Efectos dinámicos en la emisión óptica de sistemas cavidad-qubit en el régimen de acoplamiento ultrafuerte

dc.contributor.advisorVinck Posada, Herbertspa
dc.contributor.advisorGómez G., Edgar Arturospa
dc.contributor.authorDominguez Giraldo, Marlon Steibeckspa
dc.contributor.researchgroupGrupo de Óptica e Información Cuánticaspa
dc.date.accessioned2021-02-22T19:46:13Zspa
dc.date.available2021-02-22T19:46:13Zspa
dc.date.issued2020spa
dc.description.abstractRecent experimental developments achieved in cavity-qubit systems in circuit quantum electrodynamics, open the door to enhance quantum properties for the implementation of new emerging quantum architectures. Among these interesting properties is the communication at a distance between two-level quantum systems or photon-mediated qubits, with the purpose of coding and transmitting information. Motivated by this, this work studies two hybrid quantum systems (semiconductor and superconductor), in order to quantify the degree of entanglement between qubits and to determine the robustness of information transfer mediated by a cavity (or resonator) in different radiation-matter coupling regimes: strong and ultra-strong regime, where the strong regime occurs when the radiation-matter interaction is less than the frequencies of the qubit-cavity and the ultra-strong when the interaction frequency is close to the natural frequencies of the system. The first studied system is a semiconductor double quantum dot molecule coupled to the same cavity in the strong regime and the second system differs in that a semiconductor qubit is replaced by a superconductor and furthermore, the latter is in the regime of ultra-strong coupling with the cavity. In particular, it was found that the degree of qubit-qubit entanglement in the steady state of the first system is high compared to the second system, where entanglement declines rapidly. In contrast, for quantum state transfer processes, ultra-strong coupling has a higher degree of transfer than strong coupling. Finally, in the second system it was shown that it is possible to inherit the behavior of an ultra-strong coupling regime from one qubit to another, through interaction with light.spa
dc.description.abstractRecientes desarrollos experimentales logrados en sistemas cavidad-qubit en electrodinámica cuántica de circuitos, abren la puerta para potenciar propiedades cuánticas para la implementación de nuevas arquitecturas cuánticas emergentes. Dentro de estas propiedades interesantes se encuentra la comunicación a distancia entre sistemas cuánticos de dos niveles o qubits mediados por fotones, con el propósito de codificar y transmitir información. Motivado por esto, en este trabajo se estudian dos sistemas cuánticos híbridos (semiconductores y superconductores), con el fin de cuantificar el grado de entrelazamiento entre qubits y determinar la robustez de la transferencia de información mediada por una cavidad (o resonador) en diferentes regímenes de acoplamiento radiación-materia: régimen fuerte y ultrafuerte, donde el fuerte ocurre cuando la interacción radiación-materia es menor a las frecuencias del qubit-cavidad y el ultrafuerte cuando la frecuencia de interacción es cercana a las frecuencias naturales del sistema. El primer sistema estudiado es una molécula de doble punto cuántico semiconductor acoplado a una misma cavidad en el régimen fuerte y el segundo sistema se diferencia en que se reemplaza un qubit semiconductor por uno superconductor y, además, éste se encuentra en el régimen de acoplamiento ultrafuerte con la cavidad. En particular, se encontró que el grado de entrelazamiento qubit-qubit en el estado estacionario del primer sistema es alto en comparación con el segundo sistema, donde el entrelazamiento decae rápidamente. Por el contrario, para procesos de transferencia cuántica de estados, el acople ultrafuerte tiene un mayor grado en la transferencia que el acople fuerte. Finalmente, en el segundo sistema se demostró que es posible heredar el comportamiento de un régimen de acoplamiento ultrafuerte de un qubit a otro, mediante la interacción con la luz.spa
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (82 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79279
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesP. Joyez, V. Bouchiat, D. Esteve, C. Urbina y M. H. Devoret, “Strong Tunneling in the Single-Electron Transistor”, Phys. Rev. Lett. 79, 1349 (1997).spa
dc.relation.referencesP. Hadley, E. Delvigne, E. H. Visscher, S. Lähteenmäki y J. E. Mooij, “3e tunneling processes in a superconducting single-electron tunneling transistor”, Phys. Rev. B 58, 15317 (1998).spa
dc.relation.referencesL. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Tarucha, R. M. Westervelt y N. S. Wingreen, “Electron Transport in Quantum Dots”, Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport, 105–214 (1997).spa
dc.relation.referencesP. Benioff, “The computer as a physical system: A microscopic quantum me- chanical Hamiltonian model of computers as represented by Turing machines”, Journal of Statistical Physics 22, 563 (1980).spa
dc.relation.referencesR. P. Feynman, “Simulating physics with computers”, International Journal of Theoretical Physics 21, 467 (1982).spa
dc.relation.referencesD. Deutsch y R. Jozsa, “Rapid solution of problems by quantum computation”, Proceedings of the Royal Society of London. Series A: Mathematical and Phy- sical Sciences 439, 553 (1992).spa
dc.relation.referencesP. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, en Proceedings 35th Annual Symposium on Foundations of Com- puter Science (1994), págs. 124-134.spa
dc.relation.referencesL. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, en Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96 (1996), 212–219.spa
dc.relation.referencesJ. I. Cirac y P. Zoller, “Quantum Computations with Cold Trapped Ions”, Phys. Rev. Lett. 74, 4091 (1995).spa
dc.relation.referencesJ. I. Cirac, P. Zoller, H. J. Kimble y H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network”, Phys. Rev. Lett. 78, 3221 (1997).spa
dc.relation.referencesD. Leibfried, R. Blatt, C. Monroe y D. Wineland, “Quantum dynamics of single trapped ions”, Rev. Mod. Phys. 75, 281 (2003).spa
dc.relation.referencesL. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sher- wood e I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance”, Nature 414, 883 (2001).spa
dc.relation.referencesJ. M. Raimond, M. Brune y S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity”, Rev. Mod. Phys. 73, 565 (2001).spa
dc.relation.referencesC. Monroe, “Quantum information processing with atoms and photons”, Na- ture 416, 238 (2002).spa
dc.relation.referencesH. Mabuchi y A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context”, Science 298, 1372 (2002).spa
dc.relation.referencesD. P. DiVincenzo, “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, 771 (2000).spa
dc.relation.referencesT. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe y J. L. O’Brien, “Quantum computers”, Nature 464, 45 (2010).spa
dc.relation.referencesB. E. Kane, “A silicon-based nuclear spin quantum computer”, Nature 393, 133 (1998).spa
dc.relation.referencesJ. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson y A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots”, Science 309, 2180 (2005).spa
dc.relation.referencesF. Jelezko, T. Gaebel, I. Popa, A. Gruber y J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin”, Phys. Rev. Lett. 92, 076401 (2004).spa
dc.relation.referencesL. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer y M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond”, Science 314, 281 (2006).spa
dc.relation.referencesY. Makhlin, G. Schön y A. Shnirman, “Quantum-state engineering with Josephson- junction devices”, Rev. Mod. Phys. 73, 357 (2001).spa
dc.relation.referencesJ. Clarke y F. K. Wilhelm, “Superconducting quantum bits”, Nature 453, 1031 (2008).spa
dc.relation.referencesI. I. Rabi, “On the Process of Space Quantization”, Phys. Rev. 49, 324 (1936).spa
dc.relation.referencesS. Haroche y D. Kleppner, “Cavity Quantum Electrodynamics”, Physics Today 42, 24–30 (1989).spa
dc.relation.referencesR. J. Thompson, G. Rempe y H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity”, Phys. Rev. Lett. 68, 1132 (1992).spa
dc.relation.referencesJ. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke y A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system”, Nature 432, 197 (2004).spa
dc.relation.referencesA. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang, J. Majer, S. Kumar, S. M. Girvin y R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics”, Nature 431, 162 (2004).spa
dc.relation.referencesJ. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin y R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus”, Nature 449, 443 (2007).spa
dc.relation.referencesE. T. Jaynes y F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proceedings of the IEEE 51, 89 (1963).spa
dc.relation.referencesT. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx y R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime”, Nature Physics 6, 772 (2010).spa
dc.relation.referencesP. Forn-Dı́az, J. Lisenfeld, D. Marcos, J. J. Garcı́a-Ripoll, E. Solano, C. J. P. M. Harmans y J. E. Mooij, “Observation of the Bloch-Siegert Shift in a Qubit- Oscillator System in the Ultrastrong Coupling Regime”, Phys. Rev. Lett. 105, 237001 (2010).spa
dc.relation.referencesW. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha y L. P. Kouwenhoven, “Electron transport through double quantum dots”, Rev. Mod. Phys. 75, 1 (2002).spa
dc.relation.referencesR. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha y L. M. K. Vandersy- pen, “Spins in few-electron quantum dots”, Rev. Mod. Phys. 79, 1217 (2007).spa
dc.relation.referencesZ.-L. Xiang, S. Ashhab, J. Q. You y F. Nori, “Hybrid quantum circuits: Su- perconducting circuits interacting with other quantum systems”, Rev. Mod. Phys. 85, 623 (2013).spa
dc.relation.referencesG.-W. Deng, D. Wei, S.-X. Li, J. R. Johansson, W.-C. Kong, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, F. Nori, H.-W. Jiang y G.-P. Guo, “Coupling Two Distant Double Quantum Dots with a Microwave Resonator”, Nano Letters 15, 6620 (2015).spa
dc.relation.referencesD. J. van Woerkom, P. Scarlino, J. H. Ungerer, C. Müller, J. V. Koski, A. J. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin y A. Wallraff, “Microwa- ve Photon-Mediated Interactions between Semiconductor Qubits”, Phys. Rev. X 8, 041018 (2018).spa
dc.relation.referencesP. Scarlino, D. J. van Woerkom, U. C. Mendes, J. V. Koski, A. J. Landig, C. K. Andersen, S. Gasparinetti, C. Reichl, W. Wegscheider, K. Ensslin, T. Ihn, A. Blais y A. Wallraff, “Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit”, Nature Communications 10, 3011 (2019).spa
dc.relation.referencesL. P. Kouwenhoven, D. G. Austing y S Tarucha, “Few-electron quantum dots”, Reports on Progress in Physics 64, 701 (2001).spa
dc.relation.referencesG.-W. Deng, D. Wei, S.-X. Li, J. R. Johansson, W.-C. Kong, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, F. Nori, H.-W. Jiang y G.-P. Guo, “Coupling Two Distant Double Quantum Dots with a Microwave Resonator”, Nano Letters 15, 6620 (2015).spa
dc.relation.referencesT. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong e Y. Hirayama, “Coherent Manipulation of Electronic States in a Double Quantum Dot”, Phys. Rev. Lett. 91, 226804 (2003).spa
dc.relation.referencesM. J. Gullans, Y.-Y. Liu, J. Stehlik, J. R. Petta y J. M. Taylor, “Phonon- Assisted Gain in a Semiconductor Double Quantum Dot Maser”, Phys. Rev. Lett. 114, 196802 (2015).spa
dc.relation.referencesJ. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal y S. Lloyd, “Josephson Persistent-Current Qubit”, Science 285, 1036 (1999).spa
dc.relation.referencesFrom strong to ultrastrong coupling in circuit QED architectures.spa
dc.relation.referencesJ. Bourassa, F. Beaudoin, J. M. Gambetta y A. Blais, “Josephson-junction- embedded transmission-line resonators: From Kerr medium to in-line trans- mon”, Phys. Rev. A 86, 013814 (2012).spa
dc.relation.referencesD. Braak, “Integrability of the Rabi Model”, Phys. Rev. Lett. 107, 100401 (2011).spa
dc.relation.referencesE. Jaynes y F. Cummings, “Comparison of Quantum and Semiclassical Radia- tion Theory with Application to the Beam Maser”, Proc. IEEE 51, 89 (1963).spa
dc.relation.referencesQ. Xie, H. Zhong, M. T. Batchelor y C. Lee, “The quantum Rabi model: solution and dynamics”, Journal of Physics A: Mathematical and Theoretical 50, 113001 (2017).spa
dc.relation.referencesM. Tavis y F. W. Cummings, “Exact Solution for an N -Molecule—Radiation- Field Hamiltonian”, Phys. Rev. 170, 379 (1968).spa
dc.relation.referencesH. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Texts and monographs in physics (Springer, 1999).spa
dc.relation.referencesF. P. Heinz-Peter Breuer, The theory of open quantum systems (Oxford Uni- versity Press, 2002).spa
dc.relation.referencesC. W. Gardiner y M. J. Collett, “Input and output in damped quantum sys- tems: Quantum stochastic differential equations and the master equation”, Phys. Rev. A 31, 3761 (1985).spa
dc.relation.referencesW. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits”, Phys. Rev. Lett. 80, 2245 (1998).spa
dc.relation.referencesD. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodrı́guez y D. Ballarini, “Entanglement properties of quantum polari- tons”, Phys. Rev. B 93, 205302 (2016).spa
dc.relation.referencesM. J. Gullans, Y.-Y. Liu, J. Stehlik, J. R. Petta y J. M. Taylor, “Phonon- Assisted Gain in a Semiconductor Double Quantum Dot Maser”, Phys. Rev. Lett. 114, 196802 (2015).spa
dc.relation.referencesF. Beaudoin, J. M. Gambetta y A. Blais, “Dissipation and ultrastrong coupling in circuit QED”, Phys. Rev. A 84, 043832 (2011).spa
dc.relation.referencesL. Childress, A. S. Sørensen y M. D. Lukin, “Mesoscopic cavity quantum elec- trodynamics with quantum dots”, Phys. Rev. A 69, 042302 (2004).spa
dc.relation.referencesJ. Combes, J. Kerckhoff y M. Sarovar, “The SLH framework for modeling quantum input-output networks”, Adv. Phys. X 2, 784 (2017).spa
dc.relation.referencesJ. Gough y M. R. James, “The Series Product and Its Application to Quantum Feedforward and Feedback Networks”, IEEE Trans. Automat. Contr. 54, 2530 (2009).spa
dc.relation.referencesD. Walls y G. Milburn, Quantum Optics (Springer, Berlin, 2007).spa
dc.relation.referencesM. Scully y M. Zubairy, Quantum Optics (Cambridge University Press, Cam- bridge, 1997).spa
dc.relation.referencesT. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin y A. Wallraff, “Dipole Coupling of a Double Quantum Dot to a Microwave Resonator”, Phys. Rev. Lett. 108, 046807 (2012).spa
dc.relation.referencesJ. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais y A. Wallraff, “Dressed Collective Qubit States and the Tavis- Cummings Model in Circuit QED”, Phys. Rev. Lett. 103, 083601 (2009).spa
dc.relation.referencesF. Gao y L. Han, “Implementing the Nelder-Mead simplex algorithm with adap- tive parameters”, Computational Optimization and Applications 51, 259 (2012).spa
dc.relation.referencesB. Thorgrimsson, D. Kim, Y.-C. Yang, L. W. Smith, C. B. Simmons, D. R. Ward, R. H. Foote, J. Corrigan, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith y M. A. Eriksson, “Extending the coherence of a quantum dot hybrid qubit”, npj Quantum Information 3, 32 (2017).spa
dc.relation.referencesJ. C. Abadillo-Uriel, M. A. Eriksson, S. N. Coppersmith y M. Friesen, “En- hancing the dipolar coupling of a S-T0 qubit with a transverse sweet spot”, Nature Communications 10, 5641 (2019).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.proposalElectrodinámica cuántica de circuitosspa
dc.subject.proposalCircuit Quantum Electrodynamicseng
dc.subject.proposalHybrid Quantum Systemseng
dc.subject.proposalSistemas cuánticos hı́bridosspa
dc.subject.proposalEntrelazamiento qubit-qubitspa
dc.subject.proposalQubit-Qubit Entanglementeng
dc.subject.proposalTransferencia cuánticaspa
dc.subject.proposalQuantum Transfereng
dc.subject.proposalStrong Coupling Regimeeng
dc.subject.proposalRégimen de acoplamiento fuerte y ultrafuertespa
dc.subject.proposalUltraStrong Coupling Regimeeng
dc.titleEfectos dinámicos en la emisión óptica de sistemas cavidad-qubit en el régimen de acoplamiento ultrafuertespa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1121906208.2020.pdf
Tamaño:
5.06 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: