publicaciones Geológicas Especiales del INGEOMINAS.spa
dc.relation.referencesEttingshausen, C. von. (1888). Contributions to the Tertiary flora of Australia. Geol. Surv. New South Wales, Mem., Paleontol.spa
dc.relation.referencesFabre, A. (1985). Dinámica de la sedimentación cretácica en la región de Sierra Nevada del Cocuy (Cordillera Oriental de Colombia). En F. Etayo-Serna & F. Laverde Montaño (Eds.), Proyecto Cretácico (Vol. 16, p. XIX(1)-XIX(20)). Publicaciones Geológicas Especiales del INGEOMINAS.spa
dc.relation.referencesFalcon-Lang, H. J., & Cantrill, D. J. (2000). Cretaceous (Late Albian) coniferales of Alexander Island, Antarctica. 1: Wood taxonomy: a quantitative approach. Review of Palaeobotany and Palynology, 111(1–2), 1–17. https://doi.org/10.1016/S0034-6667(00)00012-9spa
dc.relation.referencesFarjon, A. (2005). Monograph of Cupressaceae and sciadopitys. Royal Botanic Gardens, Kew.spa
dc.relation.referencesFarjon, A. (2010). A Handbook of the World’s Conifers (Vol. 1). BRILL. https://doi.org/10.1163/9789047430629spa
dc.relation.referencesFarjon, A. (2018). The Kew Review: Conifers of the World. Kew Bulletin, 73(1), 8. https://doi.org/10.1007/s12225-018-9738-5spa
dc.relation.referencesFeistmantel, O. (1877). Jurassic (Liassic) flora of the Rajmahal Group in the Rajmahal Hills: Memoirs of the Geological Society of India. Palaeontologia Indica, Series II, 53–162.spa
dc.relation.referencesFerguson, D. K. (2005). Plant taphonomy: Ruminations on the past, the present, and the future. En Palaios (Vol. 20, Número 5, pp. 418–428). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/palo.2005.P05-25pspa
dc.relation.referencesFöllmi, K. B. (2012). Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230–257.spa
dc.relation.referencesForero, H., & Sarmiento L. (1985). Las facies evaporítica de la Formación Paja en la región de Villa de Leyva. EtayoSerna-Serna F. & Laverde, F. Proyecto Cretácico. Publ. Geol. Esp. 16., 1–16.spa
dc.relation.referencesFriis, E. M., Crane, P. R., & Pedersen, K. R. (2011). Early Flowers and Angiosperm Evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511980206spa
dc.relation.referencesGaltier, J., Phillips, T. L., Jones, T. P., & Rowe, N. P. (1999). The acetate peel technique. En T. P. Jones & N. P. Rowe (Eds.), Fossil plants and spores: Modern techniques (pp. 67–70). Geological Society of London.spa
dc.relation.referencesGaona-Narváez, T. (2015). El Cretácico sedimentario al este de la Falla de San Jerónimo: Compilación para el Mapa Geológico de Colombia. En J. Gómez-Tapia & M. F. Almanza-Meléndez (Eds.), Compilando la geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33 (Vol. 33, pp. 421–429).spa
dc.relation.referencesGaona-Narvaez, T., Maurrasse, F. J.-M., & Etayo-Serna, F. (2013). Geochemistry, palaeoenvironments and timing of Aptian organic-rich beds of the Paja Formation (Curit\’\i, Eastern Cordillera, Colombia). Geological Society, London, Special Publications, 382(1), 31–48.spa
dc.relation.referencesGastaldo, R. A., Pfefferkorn, H. W., & DiMichele, W. A. (1995). Taphonomic and sedimentologic characterization of roof-shale floras. En Historical Perspective of Early Twentieth Century Carboniferous Paleobotany in North America. Geological Society of America. https://doi.org/10.1130/MEM185-p341spa
dc.relation.referencesGonzález, H., Lemoigne, I., & Martínez, J. O. (1977). Flora de la formación Valle Alto-Jurásico-en la cordillera central de Colombia. Boletin de Ciencias de la Tierra, 2, 107–122.spa
dc.relation.referencesGuerrero, J. (2002). A proposal on the classification of systems tracts: application to the allostratigraphy and sequence stratigraphy of the Cretaceous Colombian Basin. Part 2: Barremian to Maastrichtian. Geología Colombiana, 27, 27–49.spa
dc.relation.referencesGupta, S. Sen. (1986). On Taeniopteris crassinervis (Feistmantel) Walkom from Rajmahal hill, Bihar, India. Review of Palaeobotany and Palynology, 49(3–4), 195–202. https://doi.org/10.1016/0034-6667(86)90027-8spa
dc.relation.referencesHarris. (1962). The Occurrence of the Fructification Carnoconites in New Zealand. Transactions of the Royal Society of New Zealand : Geology, 1(4), 17–27.spa
dc.relation.referencesHarris, T. M. (1944). A revision of Williamsoniella. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 231(583), 313–328. https://doi.org/10.1098/rstb.1944.0001spa
dc.relation.referencesHarris, T. M. (1964). The Yorkshire Jurassic Flora. II. Caytoniales, Cycadales & Pteridosperms. British Museum (Natural History).spa
dc.relation.referencesHarris, T. M. (1979). The Yorkshire Jurassic flora V coniferales. Trustees of the British Museum.spa
dc.relation.referencesHeer, O. (1878). Beitrage zur fossilen Flora Sibiriens und des Amurlandes. Memoires de I’Academie Imperiale des Sciences de St.-Petersbourg, 1–58.spa
dc.relation.referencesHermsen, E. J. (2021). Review of the Fossil Record of Passiflora, with a Description of New Seeds from the Pliocene Gray Fossil Site, Tennessee, USA. International Journal of Plant Sciences, 182(6), 533–550. https://doi.org/10.1086/714282spa
dc.relation.referencesHernández-Orúe, A. (2016). El nombre de las hojas de las Coníferas del Mesozoico. Asociación Paleontológica Alcarreña NAUTILUS, 8, 23–28.spa
dc.relation.referencesHerrera, F., Hotton, C. L., Smith, S. Y., Lopera, P. A., Neander, A. I., Wittry, J., Zheng, Y., Heck, P. R., Crane, P. R., & D’Antonio, M. P. (2023). Investigating Mazon Creek fossil plants using computed tomography and microphotography. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1200976spa
dc.relation.referencesHerrera, F., Leslie, A. B., Shi, G., Knopf, P., Ichinnorov, N., Takahashi, M., Crane, P. R., & Herendeen, P. S. (2016). New fossil Pinaceae from the Early Cretaceous of Mongolia. Botany, 94(9), 885–915. https://doi.org/10.1139/cjb-2016-0042spa
dc.relation.referencesHerrera, F., Shi, G., Knopf, P., Leslie, A. B., Ichinnorov, N., Takahashi, M., Crane, P. R., & Herendeen, P. S. (2017). Cupressaceae Conifers from the Early Cretaceous of Mongolia. International Journal of Plant Sciences, 178(1), 19–41. https://doi.org/10.1086/689577spa
dc.relation.referencesHerrera, F., Shi, G., Mays, C., Ichinnorov, N., Takahashi, M., Bevitt, J. J., Herendeen, P. S., & Crane, P. R. (2020). Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers. PLOS ONE, 15(1), e0226779. https://doi.org/10.1371/journal.pone.0226779spa
dc.relation.referencesHerrera, F., Testo, W. L., Field, A. R., Clark, E. G., Herendeen, P. S., Crane, P. R., & Shi, G. (2022). A permineralized Early Cretaceous lycopsid from China and the evolution of crown clubmosses. New Phytologist, 233(5), 2310–2322. https://doi.org/10.1111/nph.17874spa
dc.relation.referencesHirmer, M. (1927). Handbuch der Paläobotanik. Band I. Thallophyta-Bryophyta-Pteridophyta. Zeitschrift für Induktive Abstammungs-und Vererbungslehre, 49, 339–344.spa
dc.relation.referencesHowe, J., & Cantrill, D. J. (2001). Palaeoecology and taxonomy of Pentoxylales from the Albian of Antarctica. Cretaceous Research, 22(6), 779–793. https://doi.org/10.1006/cres.2001.0286spa
dc.relation.referencesHubach, E. (1945). La Formación’Cáqueza’, región de Cáqueza (oriente de Cundinamarca). Comp. Estud. Geol. Ofic. Colombia, VI, 23–26.spa
dc.relation.referencesHuber, B. T., & O’Brien, C. L. (2021). Cretaceous Climate. En Encyclopedia of Geology (pp. 497–503). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.12068-8spa
dc.relation.referencesHuertas, G. (1967). Sertum florulae fossilis Villae de Leivae. Caldasia, 59–75.spa
dc.relation.referencesHuertas, G. (1970). Sertum florulae fossilis Villae de Leiva II. Caldasia, 595–602.spa
dc.relation.referencesHuertas, G. (1976). Sertum florulae fossilis Villae de Leiva. Caldasia, 11(54), 17–23.spa
dc.relation.referencesHuertas, G. (2003). Flora Fósil de Villa de Leyva y sus alrededores. Camargo Editores.spa
dc.relation.referencesHunter, A. W., & Donovan, S. K. (2005). Field sampling bias, museum collections and completeness of the fossil record. Lethaia, 38(4), 305–314. https://doi.org/10.1080/00241160500289559spa
dc.relation.referencesIckert-Bond, S. M., & Renner, S. S. (2016). The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution, 54(1), 1–16. https://doi.org/10.1111/jse.12190spa
dc.relation.referencesIUGS. (2022, septiembre 16). Marine Reptile Lagerstätte from the Lower Cretaceous of the Ricaurte Alto - IUGS. International Commission on Geoheritage. https://iugs-geoheritage.org/geoheritage_sites/marine-reptile-lagerstatte-from-the-lower-cretaceous-of-the-ricaurte-alto/spa
dc.relation.referencesJaramillo, C. (2019). 140 Million Years of Tropical Biome Evolution. En The Geology of Colombia: Vol. Volume 2 Mesozoic. https://doi.org/10.32685/pub.esp.36.2019.06spa
dc.relation.referencesJaramillo, C. (2023). The evolution of extant South American tropical biomes. New Phytologist, 239(2), 477–493. https://doi.org/10.1111/nph.18931spa
dc.relation.referencesJaramillo, C., & Cárdenas, A. (2013). Global Warming and Neotropical Rainforests: A Historical Perspective. Annual Review of Earth and Planetary Sciences, 41(1), 741–766. https://doi.org/10.1146/annurev-earth-042711-105403spa
dc.relation.referencesJin, P., Zhang, M., Du, B., Li, A., & Sun, B. (2023). A new species of Pararaucaria from the Lower Cretaceous of Shandong province (Eastern China): Insights into the evolution of the Cheirolepidiaceae cone. Cretaceous Research, 146, 105475. https://doi.org/10.1016/j.cretres.2023.105475spa
dc.relation.referencesJulivert, M. (1968). Lexique Stratigraphique International Amérique Latine: Colombie, v. 5, fascicule 4. Paris, Centre National de la Recherche Scientifique.spa
dc.relation.referencesJulivert, M., Barrero, D., & Navas, J. (1964). Geología de la mesa de Los Santos. Boletín de Geología, 18, 5–11.spa
dc.relation.referencesKnowlton, F. H. (1911). Description of Two New Fossil Figs from Wyoming and Montana. Bulletin of the Torrey Botanical Club, 38(8), 389. https://doi.org/10.2307/2479216spa
dc.relation.referencesKrasser, F. (1921). Die von Ing. Karl Mandl (Wien) bei Nikolsk-Ussurijsk entdeckten Jurapflanzen hat folgenden Inhalt. Kgl. Akad. Wiss. Wien, math.-naturwiss. Kl. Anz, 58, 219–222.spa
dc.relation.referencesKunzmann, L. (2007). Araucariaceae (Pinopsida): Aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic. Zoologischer Anzeiger, 246(4), 257–277. https://doi.org/10.1016/j.jcz.2007.08.001spa
dc.relation.referencesKunzmann, L., Coiffard, C., Assis de Oliveira Westerkamp, A. P., Batista, M. E. P., Uhl, D., Solórzano-Kraemer, M. M., Mendes, M., do Nascimento, D. R., Iannuzzi, R., & da Silva Filho, W. F. (2021). Crato Flora: A 115-Million-Year-Old Window into the Cretaceous World of Brazil. En Brazilian Paleofloras (pp. 1–40). Springer International Publishing. https://doi.org/10.1007/978-3-319-90913-4_27-1spa
dc.relation.referencesKunzmann, L., Mohr, B. A. R., & Bernardes-de-Oliveira, M. E. C. (2004). Gymnosperms from the Lower Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis). Fossil Record, 7(1), 155–174.spa
dc.relation.referencesKvaček, J. (2003). Foliage of a broad leaved conifer Dammarophyllum from the Cenomanian of Bohemia. Časopis Národn\’\iho muzea, Řada př\’\irodovědná, 172(1–4), 13–20.spa
dc.relation.referencesKvaček, J., & Lobitzer, H. (2010). First records of Dammarites albens Presl in Sternberg (Pinopsida?) from the Cretaceous of Austria. Journal of the National Museum (Prague), Natural History Series, 179(12), 131–137.spa
dc.relation.referencesLabandeira, C. C., Wilf, P., Johnson, K. R., & Marsh, F. (2007). Guide to Insect (and other) Damage Types on Compressed Plant Fossils. Version 3.0. Smithsonian Institution. https://doi.org/https://doi.org/10.6084/m9.figshare.16571441.v1spa
dc.relation.referencesLemoigne, Y. (1984). Données nouvelles sur la paléoflore de Colombie. En Geobios (Vol. 17, Número 6, pp. 667–707). Elsevier. https://doi.org/10.1016/S0016-6995(84)80115-1spa
dc.relation.referencesLi, A.-J., Lei, X., Ma, G., Hui, J., Zhang, J., Jin, P., & Du, B. (2021). Fossil Pagiophyllum from the Lower Cretaceous of Jiuquan Basin, Gansu Province, and its palaeoenvironmental implications. Geological Journal, 56(11), 5387–5403. https://doi.org/10.1002/gj.4247spa
dc.relation.referencesLi, Y.-F., Sun, C.-L., Wang, H., Dilcher, D. L., Tan, X., Li, T., & Na, Y.-L. (2018). First record of Eretmophyllum (Ginkgoales) with well-preserved cuticle from the Middle Jurassic of the Ordos Basin, Inner Mongolia, China. Palaeoworld, 27(2), 188–201. https://doi.org/10.1016/j.palwor.2017.09.002spa
dc.relation.referencesLima, F. J., Saraiva, A. Á. F., & Sayão, J. M. (2012). Revisão da Paleoflora das Formações Missão Velha, Crato e Romualdo, Bacia do Araripe, Nordeste do Brasil. Estudos Geológicos, 22(1), 99–115. https://doi.org/10.18190/1980-8208/estudosgeologicos.v22n1p99-115spa
dc.relation.referencesLipps, T. (1938). Estudios geologicos y paleontologicos Cordillera oriental Colombia. Parte 3 (pp. 137–155).spa
dc.relation.referencesMagallón, S., & Castillo, A. (2009). Angiosperm diversification through time. American Journal of Botany, 96(1), 349–365. https://doi.org/10.3732/AJB.0800060spa
dc.relation.referencesMantilla-Figueroa, L. C., Cruz, L. E., & Colegial, J. D. (2003). Introducción a la geología del sector Vélez–Bolívar–Guavatá (dpto. De santander, colombia) y su importancia para la exploración de depósitos hidrotermales. Boletín de Geología, 25(40), 39–57.spa
dc.relation.referencesMartínez, C. (2017). Passifloraceae seeds from the late Eocene of Colombia. American Journal of Botany, 104(12), 1857–1866. https://doi.org/10.3732/ajb.1700224spa
dc.relation.referencesMartínez, L. C. A., Artabe, A. E. E., & Bodnar, J. (2012). A new cycad stem from the Cretaceous in Argentina and its phylogenetic relationships with other Cycadales. Botanical Journal of the Linnean Society, 170(3), 436–458. https://doi.org/10.1111/j.1095-8339.2012.01300.xspa
dc.relation.referencesMartínez, L. C. A., & Olivo, M. S. (2015). Tempskya in the Valanginian of South America (Mulichinco Formation, Neuquén Basin, Argentina) — Systematics, palaeoclimatology and palaeoecology. Review of Palaeobotany and Palynology, 219, 116–131. https://doi.org/10.1016/j.revpalbo.2015.04.002spa
dc.relation.referencesMartínez, L. C. A., Pacheco Huacallo, E., Pujana, R. R., & Padula, H. (2020). A new megaflora (leaves and reproductive structures) from the Huancané Formation (Lower Cretaceous), Peru. Cretaceous Research, 110. https://doi.org/10.1016/j.cretres.2020.104426spa
dc.relation.referencesMcLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. En Australian Journal of Botany (Vol. 49, Número 3, pp. 271–300). https://doi.org/10.1071/BT00023spa
dc.relation.referencesMenéndez, C. A. (1951). La flora mesozoica de la Formación Llantenes (provincia de Mendoza). Revista del Instituto Nacional de Investigaciones en Ciencias Naturales (Botánica), 2, 147–261.spa
dc.relation.referencesMeyen, S. (1987). Fundamentals of palaeobotany. Chapman and Hall.spa
dc.relation.referencesMiller, I. M., & Hickey, L. J. (2010). The Fossil Flora of the Winthrop Formation (Albian-Early Cretaceous) of Washington State, USA. Part II: Pinophytina. Bulletin of the Peabody Museum of Natural History, 51(1), 3–96. https://doi.org/10.3374/014.051.0104spa
dc.relation.referencesMohr, B. A. R., Bernardes-de-Oliveira, M. E. C., & Loveridge, R. F. (2007). The macrophyte flora of the Crato Formation. En Martill DM, Bechly G, & Loveridge RF (Eds.), The Crato fossil beds of Brazil: window into an ancient world (pp. 537–565). Cambridge University Press. https://doi.org/10.1017/CBO9780511535512.020spa
dc.relation.referencesMonje-Dussán, C., Martínez, C., Escapa, I., & Madriñán, S. (2016). Nuevos Registros De Helechos Y Coníferas Del Cretácico Inferior En La Cuenca Del Valle Superior Del Magdalena, Colombia. Revista Boletín de Geología, 38(4), 29–42. https://doi.org/10.18273/revbol.v38n4-2016002spa
dc.relation.referencesMontoya Arenas, D. (2019). Formación La Paja: descripción de la sección tipo. Influencia de los tapices microbiales en su génesis. En Estudios geológicos y paleontológicos sobre el Cretácico en la región del embalse del río Sogamoso, Valle Medio del Magdalena. https://doi.org/https://doi.org/10.32685/9789585231788-2spa
dc.relation.referencesMorales, L. G., Tanner, H. H., Jones, S. H., Barker, M. H. S., O’Donoghue, D. J., Mohler, C. E., Dubois, E. P., Jacobs, C., & Goss, C. R. (1958). General Geology and Oil Occurrences of Middle Magdalena Valley, Colombia. En Habitat of Oil. American Association of Petroleum Geologists.spa
dc.relation.referencesMoreno-Sánchez, M. (1994). La paleoflora del Cretácico Inferior de las regiones de San Antonio y Aipe (Huila). En Estudios Geológicos del Valle Superior del Magdalena (pp. XIV--1-- XIV--12).spa
dc.relation.referencesMoreno-Sánchez, M., Gómez-Cruz, A. de J., & Castillo-González, H. (2007). Frenelopsis y Pseudofrenelopsis (Coniferales: Cheirolepidiaceae) en el Cretácico Temprano de Colombia. Boletín de Geología, 29(2), 13–19.spa
dc.relation.referencesMoreno-Sánchez, M., Gómez-Cruz, A. de J., & Toro, L. M. (2008). Proveniencia del material clástico del Complejo Quebradagrande y su relación con los complejos estructurales adyacentes. Boletín de Ciencias de la Tierra, 22, 27–38.spa
dc.relation.referencesMussa, D., Carvalho, I. S., Corrêa-Martins, F. J., & Zuccoloto, M. E. (2000). Paradoxopteris Hirmer 1927, o caule de Weicheselia Stiehler 1857, presente no Cretáceo da Bacia de São Lu\’\is, Estado do Maranhão, Brasil. Revista da Universidade de Guarulhos, 5(6), 60–70.spa
dc.relation.referencesNagalingum, N. S., & Cantrill, D. J. (2006). Early Cretaceous Gleicheniaceae and Matoniaceae (Gleicheniales) from Alexander Island, Antarctica. Review of Palaeobotany and Palynology, 138(2), 73–93. https://doi.org/10.1016/j.revpalbo.2005.11.001spa
dc.relation.referencesNelson, H. W. (1957). Contribution to the geology of the Central and Western Cordillera of Colombia in the sector between Ibagué and Cali. Leidse Geologische Mededelingen, 22(1), 1–75.spa
dc.relation.referencesNeumann, R. (1907). Beiträge zur kenntnis der kreideformation in mittel-perúu. Neues Jahrbuch für Geologie und Paläontologie24, 24, 61–132.spa
dc.relation.referencesO’Brien, C. L., Robinson, S. A., Pancost, R. D., Damsté, J. S. S., Schouten, S., Lunt, D. J., Alsenz, H., Bornemann, A., Bottini, C., Brassell, S. C., & others. (2017). Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 172, 224–247.spa
dc.relation.referencesOldham, T., & Morris, J. (1863). Fossil flora of the Rajmahal Series in the Rajmahal Hills. Memoirs of the Geological Society of India Palaeontologia Indica, Series II, 1, 1–52.spa
dc.relation.referencesPalma-Castro, H., & Bustos-Sotelo, J. A. (2023). Flora fósil del Aptiano Superior de la Formación La Paja, sección los Guayabos, Vélez Santander (Cordillera Oriental, Colombia). Memorias del XI Congreso Latinoamericano de Paleontología-Simposio Paleobotánica y Palinología, 90–92.spa
dc.relation.referencesPalma-Castro, H., Cómbita-Romero, D., Cadena, E.-A., Carvalho, M., & Herrera, F. (2023). An Early Cretaceous Sphenophyllum or a hatchling turtle? Palaeontologia Electronica. https://doi.org/10.26879/1306spa
dc.relation.referencesPanti, C., Pujana, R. R., ZamaloaMarí, M. C., & Romero, E. J. (2012). Araucariaceae macrofossil record from South America and Antarctica. Alcheringa, 36(1), 1–22. https://doi.org/10.1080/03115518.2011.564562spa
dc.relation.referencesPassalia, M. G. (2007). A mid-Cretaceous flora from the Kachaike Formation, Patagonia, Argentina. Cretaceous Research, 28(5), 830–840. https://doi.org/10.1016/j.cretres.2006.12.006spa
dc.relation.referencesPatarroyo, P. (1997). Barremiano Inferior en la Base de la Formación Paja, Barichara, Santander - Colombia. Geología Colombiana, 22, 135–138. https://revistas.unal.edu.co/index.php/geocol/article/view/31451spa
dc.relation.referencesPatarroyo, P. (2000). Distribución de amonitas del Barremiano de la Formación Paja en el sector de Villa de Leyva (Boyacá, Colombia). Bioestratigraf\’\ia. Geología Colombiana, 25, 149–162.spa
dc.relation.referencesPatarroyo, P. (2009). High energy level ammonites of the Paja Formation early Barremian in the Villa de Leyva (Boyacá) and Vélez (Santander) areas - Colombia. Boletin de Geología, 31(2), 15–21.spa
dc.relation.referencesPessoa, E. M., Ribeiro, A. C., Christenhusz, M. J. M., Coan, A. I., & Jud, N. A. (2023). Is Santaniella a ranunculid? Reassessment of this enigmatic fossil angiosperm from the Lower Cretaceous (Aptian, Crato Konservat‐Lagerstätte, Brazil) provides a new interpretation. American Journal of Botany, 110(5). https://doi.org/10.1002/ajb2.16163spa
dc.relation.referencesPons, D. (1988). Le Mésozolque de Colombie, Macroflores et microflores. Cahiers de Paléontologie, Éditions du Centre National de la Recherche Scientifique, Paris., 168.spa
dc.relation.referencesPott, C., Kerp, H., & Krings, M. (2007). Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria). Review of Palaeobotany and Palynology, 143(3–4), 197–217. https://doi.org/10.1016/j.revpalbo.2006.07.007spa
dc.relation.referencesPott, C., Krings, M., & Kerp, H. (2007). First record of Nilssoniopteris (Gymnospermophyta, Bennettitales) from the Carnian (Upper Triassic) of Lunz, Lower Austria. Palaeontology, 50(5), 1299–1318. https://doi.org/10.1111/j.1475-4983.2007.00704.xspa
dc.relation.referencesPuente-Arauzo, E., Sender, L. M., Villanueva-Amadoz, U., Diez, J. B., & Torcida Fernández-Baldor, F. (2014). Nuevos registros del género Tempskya Corda, 1845 (Pteridophyta) en depósitos del Hauteriviense Superior-Barremiense Inferior del norte de España. Boletín de la Sociedad Geológica Mexicana, 66(1), 123–134.spa
dc.relation.referencesQuiroz Cabascango, D. E. (2021). Paleobotany and stratigraphy of the lower aptian to middle albian in the central sub-andean zone of Ecuador. Universidad de Investigación de Tecnolog\’\ia Experimental Yachay.spa
dc.relation.referencesRibeiro, A. C., Ribeiro, G. C., Varejão, F. G., Battirola, L. D., Pessoa, E. M., Sim\~oes, M. G., Warren, L. V., Riccomini, C., & Poyato-Ariza, F. J. (2021). Towards an actualistic view of the Crato Konservat-Lagerstätte paleoenvironment: a new hypothesis as an Early Cretaceous (Aptian) equatorial and semi-arid wetland. Earth-Science Reviews, 216, 103573.spa
dc.relation.referencesRodríguez, E., & Ulloa, C. (1994a). Geologia de la Plancha 169-Puerto Boyaca. Escala 1: 100.000. Memoria resumida, INGEOMINAS.spa
dc.relation.referencesRodríguez, E., & Ulloa, C. (1994b). Geologia de la Plancha 189-La Palma. Escala 1: 100.000. Memoria resumida, INGEOMINAS.spa
dc.relation.referencesRothwell, G. W., Crepet, W. L., & Stockey, R. A. (2009). Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales. American Journal of Botany, 96(1), 296–322. https://doi.org/10.3732/ajb.0800209spa
dc.relation.referencesRothwell, G. W., Stockey, R. A., Stevenson, D. W., & Zumajo-Cardona, C. (2022). Large Permineralized Seeds in the Jurassic of Haida Gwaii, Western Canada: Exploring the Mode and Tempo of Cycad Evolution. International Journal of Plant Sciences, 183(8), 674–690. https://doi.org/10.1086/721710spa
dc.relation.referencesRoyo y Gómez, J. (1945). Fósiles Carboníferos e Infracretácicos del Oriente de Cundinamarca. Compilación de Estudios Geológicos Oficiales en Colombia, VI, 193 – 246.spa
dc.relation.referencesSahni, B. (1948). The Pentoxyleae: A New Group of Jurassic Gymnosperms from the Rajmahal Hills of India. Botanical Gazette, 110(1), 47–80. https://doi.org/10.1086/335517spa
dc.relation.referencesSalfeld, H. (1911). Fossilien Pflanzen aus der obersten Jura bzw, Unteren Kreide von Peru–in Hauthal, Reisen in Peru und Bolivien. En Reisen in Peru und Bolivien (pp. 211–217).spa
dc.relation.referencesSarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383–411.spa
dc.relation.referencesSchlagintweit, O. (1919). Weichselia mantelli im nordöstlichen Venezuela. Cbl. Miner. Geol. Paläont, 1919, 315–319.spa
dc.relation.referencesSchoemaker, R. E. (1982). Fossil leaves from the lower Cretaceous Ciano formation, southwestern Ecuador. Palaeontographic, 180, 120–132.spa
dc.relation.referencesSchulz, C., Knopf, P., & Stützel, Th. (2005). Identification key to the Cypress family (Cupressaceae). Feddes Repertorium, 116(1–2), 96–146. https://doi.org/10.1002/fedr.200411062spa
dc.relation.referencesSchulz, C., & Stützel, T. (2007). Evolution of taxodiaceous Cupressaceae (Coniferopsida). Organisms Diversity & Evolution, 7(2), 124–135. https://doi.org/10.1016/j.ode.2006.03.001spa
dc.relation.referencesSeward A. C. (1919). Fossil plants; a text-book for students of botany and geology, (Vol. 4). Cambridge,Cambridge University Press,.spa
dc.relation.referencesShi, G., Herrera, F., Herendeen, P. S., Leslie, A. B., Ichinnorov, N., Takahashi, M., & Crane, P. R. (2018). Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships. Journal of Systematic Palaeontology, 16(2), 111–137. https://doi.org/10.1080/14772019.2016.1274343spa
dc.relation.referencesSteart, D. C., Spencer, A. R. T., Garwood, R. J., Hilton, J., Munt, M. C., Needham, J., & Kenrick, P. (2014). X-ray Synchrotron Microtomography of a silicified Jurassic Cheirolepidiaceae (Conifer) cone: histology and morphology of Pararaucaria collinsonae sp. nov. PeerJ, 2, e624. https://doi.org/10.7717/peerj.624spa
dc.relation.referencesStockey, R. A. (1981). Pityostrobus mcmurrayensis sp.nov., a permineralized pinaceous cone from the Cretaceous of Alberta. Canadian Journal of Botany, 59(1), 75–82. https://doi.org/10.1139/b81-013spa
dc.relation.referencesStockey, R. A., & Rothwell, G. W. (2003). Anatomically Preserved Williamsonia (Williamsoniaceae): Evidence for Bennettitalean Reproduction in the Late Cretaceous of Western North America. International Journal of Plant Sciences, 164(2), 251–262. https://doi.org/10.1086/346166spa
dc.relation.referencesSucerquia, P. A. (2013). Taxonomia, modos de preservação e fitogeografia de coníferas aptianas da região paleoequatorial da América do Sul. PhD diss. Universidade de São Paulo.spa
dc.relation.referencesSutton, M. D. (2008). Tomographic techniques for the study of exceptionally preserved fossils. Proceedings of the Royal Society B: Biological Sciences, 275(1643), 1587–1593. https://doi.org/10.1098/rspb.2008.0263spa
dc.relation.referencesTaylor, E. L., Taylor, T. N., & Krings, M. (2009). Paleobotany: the biology and evolution of fossil plants. Academic Press.spa
dc.relation.referencesThomas, H. G. (1916). III. On williamsoniella, a new type of bennettitalean flower. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 207(335–347), 113–148. https://doi.org/10.1098/rstb.1916.0003spa
dc.relation.referencesVakhrameev, V. A. (1991). Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge University Press.spa
dc.relation.referencesvan Konijnenburg-van Cittert, J. H. A., Pott, C., Cleal, C. J., & Zijlstra, G. (2017). Differentiation of the fossil leaves assigned to Taeniopteris, Nilssoniopteris and Nilssonia with a comparison to similar genera. Review of Palaeobotany and Palynology, 237, 100–106. https://doi.org/10.1016/j.revpalbo.2016.11.009spa
dc.relation.referencesvan Konijnenburg-van Cittert, J. H. A., Pott, C., Kustatscher, E., van der Burgh, J., Schmeißner, S., & Dütsch, G. (2019). A shoot with attached leaves of Desmiophyllum harrisii Barbacka et Pacyna from the Rhaetian of Bavaria, Germany. PalZ, 93(3), 531–541. https://doi.org/10.1007/s12542-019-00474-xspa
dc.relation.referencesvan Waveren, I. M., Van Konijnenburg-Van Cittert, J. H. A., van den Burgh, J., & Dilcher, D. L. (2002). Macrofloral remains from the Lower Cretaceous of the Leiva region (Colombia). Scripta Geologica, 123, 1–39.spa
dc.relation.referencesVera, E. I. (2010). Estudios anatómicos en paleofloras del Aptiano de Antártida y Patagonia y su comparación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales.spa
dc.relation.referencesVera, E. I. (2011). Livingstonites Gabrielaegen. et sp. nov., Permineralized Moss (Bryophyta: Bryopsida) from the Aptian Cerro Negro Formation of Livingston Island (South Shetland Islands, Antarctica). Ameghiniana, 48(1), 122–128. https://doi.org/10.5710/AMGH.v48i1(477)spa
dc.relation.referencesVon Der Osten, E. (1957). Lower Cretaceous Barranquin Formation of northeastern Venezuela. AAPG Bulletin, 41(4), 679–708.spa
dc.relation.referencesWatson, J. (1988). The cheirolepidiaceae. Origin and evolution of gymnosperms, 382–447.spa
dc.relation.referencesWatson, J., & Alvin, K. L. (1999). The cheirolepidiaceous conifers Frenelopsis occidentalis Heer and Watsoniocladus valdensis (Seward) in the Wealden of Germany. Cretaceous Research, 20(3), 315–326. https://doi.org/10.1006/cres.1999.0152spa
dc.relation.referencesWatson, J., Henderson, C. M. B., Cusack, H. A., & Drury, S. J. (2004). Cycadales of the English Wealden. Monographs of the Palaeontographical Society, 158(622), 1–179. https://doi.org/10.1080/25761900.2022.12131802spa
dc.relation.referencesYang, X., Liu, F., & Cheng, Y. (2018). A new tree fern stem, Tempskya zhangii sp. nov. (Tempskyaceae) from the Cretaceous of Northeast China. Cretaceous Research, 84, 188–199. https://doi.org/10.1016/j.cretres.2017.11.016spa
dc.relation.referencesZeiller, R. (1914). Sur quelques plantes Wealdiennes recueillies au Pérou par M. le Capitaine Berthon. Revue Générale de Botanique, 25, 647–674.spa
dc.relation.referencesZijlstra, G., van Konijnenburg-van Cittert, J. H. A., & Cleal, C. J. (2016). (2438–2439) Proposal to conserve the names Taeniopteris and T. vittata with a conserved type (fossil Tracheophyta: ‘Taeniopterides’). TAXON, 65(2), 399–400. https://doi.org/10.12705/652.30spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocFósiles vegetalesspa
dc.subject.agrovocVegetal fossilseng
dc.subject.agrovocBotanyeng
dc.subject.agrovocPlant biologyeng
dc.subject.ddc560 - Paleontología::561 - Paleobotánicaspa
dc.subject.decsBotánicaspa
dc.subject.proposalPaleobotánicaspa
dc.subject.proposalFormación La Pajaspa
dc.subject.proposalCretácico Inferiorspa
dc.subject.proposalColombiaspa
dc.subject.proposalPaleobotanyeng
dc.subject.proposalLa Paja Formationeng
dc.subject.proposalLower Cretaceouseng
dc.subject.proposalColombiaeng
dc.titlePaleodiversidad de la flora fósil de la Formación La Paja, Cretácico Inferior de Colombiaspa
dc.title.translatedPalaeodiversity of the fossil flora from the La Paja Formation, Lower Cretaceous of Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Paleodiversidad de la flora fósil de la Formación La Paja_Hector_Palma_post_final.pdf
Tamaño:
34.88 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: