Evaluación de la capacidad de liberación de colorante a partir de nanopartículas del Copolímero de ácido láctico y glicólico (PLGA)

dc.contributor.advisorLancheros Salas, Ruth Janneth
dc.contributor.authorBetes Sevillano, Paula Andrea
dc.contributor.cvlacBETES SEVILLANO, PAULA ANDREAspa
dc.contributor.googlescholarBETES SEVILLANO, PAULA ANDREAspa
dc.contributor.orcid0000-0002-3786-4086spa
dc.contributor.researchgateBETES SEVILLANO, PAULA ANDREAspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.contributor.scopusBETES SEVILLANO, PAULA ANDREAspa
dc.date.accessioned2023-02-23T21:07:47Z
dc.date.available2023-02-23T21:07:47Z
dc.date.issued2022-08-23
dc.descriptionilustracionesspa
dc.description.abstractEn el presente trabajo se fabricaron nanopartículas por nanoprecipitación, usando PLGA, que ha sido estudiado para su uso en la liberación controlada de principios activos. El objetivo de esta investigación fue analizar la afectación del peso molecular del polímero (PESO MOLECULAR 7-17 kDa , PESO MOLECULAR 38-54 kDa) y la variación solvente - no solvente sobre el tamaño de partícula y el perfil de liberación en aceite mineral (poco estudiado),estas variables son relevantes ya que la aplicación que se dé a las nanopartículas fabricadas dependerá de esto. Empleando la concentración inicial de 1,0 mg/ ml del colorante Oil red O establecido en esta investigación por obtener el menor tamaño de partícula (298,23 ± 0,76 nm ) y la mayor eficiencia de encapsulación de ( 5,65 ±0,11 %) , respecto a las concentraciones estudiadas de 0,2 mg/ml a 1,0 mg/ml. Con la concentración inicial fija de colorante se hizo la variación del peso molecular y de las posibles combinaciones binarias entre solvente - no solvente donde se observó que el incremento en el peso molecular aumenta la distribución de tamaño de partícula y la eficiencia de encapsulamiento. Los perfiles de liberación que se realizaron en medio oleoso presentan un perfil bifásico con una liberación rápida antes de las primeras 24h y posterior a esto una etapa de estabilización la cual es levemente afectada por la mezcla solvente no solvente, el tamaño de la partícula y la eficiencia de encapsulamiento, concluyendo que los factores estudiados afectan las variables respuesta. (Texto tomado ed la fuente)spa
dc.description.abstractIn the present work, nanoparticles were manufactured by nanoprecipitation, using PLGA, which has been studied for its use in the controlled release of active ingredients. The objective of this research was to analyze the affectation of the molecular weight of the polymer (molecular weight7-17 kDa, molecular weight38-54 kDa) and the solvent – non solvent variation on the particle size and the release profile in mineral oil (little studied) these variables are relevant since the application given to the produced nanoparticles came from this. Using the initial concentration of 1.0 mg/ml of the Oil red O dye that obtained the smallest particle size of 298.23 ± 0.76 nm and the highest encapsulation efficiency of 5.65 ± 0.11%, compared to the concentrations studied from 0.2 mg/ml to 1.0 mg/ml With the initial fixed concentration of dye, the variation of the molecular weight and of the possible binary combinations between solvent - non-solvent was made, where it was shown that the increase in molecular weight increases the particle size distribution and the encapsulation efficiency. The release profiles performed in oily medium present a biphasic profile with a fast release before the first 24h and after that a stabilization stage which is little affected by the non-solvent - solvent mixture, the particle size and the encapsulation efficiency, concluding that the studied factors affect the response variables.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Químicaspa
dc.description.researchareaNanomaterialesspa
dc.description.sponsorshipa financiación de este proyecto mediante la convocatoria para el apoyo proyectos de investigación y creación artística de la sede Bogotá de la Universidad Nacional de Colombia proyecto Hermes 202010027263spa
dc.format.extent110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83553
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesSáez, V., E. Hernáez, and L. Sanz-Angulo, Sistemas de liberación controlada de medicamentos. Revista iberoamericana de polímeros, 2002. 3(3): p. 1-17spa
dc.relation.referencesStrambeanu, N., et al., Nanoparticles: Definition, classification and general physical properties, in Nanoparticles' Promises and Risks. 2015, Springer. p. 3-8.spa
dc.relation.referencesLancheros Salas, R.J., Producción de nanopartículas de PLGA para el transporte de medicamentos especifico a tejido óseo. Universidad Nacional de Colombia-Sede Bogotáspa
dc.relation.referencesAcosta Turo, R., et al., Implementación de Nanotecnología en fármacos.spa
dc.relation.referencesKumari, A., et al., Biodegradable polymeric nanoparticles based drug delivery systems. 2010. 75(1): p. 1-18.spa
dc.relation.referencesSanta, C.F. and B.L. López Osorio, Materiales poliméricos en nanomedicina: transporte y liberación controlada de fármacos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2013. 37(142): p. 115-124.spa
dc.relation.referencesMir, M., N. Ahmed, and A. ur Rehman, Recent applications of PLGA based nanostructures in drug delivery. Colloids and Surfaces B: Biointerfaces, 2017. 159: p. 217-231spa
dc.relation.referencesZhou, J., et al., Microfluidic preparation of PLGA composite microspheres with mesoporous silica nanoparticles for finely manipulated drug release. International Journal of Pharmaceutics, 2021. 593: p. 120173.spa
dc.relation.referencesCheraga, N., et al., Optimized rapamycin-loaded PEGylated PLGA nanoparticles: Preparation, characterization and pharmacokinetics study. Journal of Drug Delivery Science and Technology, 2021. 61: p. 102144spa
dc.relation.referencesSeju, U., A. Kumar, and K. Sawant, Development and evaluation of olanzapine loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies.Acta biomaterialia, 2011. 7(12): p. 4169-4176.spa
dc.relation.referencesProkop, A. and J.M. Davidson, Nanovehicular intracellular delivery systems. Journal of pharmaceutical sciences, 2008. 97(9): p. 3518-3590.spa
dc.relation.referencesJeevanandam, J., et al., Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. 2018. 9(1): p. 1050-1074.spa
dc.relation.referencesFaraji, A.H., P.J.B. Wipf, and m. chemistry, Nanoparticles in cellular drug delivery.2009. 17(8): p. 2950-2962.spa
dc.relation.referencesGomez-Gaete, C., Nanopartículas poliméricas: tecnología y aplicaciones farmacéuticas. Rev. Farmacol. Chile, 2014. 7(2): p. 7-16.spa
dc.relation.referencesAmoabediny, G., et al., Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review.International Journal of Polymeric Materials and Polymeric Biomaterials, 2018. 67(6): p. 383-400.spa
dc.relation.referencesSur, S., et al., Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects, 2019. 20: p. 100397.spa
dc.relation.referencesCarter, P., B. Narasimhan, and Q.J.I.j.o.p. Wang, Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. 2019. 555: p. 49-62.spa
dc.relation.referencesLancheros Salas, R.J., Producción de nanopartículas de PLGA para el transporte de medicamentos especifico a tejido óseo. 2016, Universidad Nacional de Colombia-Sede Bogotá: Colombiaspa
dc.relation.referencesOropesa-Nuñez, R. and U.J. Jáuregui-Haza, Las nanopartículas como portadores de fármacos: características y perspectivas Nanoparticles as drug carriers: characteristics and perspectives. Revista CENIC Ciencias Biológicas, 2012. 43(3)spa
dc.relation.referencesAlves , M.P., Formas farmacêuticas plásticas contendo nanocápsulas, nanoesferas e nanoemulsões de nimesulida: desenvolvimento, caracterização e avaliação da permeação cutânea in vitro. 2006, Universidade federal do rio grande do sul Porto Alegrespa
dc.relation.referencesDias, A.P., et al., Dendrimers in the context of nanomedicine. International journal of pharmaceutics, 2020. 573: p. 118814spa
dc.relation.referencesYousefi, M., A. Narmani, and S.M. Jafari, Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Advances in Colloid and Interface Science, 2020: p. 102125.spa
dc.relation.referencesDaraee, H., et al., Application of liposomes in medicine and drug delivery. Artificial cells, nanomedicine, and biotechnology, 2016. 44(1): p. 381-391spa
dc.relation.referencesEroğlu, İ. and M. İbrahim, Liposome–ligand conjugates: a review on the current state of art. Journal of Drug Targeting, 2020. 28(3): p. 225-244.spa
dc.relation.referencesPradhan, B., et al., Liposome: method of preparation, advantages, evaluation and its application. Journal of Applied Pharmaceutical Research, 2015. 3(3): p. 01-08.spa
dc.relation.referencesBeltrán, M.J.T.d.l.P., Tema 1. Estructura y propiedades de los polímeros. 2011.spa
dc.relation.referencesSerrano, R. and M.J.G. Mendizábal, México: Universidad de Guadalajara, Introducción a la ciencia de los polímeros. Primera Edición ed. 2015.spa
dc.relation.referencesDavidenko, N., R. Cameron, and S. Best, Natural biopolymers for biomedical applications. 2019.spa
dc.relation.referencesBilal, M. and H.M.J.I.j.o.b.m. Iqbal, Naturally-derived biopolymers: Potential platforms for enzyme immobilization. 2019. 130: p. 462-482.spa
dc.relation.referencesRaus, R.A., W.M.F.W. Nawawi, and R.R.J.A.J.o.P.S. Nasaruddin, Alginate and Alginate Composites for Biomedical Applications. 2020.spa
dc.relation.referencesVaraprasad, K., et al., Alginate-based composite materials for wound dressing application: A mini review. 2020: p. 116025.spa
dc.relation.referencesZhang, Y., et al., The Artificial Organ: Cell Encapsulation. 2011.spa
dc.relation.referencesde Vries, R., et al., Bioengineering, biomaterials, and β-cell replacement therapy, in Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. 2020, Elsevier. p. 461-486.spa
dc.relation.referencesTong, X., et al., Recent advances in natural polymer-based drug delivery systems.2020. 148: p. 104501.spa
dc.relation.referencesDas, B. and S. Patra, Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology, in Nanostructures for antimicrobial therapy. 2017, Elsevier. p. 1-22spa
dc.relation.referencesJiang, T., et al., Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery, in Natural and synthetic biomedical polymers. 2014, Elsevier. p. 91-113spa
dc.relation.referencesGutierrez-Rojas, I., N. Moreno-Sarmiento, and D.J.R.i.d.m. Montoya, Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: Classical cases and new models. 2014. 32(1): p. 1-12.spa
dc.relation.referencesDeStefano, V., S. Khan, and A.J.E.R. Tabada, Applications of PLA in modern medicine. 2020. 1: p. 76-87.spa
dc.relation.referencesARDILA, L., et al., Estudio De La Biodegradación Hidrolítica De Películas Delgadas De biopolimeros ceramico mediante EQCM. 2010.spa
dc.relation.referencesYeo, T., et al., Promoting bone regeneration by 3D-printed poly (glycolic acid)/hydroxyapatite composite scaffolds. 2021. 94: p. 343-351.spa
dc.relation.referencesMiñano, J., J. Puiggalí, and L.J.T.A. Franco, Effect of curcumin on thermal degradation of poly (glycolic acid) and poly (ε-caprolactone) blends. 2020. 693: p. 178764spa
dc.relation.referencesKhorramnezhad, M., et al., Effect of surface modification on physical and cellular properties of PCL thin film. 2021: p. 111582.spa
dc.relation.referencesAsadian, M., et al., A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. 2019. 481: p. 1554-1565.spa
dc.relation.referencesOlmo Mora, A., Cromatografía de exclusión por tamaño. Análisis del polietilenglicol.2017spa
dc.relation.referencesContreras, J., D. Medina, and F.J.A.e.Q. López-Carrasquero, Síntesis y polimerización de bismacromonómeros de polietilenglicol. 2014. 9(3): p. 107-114.spa
dc.relation.referencesOkamoto, M. and B.J.P.i.P.S. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds. 2013. 38(10-11): p. 1487-1503.spa
dc.relation.referencesRafiei, P., A.J.M.S. Haddadi, and E. C, A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.2019. 104: p. 109950.spa
dc.relation.referencesAnderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews, 2012. 64: p. 72-82.spa
dc.relation.referencesSharma, S., et al., PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC trends in analytical chemistry, 2016. 80: p. 30-40.spa
dc.relation.referencesMakadia, H.K. and S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011. 3(3): p. 1377-1397.spa
dc.relation.referencesGhitman, J., et al., Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 2020. 193: p. 108805spa
dc.relation.referencesLlabot, J.M., S.D. Palma, and D. Allemandi, Nanopartículas poliméricas sólidas.Nuestra Farmacia, 2008. 53: p. 40-47.spa
dc.relation.referencesRivas, C.J.M., et al., Nanoprecipitation process: From encapsulation to drug delivery.International journal of pharmaceutics, 2017. 532(1): p. 66-81.spa
dc.relation.referencesMorales-Cruz, M., et al., Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results in pharma sciences, 2012. 2: p. 79-85spa
dc.relation.referencesMora-Huertas, C.E., H. Fessi, and A. Elaissari, Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics, 2010. 385(1-2): p. 113-142spa
dc.relation.referencesDing, D., Q.J.M.S. Zhu, and E. C, Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. 2018. 92: p. 1041-1060spa
dc.relation.referencesSwider, E., et al., Customizing poly (lactic-co-glycolic acid) particles for biomedical applications. 2018. 73: p. 38-51spa
dc.relation.referencesBudhian, A., S.J. Siegel, and K.I.J.I.j.o.p. Winey, Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. 2007. 336(2): p. 367-375.spa
dc.relation.referencesHuang, W. and C.J.B.j. Zhang, Tuning the size of poly (lactic‐co‐glycolic acid)(PLGA) nanoparticles fabricated by nanoprecipitation. 2018. 13(1): p. 1700203.spa
dc.relation.referencesMiladi, K., et al., Nanoprecipitation process: from particle preparation to in vivo applications, in Polymer nanoparticles for nanomedicines. 2016, Springer. p. 17-53spa
dc.relation.referencesMiladi, K., et al., Nanoprecipitation process: from particle preparation to in vivo applications, in Polymer nanoparticles for nanomedicines. 2016, Springer. p. 17-53spa
dc.relation.referencesRivas, C.J.M., et al., Nanoprecipitation process: From encapsulation to drug delivery.2017. 532(1): p. 66-81.spa
dc.relation.referencesFredenberg, S., et al., The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. International journal of pharmaceutics, 2011. 415(1-2): p. 34-52.spa
dc.relation.referencesKang, J. and S.P. Schwendeman, Determination of diffusion coefficient of a small hydrophobic probe in poly (lactide-co-glycolide) microparticles by laser scanning confocal microscopy. Macromolecules, 2003. 36(4): p. 1324-1330.spa
dc.relation.referencesChen, X., C. Ooi, and T. Lim, Effect of ganciclovir on the hydrolytic degradation ofpoly (lactide-co-glycolide) microspheres. Journal of biomaterials applications, 2006. 20(3): p. 287-302.spa
dc.relation.referencesGaumet, M., et al., Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. 2008. 69(1): p. 1-9spa
dc.relation.referencesJara González, M.O., Análisis sistemático de variables determinantes en la producción de nanopartículas poliméricas de Eudragit® RS, RL y PCL por el método de nanoprecipitación. 2016spa
dc.relation.referencesRivera Parra, C.A., Estudio del proceso de nanoencapsulación de quercetina por medio de nano precipitación. 2017.spa
dc.relation.referencesLegrand, P., et al., Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. International journal of pharmaceutics, 2007. 344(1-2): p. 33-43.spa
dc.relation.referencesBarboza, A.G., et al., Nanoparticulas polimericas no biodegradables cargadas con CoQ10 para su potencial administración oral. Quimica Hoy, 2014. 4(3): p. 1-5.spa
dc.relation.referencesPardo Fanlo, J.M. and S. Irusta Alderete, Nanopartículas cargadas con aceites esenciales para aplicación en apósitos, in Ingeniería biomédica. 2017, Universidad Zaragoza.spa
dc.relation.referencesda Silva Feltrin, F., et al., Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Advances in Colloid and Interface Science, 2021: p. 102582spa
dc.relation.referencesFeczkó, T., et al., Influence of process conditions on the mean size of PLGA nanoparticles. Chemical Engineering and Processing: Process Intensification, 2011. 50(8): p. 846-853.spa
dc.relation.referencesSong, X., et al., Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. European journal of pharmaceutics and biopharmaceutics, 2008. 69(2): p. 445-453spa
dc.relation.referencesWang, F., et al., Paeonol-loaded PLGA nanoparticles as an oral drug delivery system: Design, optimization and evaluation. International journal of pharmaceutics, 2021. 602: p. 120617spa
dc.relation.referencesHelmy, S.A., et al., Novel Doxorubicin/Folate-Targeted Trans-Ferulic Acid-Loaded doxorubicin/folate-targeted trans-ferulic acid-loaded PLGA nanoparticles combination: In-vivo superiority over standard chemotherapeutic regimen for breast cancer treatment. Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie, 2022. 145: p. 112376.spa
dc.relation.referencesRocha, F., et al., Nanosistemas a base de poliésteres. 2009.spa
dc.relation.referencesPesquera, L., et al., Síntesis y caracterización de microcápsulas de ácido poli–(láctico–co–glicólico). Evaluación de sus propiedades como potencial agente de liberación controlada, en la quimioterapia contra la leishmaniasis cutánea. Revista Iberoamericana de Polímeros, 2019. 20(5): p. 196-206.spa
dc.relation.referencesCorrigan, O.I. and X. Li, Quantifying drug release from PLGA nanoparticulates. European Journal of Pharmaceutical Sciences, 2009. 37(3-4): p. 477-485.spa
dc.relation.referencesMartínez, R.A. and V.O. Alamar, Dermatitis de contacto por dimetil sulfóxido. Enfermería Dermatológica, 2012. 6(16): p. 42-44.spa
dc.relation.referencesPiacentini, E., et al., Membrane nanoprecipitation: From basics to technology development. Journal of Membrane Science, 2022: p. 120564.spa
dc.relation.referencesVollmer, A., DMSO: La guía completa de tratamientos seguros y naturales para controlar el dolor, la inflamación y otras dolencias crónicas con dimetilsulfóxido. 2022: EDITORIAL SIRIO SA.spa
dc.relation.referencesLancheros, R., C.A. Guerrero, and R.D. Godoy-Silva, Improvement of N acetylcysteine loaded in PLGA nanoparticles by nanoprecipitation method. Journal of Nanotechnology, 2018spa
dc.relation.referencesGarcía Sala, X., Aportación al estudio de nanopartículas de fármacos con actividad analgésica/anestésica. 2011.spa
dc.relation.referencesYurtdaş-Kırımlıoğlu, G., et al., Nanoarchitectonics of PLGA based polymeric nanoparticles with oseltamivir phosphate for lung cancer therapy: In vitro-in vivo evaluation. Journal of Drug Delivery Science and Technology, 2022. 67: p. 102996spa
dc.relation.referencesMuñoz Rubio, I., Nanopartículas de PLGA: una aportación innovadora en el uso terapéutico de Cannabinoides. 2013.spa
dc.relation.referencesRocha Formiga, F., Nanosistemas a base de poliésteres. Monografías de la Real Academia Nacional de Farmacia, 2009.spa
dc.relation.referencesArellano Villaseñor, N., Síntesis de nanopartículas de plga cargadas con leflunomida para su evaluación in-vitro como sistema de administración y liberación en el tratamiento de artritis reumatoide, in Maestría y doctorado en ciencias e ingeniería 2019, Universidad autonoma de baja California Mexico.spa
dc.relation.referencesHasan, A.S., et al., Effect of the microencapsulation of nanoparticles on the reduction of burst release. International journal of pharmaceutics, 2007. 344(1-2): p. 53-61spa
dc.relation.referencesGarcía Gómez, R., Ingeniería básica de una planta de producción de acetona a partir de isopropanol. 2020.spa
dc.relation.referencesBeck-Broichsitter, M., Solvent impact on polymer nanoparticles prepared nanoprecipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 625: p. 126928spa
dc.relation.referencesAlmoustafa, H.A., M.A. Alshawsh, and Z. Chik, Technical aspects of preparing PEG-PLGA nanoparticles as carrier for chemotherapeutic agents by nanoprecipitation method. International journal of pharmaceutics, 2017. 533(1): p. 275-284.spa
dc.relation.referencesBudhian, A., S.J. Siegel, and K.I. Winey, Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. International journal of pharmaceutics, 2007. 336(2): p. 367-375spa
dc.relation.referencesINSST, I.N.d.S.y.s.e.e.t., Documentación toxicológico para el establecimiento del limite de exposición profesional del cloruro de metileno. 2018: Españaspa
dc.relation.referencesRoldan Rodríguez, J.L. and L.A. Canahua Sosa, Estudio del comportamiento reológico de soluciones de quitosano con TPP (Tripolifosfato de Sodio). 2015spa
dc.relation.referencesda Silva, A.T. and A.O. Ribeiro, Synthesis of a copolymer of lactic and citric acid for use in obtaining of loaders nanoparticle of pharmaciesspa
dc.relation.referencesFernández, K., Formulation of poly lactic-co-glycolic acid nanoparticles loaded with grape extracts and a study of its cytotoxicity on human kidney cells. 2016, UNIVERSIDAD DE CONCEPCION.spa
dc.relation.referencesXu, J., et al., Controllable microfluidic production of drug-loaded PLGA nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor. Scientific reports, 2017. 7(1): p. 1-12.spa
dc.relation.referencesBilati, U., E. Allémann, and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. European Journal of Pharmaceutical Sciences, 2005. 24(1): p. 67-75spa
dc.relation.referencesBarndok, H., Procesos de oxidación avanzada para el tratamiento de aguas residuales industriales contaminadas con 1, 4 dioxano. 2016.spa
dc.relation.referencesCarvalho, L.B.d., Síntese e caracterização de nanocápsulas de capsaicina em óleo de alecrim. 2015.spa
dc.relation.referencesJeong, Y.-I., et al., All-trans retinoic acid release from surfactant-free nanoparticles of poly (DL-lactide-co-glycolide). Macromolecular Research, 2008. 16(8): p. 717-724.spa
dc.relation.referencesHeredia Ayala, N.S. and A.P.M.D. Debut, Comparación de cuatro modelos matemáticos para el análisis de la cinética de liberación de fármacos a partir de nanopartículas basadas en ácido poli (láctico-co-glicólico) sintetizadas por el método de nanoprecipitación, in Ingeniería Biotecnología. 2021, Universidad de las fuerzas armadasspa
dc.relation.referencesGokhale, A., Achieving zero-order release kinetics using multi-step diffusion-based drug delivery. Pharmaceutical Technology Europe, 2014. 26(5)spa
dc.relation.referencesHeredia Ayala, N.S. and A.P.M.D. Debut, Comparación de cuatro modelos matemáticos para el análisis de la cinética de liberación de fármacos a partir de nanopartículas basadas en ácido poli (láctico-co-glicólico) sintetizadas por el método de nanoprecipitación.spa
dc.relation.referencesKalam, M.A., et al., Release kinetics of modified pharmaceutical dosage forms: a review. Cont J Pharm Sci, 2007. 1(1): p. 30-5spa
dc.relation.referencesDash, S., et al., Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010. 67(3): p. 217-223spa
dc.relation.referencesSinghvi, G. and M. Singh, In-vitro drug release characterization models. Int J Pharm Singhvi, G. and M. Singh, In-vitro drug release characterization models. Int J Pharm Stud Res, 2011. 2(1): p. 77-84.spa
dc.relation.referencesPermanadewi, I., et al. Modelling of controlled drug release in gastrointestinal tract simulation. in Journal of Physics: Conference Series. 2019. IOP Publishing.spa
dc.relation.referencesExpósito Harris, R., Quitosano, un biopolímero con aplicaciones en sistemas de liberación controlada de fármacos. 2010spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsMétodosspa
dc.subject.decsMethodseng
dc.subject.lembPrecipitación (química)spa
dc.subject.lembPrecipitation (chemistry)eng
dc.subject.proposalNanopartículasspa
dc.subject.proposalPLGAspa
dc.subject.proposalNanoprecipitaciónspa
dc.subject.proposaltamaño de partículaspa
dc.subject.proposaleficiencia de encapsulaciónspa
dc.subject.proposalperfil de liberaciónspa
dc.subject.proposalSolventespa
dc.subject.proposalNo solventespa
dc.subject.proposalPeso molecularspa
dc.titleEvaluación de la capacidad de liberación de colorante a partir de nanopartículas del Copolímero de ácido láctico y glicólico (PLGA)spa
dc.title.translatedEvaluation of dye release capacity dye release from nanoparticles of nanoparticles of lactic and glycolic acid lactic and glycolic acid (PLGA) copolymer nanoparticleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEvaluación de la capacidad de liberación de colorante a partir de nanopartículas del Copolímero de ácido láctico y glicólico (PLGA)spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010225260.2022.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: