Quantum Trajectories in non-Markovian system via the reaction coordinate mapping

dc.contributor.advisorViviescas Ramirez, Carlos Leonardo
dc.contributor.authorHerrera Rodriguez, Luis Eduardo
dc.contributor.researchgroupCaos y Complejidadspa
dc.date.accessioned2022-09-06T15:20:07Z
dc.date.available2022-09-06T15:20:07Z
dc.date.issued2022-07-21
dc.descriptiongráficos, ilustraciones, tablasspa
dc.description.abstractDynamics of systems coupled to an environment are usually hard to obtain; their solutions rely on approximation, which may not be reliable in many cases. Here we use the Reaction coordinate mapping and the Quantum trajectories to study the dynamics of strongly interacting systems. We benchmark an own derived Lindblad master equation for the Spin-Boson, in the dephasing limit, where the reaction coordinate mapping was applied. The master equation was unraveled with quantum trajectories, where a numerical improvement was found. The Lindblad master equation was used for a pair of 2 non-interacting qubits immersed in a bosonic bath. The Reaction coordinate map shows the presence of entanglement between the qubits and entanglement revival. Finally, the reaction coordinate was applied for a single electron transistor, getting the occupation of the dot in the non-equilibrium dynamics. (Text taken from the source)eng
dc.description.abstractLa dinámica de los sistemas acoplados a un entorno suele ser difícil de obtener; sus soluciones se basan en aproximaciones, que pueden ser no fiable en muchos casos. Aquí usamos el mapeo de coordenada de reacción y las trayectorias cuánticas para estudiar la dinámica de sistemas que interact´uan fuertemente. Se testeo una ecuaci´on maestra de Lindblad de derivacion propia para el sistema Spin-Boson en el límite de desfase, donde se aplicó el mapeo de coordenadas de reacci´on. La ecuaci´on maestra se desentra˜n´o con trayectorias cu´anticas, donde se encontr´o una mejora numérica. La ecuación maestra de Lindblad se utilizó para un par de qubits que no interactúan sumergidos en un baño bosónico. El mapa de coordenadas de reacción muestra la presencia de entrelazamiento entre los qubits y renacimiento del entrelazamiento. Finalmente, se aplic´o la coordenada de reacci´on para un transistor de un solo electrón, obteniendo la ocupación del punto quantico en la dinámica de no equilibrio.spa
dc.description.degreelevelMaestríaspa
dc.format.extent43 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82258
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesKW Murch, SJ Weber, Christopher Macklin, and Irfan Siddiqi. Observing single quantum trajectories of a superconducting quantum bit. Nature, 502(7470):211, 2013.spa
dc.relation.referencesDavid Kielpinski, Chris Monroe, and David J Wineland. Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890):709, 2002spa
dc.relation.referencesSimon F¨olling, Fabrice Gerbier, Artur Widera, Olaf Mandel, Tatjana Gericke, and Immanuel Bloch. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature, 434(7032):481, 2005.spa
dc.relation.referencesJ Millen, PZG Fonseca, T Mavrogordatos, TS Monteiro, and PF Barker. Cavity cooling a single charged levitated nanosphere. Physical review letters, 114(12):123602, 2015.spa
dc.relation.referencesVolkhard May and Oliver K¨uhn. Charge and energy transfer dynamics in molecular systems. John Wiley & Sons, 2008.spa
dc.relation.referencesMichael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.spa
dc.relation.referencesLeonas Valkunas, Darius Abramavicius, and Tomas Mancal. Molecular excitation dynamics and relaxation: quantum theory and spectroscopy. John Wiley & Sons, 2013.spa
dc.relation.referencesAbraham Nitzan. Chemical dynamics in condensed phases: relaxation, transfer and reactions in condensed molecular systems. Oxford university press, 2006.spa
dc.relation.referencesJianshu Cao, Richard J Cogdell, David F Coker, Hong-Guang Duan, J¨urgen Hauer, Ulrich Kleinekath¨ofer, Thomas LC Jansen, Tom´aˇs Manˇcal, RJ Dwayne Miller, Jennifer P Ogilvie, et al. Quantum biology revisited. Science advances, 6(14):eaaz4888, 2020.spa
dc.relation.referencesLuis E Herrera Rodriguez and Alexei A Kananenka. Convolutional neural networks for long time dissipative quantum dynamics. The Journal of Physical Chemistry Letters, 12(9):2476–2483, 2021.spa
dc.relation.referencesFelix Binder, Luis A Correa, Christian Gogolin, Janet Anders, and Gerardo Adesso. Thermodynamics in the quantum regime: fundamental aspects and new directions, volume 195. Springer, 2019spa
dc.relation.referencesYoshitaka Tanimura. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (heom). The Journal of chemical physics, 153(2):020901, 2020.spa
dc.relation.referencesH-D Meyer, Uwe Manthe, and Lorenz S Cederbaum. The multi-configurational timedependent hartree approach. Chemical Physics Letters, 165(1):73–78, 1990.spa
dc.relation.referencesDenis Kast and Joachim Ankerhold. Persistence of coherent quantum dynamics at strong dissipation. Physical review letters, 110(1):010402, 2013spa
dc.relation.referencesIn´es De Vega and Daniel Alonso. Dynamics of non-markovian open quantum systems. Reviews of Modern Physics, 89(1):015001, 2017.spa
dc.relation.referencesAnthony J Leggett, SDAFMGA Chakravarty, Alan T Dorsey, Matthew PA Fisher, Anupam Garg, and Wilhelm Zwerger. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59(1):1, 1987.spa
dc.relation.referencesUlrich Weiss. Quantum dissipative systems, volume 13. World scientific, 2012.spa
dc.relation.referencesLajos Di´osi. Ohmic vs markovian heat bath—two-page-tutorial, 2012spa
dc.relation.referencesHelmut Wipf, RG Barnes, P Dantzer, H Grabert, DK Ross, HR Schober, and H Vehoff. Hydrogen in metals iii. properties and applications. 1997.spa
dc.relation.referencesRudolph A Marcus. On the theory of oxidation-reduction reactions involving electron transfer. i. The Journal of chemical physics, 24(5):966–978, 1956.spa
dc.relation.referencesRudolph A Marcus and Norman Sutin. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 811(3):265–322, 1985.spa
dc.relation.referencesDiego Porras, F Marquardt, J Von Delft, and J Ignacio Cirac. Mesoscopic spin-boson models of trapped ions. Physical review A, 78(1):010101, 2008.spa
dc.relation.referencesHeinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002.spa
dc.relation.referencesGernot Schaller. Open quantum systems far from equilibrium, volume 881. Springer, 2014.spa
dc.relation.referencesGernot Schaller. Theorie des quantentransports. 2021spa
dc.relation.referencesAlexander N¨ußeler, Ish Dhand, Susana F Huelga, and Martin B Plenio. Efficient simulation of open quantum systems coupled to a fermionic bath. Physical Review B, 101(15):155134, 2020.spa
dc.relation.referencesAhsan Nazir and Gernot Schaller. The reaction coordinate mapping in quantum thermodynamics. arXiv preprint arXiv:1805.08307, 2018.spa
dc.relation.referencesHoward M Wiseman and L Di´osi. Complete parameterization, and invariance, of diffusive quantum trajectories for markovian open systems. Chemical Physics, 268(1-3):91–104, 2001.spa
dc.relation.referencesHoward Carmichael. An open systems approach to quantum optics: lectures presented at the Universit´e Libre de Bruxelles, October 28 to November 4, 1991, volume 18. Springer Science & Business Media, 2009.spa
dc.relation.referencesHeinz-Peter Breuer, Francesco Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002.spa
dc.relation.referencesGoran Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48(2):119–130, 1976.spa
dc.relation.referencesAndy Chia and Howard Mark Wiseman. Complete parametrizations of diffusive quantum monitorings. Physical Review A, 84(1):012119, 2011.spa
dc.relation.referencesScott Hill and William K Wootters. Entanglement of a pair of quantum bits. Physical review letters, 78(26):5022, 1997.spa
dc.relation.referencesAndreas Buchleitner, Carlos Viviescas, and Markus Tiersch. Entanglement and decoherence: foundations and modern trends, volume 768. Springer Science & Business Media, 2008.spa
dc.relation.referencesJia-dong Shi, Dong Wang, and Liu Ye. Entanglement revive and information flow within the decoherent environment. Scientific reports, 6:30710, 2016.spa
dc.relation.referencesUgo Fano. Effects of configuration interaction on intensities and phase shifts. Physical Review, 124(6):1866, 1961.spa
dc.relation.referencesPhilip Warren Anderson. Localized magnetic states in metals. Physical Review, 124(1):41, 1961.spa
dc.relation.referencesPB Wiegmann and AM Tsvelick. Exact solution of the anderson model: I. Journal of Physics C: Solid State Physics, 16(12):2281, 1983.spa
dc.relation.referencesPatrick P Hofer, Mart´ı Perarnau-Llobet, L David M Miranda, G´eraldine Haack, Ralph Silva, Jonatan Bohr Brask, and Nicolas Brunner. Markovian master equations for quantum thermal machines: local versus global approach. New Journal of Physics, 19(12):123037, 2017.spa
dc.relation.referencesBijay Kumar Agarwalla and Dvira Segal. The anderson impurity model out-of-equilibrium: Assessing the accuracy of simulation techniques with an exact current-occupation relation. The Journal of chemical physics, 147(5):054104, 2017.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembMapas cuánticosspa
dc.subject.lembQuantum mapseng
dc.subject.proposalNon markovianeng
dc.subject.proposalOpen quantum systemseng
dc.subject.proposalSpin bosoneng
dc.subject.proposalQuantum trajectorieseng
dc.subject.proposalReaction coordinateeng
dc.titleQuantum Trajectories in non-Markovian system via the reaction coordinate mappingeng
dc.title.translatedTrajectorias Cuanticas en sisitemas no-Markovianos via el mapeo de la coordenada de reaccionspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Reaction_coodinate_map__thesis_work__final.pdf
Tamaño:
4.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: