Efectos dinámicos en la emisión óptica de sistemas cavidad-qubit en el régimen de acoplamiento ultrafuerte
| dc.contributor.advisor | Vinck Posada, Herbert | spa |
| dc.contributor.advisor | Gómez G., Edgar Arturo | spa |
| dc.contributor.author | Dominguez Giraldo, Marlon Steibeck | spa |
| dc.contributor.researchgroup | Grupo de Óptica e Información Cuántica | spa |
| dc.date.accessioned | 2021-02-22T19:46:13Z | spa |
| dc.date.available | 2021-02-22T19:46:13Z | spa |
| dc.date.issued | 2020 | spa |
| dc.description.abstract | Recent experimental developments achieved in cavity-qubit systems in circuit quantum electrodynamics, open the door to enhance quantum properties for the implementation of new emerging quantum architectures. Among these interesting properties is the communication at a distance between two-level quantum systems or photon-mediated qubits, with the purpose of coding and transmitting information. Motivated by this, this work studies two hybrid quantum systems (semiconductor and superconductor), in order to quantify the degree of entanglement between qubits and to determine the robustness of information transfer mediated by a cavity (or resonator) in different radiation-matter coupling regimes: strong and ultra-strong regime, where the strong regime occurs when the radiation-matter interaction is less than the frequencies of the qubit-cavity and the ultra-strong when the interaction frequency is close to the natural frequencies of the system. The first studied system is a semiconductor double quantum dot molecule coupled to the same cavity in the strong regime and the second system differs in that a semiconductor qubit is replaced by a superconductor and furthermore, the latter is in the regime of ultra-strong coupling with the cavity. In particular, it was found that the degree of qubit-qubit entanglement in the steady state of the first system is high compared to the second system, where entanglement declines rapidly. In contrast, for quantum state transfer processes, ultra-strong coupling has a higher degree of transfer than strong coupling. Finally, in the second system it was shown that it is possible to inherit the behavior of an ultra-strong coupling regime from one qubit to another, through interaction with light. | spa |
| dc.description.abstract | Recientes desarrollos experimentales logrados en sistemas cavidad-qubit en electrodinámica cuántica de circuitos, abren la puerta para potenciar propiedades cuánticas para la implementación de nuevas arquitecturas cuánticas emergentes. Dentro de estas propiedades interesantes se encuentra la comunicación a distancia entre sistemas cuánticos de dos niveles o qubits mediados por fotones, con el propósito de codificar y transmitir información. Motivado por esto, en este trabajo se estudian dos sistemas cuánticos híbridos (semiconductores y superconductores), con el fin de cuantificar el grado de entrelazamiento entre qubits y determinar la robustez de la transferencia de información mediada por una cavidad (o resonador) en diferentes regímenes de acoplamiento radiación-materia: régimen fuerte y ultrafuerte, donde el fuerte ocurre cuando la interacción radiación-materia es menor a las frecuencias del qubit-cavidad y el ultrafuerte cuando la frecuencia de interacción es cercana a las frecuencias naturales del sistema. El primer sistema estudiado es una molécula de doble punto cuántico semiconductor acoplado a una misma cavidad en el régimen fuerte y el segundo sistema se diferencia en que se reemplaza un qubit semiconductor por uno superconductor y, además, éste se encuentra en el régimen de acoplamiento ultrafuerte con la cavidad. En particular, se encontró que el grado de entrelazamiento qubit-qubit en el estado estacionario del primer sistema es alto en comparación con el segundo sistema, donde el entrelazamiento decae rápidamente. Por el contrario, para procesos de transferencia cuántica de estados, el acople ultrafuerte tiene un mayor grado en la transferencia que el acople fuerte. Finalmente, en el segundo sistema se demostró que es posible heredar el comportamiento de un régimen de acoplamiento ultrafuerte de un qubit a otro, mediante la interacción con la luz. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 1 recurso en línea (82 páginas) | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79279 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Física | spa |
| dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
| dc.relation.references | P. Joyez, V. Bouchiat, D. Esteve, C. Urbina y M. H. Devoret, “Strong Tunneling in the Single-Electron Transistor”, Phys. Rev. Lett. 79, 1349 (1997). | spa |
| dc.relation.references | P. Hadley, E. Delvigne, E. H. Visscher, S. Lähteenmäki y J. E. Mooij, “3e tunneling processes in a superconducting single-electron tunneling transistor”, Phys. Rev. B 58, 15317 (1998). | spa |
| dc.relation.references | L. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Tarucha, R. M. Westervelt y N. S. Wingreen, “Electron Transport in Quantum Dots”, Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport, 105–214 (1997). | spa |
| dc.relation.references | P. Benioff, “The computer as a physical system: A microscopic quantum me- chanical Hamiltonian model of computers as represented by Turing machines”, Journal of Statistical Physics 22, 563 (1980). | spa |
| dc.relation.references | R. P. Feynman, “Simulating physics with computers”, International Journal of Theoretical Physics 21, 467 (1982). | spa |
| dc.relation.references | D. Deutsch y R. Jozsa, “Rapid solution of problems by quantum computation”, Proceedings of the Royal Society of London. Series A: Mathematical and Phy- sical Sciences 439, 553 (1992). | spa |
| dc.relation.references | P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring”, en Proceedings 35th Annual Symposium on Foundations of Com- puter Science (1994), págs. 124-134. | spa |
| dc.relation.references | L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, en Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96 (1996), 212–219. | spa |
| dc.relation.references | J. I. Cirac y P. Zoller, “Quantum Computations with Cold Trapped Ions”, Phys. Rev. Lett. 74, 4091 (1995). | spa |
| dc.relation.references | J. I. Cirac, P. Zoller, H. J. Kimble y H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network”, Phys. Rev. Lett. 78, 3221 (1997). | spa |
| dc.relation.references | D. Leibfried, R. Blatt, C. Monroe y D. Wineland, “Quantum dynamics of single trapped ions”, Rev. Mod. Phys. 75, 281 (2003). | spa |
| dc.relation.references | L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sher- wood e I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance”, Nature 414, 883 (2001). | spa |
| dc.relation.references | J. M. Raimond, M. Brune y S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity”, Rev. Mod. Phys. 73, 565 (2001). | spa |
| dc.relation.references | C. Monroe, “Quantum information processing with atoms and photons”, Na- ture 416, 238 (2002). | spa |
| dc.relation.references | H. Mabuchi y A. C. Doherty, “Cavity Quantum Electrodynamics: Coherence in Context”, Science 298, 1372 (2002). | spa |
| dc.relation.references | D. P. DiVincenzo, “The Physical Implementation of Quantum Computation”, Fortschritte der Physik 48, 771 (2000). | spa |
| dc.relation.references | T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe y J. L. O’Brien, “Quantum computers”, Nature 464, 45 (2010). | spa |
| dc.relation.references | B. E. Kane, “A silicon-based nuclear spin quantum computer”, Nature 393, 133 (1998). | spa |
| dc.relation.references | J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson y A. C. Gossard, “Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots”, Science 309, 2180 (2005). | spa |
| dc.relation.references | F. Jelezko, T. Gaebel, I. Popa, A. Gruber y J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin”, Phys. Rev. Lett. 92, 076401 (2004). | spa |
| dc.relation.references | L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer y M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond”, Science 314, 281 (2006). | spa |
| dc.relation.references | Y. Makhlin, G. Schön y A. Shnirman, “Quantum-state engineering with Josephson- junction devices”, Rev. Mod. Phys. 73, 357 (2001). | spa |
| dc.relation.references | J. Clarke y F. K. Wilhelm, “Superconducting quantum bits”, Nature 453, 1031 (2008). | spa |
| dc.relation.references | I. I. Rabi, “On the Process of Space Quantization”, Phys. Rev. 49, 324 (1936). | spa |
| dc.relation.references | S. Haroche y D. Kleppner, “Cavity Quantum Electrodynamics”, Physics Today 42, 24–30 (1989). | spa |
| dc.relation.references | R. J. Thompson, G. Rempe y H. J. Kimble, “Observation of normal-mode splitting for an atom in an optical cavity”, Phys. Rev. Lett. 68, 1132 (1992). | spa |
| dc.relation.references | J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke y A. Forchel, “Strong coupling in a single quantum dot–semiconductor microcavity system”, Nature 432, 197 (2004). | spa |
| dc.relation.references | A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang, J. Majer, S. Kumar, S. M. Girvin y R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics”, Nature 431, 162 (2004). | spa |
| dc.relation.references | J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin y R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus”, Nature 449, 443 (2007). | spa |
| dc.relation.references | E. T. Jaynes y F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proceedings of the IEEE 51, 89 (1963). | spa |
| dc.relation.references | T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx y R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime”, Nature Physics 6, 772 (2010). | spa |
| dc.relation.references | P. Forn-Dı́az, J. Lisenfeld, D. Marcos, J. J. Garcı́a-Ripoll, E. Solano, C. J. P. M. Harmans y J. E. Mooij, “Observation of the Bloch-Siegert Shift in a Qubit- Oscillator System in the Ultrastrong Coupling Regime”, Phys. Rev. Lett. 105, 237001 (2010). | spa |
| dc.relation.references | W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha y L. P. Kouwenhoven, “Electron transport through double quantum dots”, Rev. Mod. Phys. 75, 1 (2002). | spa |
| dc.relation.references | R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha y L. M. K. Vandersy- pen, “Spins in few-electron quantum dots”, Rev. Mod. Phys. 79, 1217 (2007). | spa |
| dc.relation.references | Z.-L. Xiang, S. Ashhab, J. Q. You y F. Nori, “Hybrid quantum circuits: Su- perconducting circuits interacting with other quantum systems”, Rev. Mod. Phys. 85, 623 (2013). | spa |
| dc.relation.references | G.-W. Deng, D. Wei, S.-X. Li, J. R. Johansson, W.-C. Kong, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, F. Nori, H.-W. Jiang y G.-P. Guo, “Coupling Two Distant Double Quantum Dots with a Microwave Resonator”, Nano Letters 15, 6620 (2015). | spa |
| dc.relation.references | D. J. van Woerkom, P. Scarlino, J. H. Ungerer, C. Müller, J. V. Koski, A. J. Landig, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin y A. Wallraff, “Microwa- ve Photon-Mediated Interactions between Semiconductor Qubits”, Phys. Rev. X 8, 041018 (2018). | spa |
| dc.relation.references | P. Scarlino, D. J. van Woerkom, U. C. Mendes, J. V. Koski, A. J. Landig, C. K. Andersen, S. Gasparinetti, C. Reichl, W. Wegscheider, K. Ensslin, T. Ihn, A. Blais y A. Wallraff, “Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit”, Nature Communications 10, 3011 (2019). | spa |
| dc.relation.references | L. P. Kouwenhoven, D. G. Austing y S Tarucha, “Few-electron quantum dots”, Reports on Progress in Physics 64, 701 (2001). | spa |
| dc.relation.references | G.-W. Deng, D. Wei, S.-X. Li, J. R. Johansson, W.-C. Kong, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, F. Nori, H.-W. Jiang y G.-P. Guo, “Coupling Two Distant Double Quantum Dots with a Microwave Resonator”, Nano Letters 15, 6620 (2015). | spa |
| dc.relation.references | T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong e Y. Hirayama, “Coherent Manipulation of Electronic States in a Double Quantum Dot”, Phys. Rev. Lett. 91, 226804 (2003). | spa |
| dc.relation.references | M. J. Gullans, Y.-Y. Liu, J. Stehlik, J. R. Petta y J. M. Taylor, “Phonon- Assisted Gain in a Semiconductor Double Quantum Dot Maser”, Phys. Rev. Lett. 114, 196802 (2015). | spa |
| dc.relation.references | J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal y S. Lloyd, “Josephson Persistent-Current Qubit”, Science 285, 1036 (1999). | spa |
| dc.relation.references | From strong to ultrastrong coupling in circuit QED architectures. | spa |
| dc.relation.references | J. Bourassa, F. Beaudoin, J. M. Gambetta y A. Blais, “Josephson-junction- embedded transmission-line resonators: From Kerr medium to in-line trans- mon”, Phys. Rev. A 86, 013814 (2012). | spa |
| dc.relation.references | D. Braak, “Integrability of the Rabi Model”, Phys. Rev. Lett. 107, 100401 (2011). | spa |
| dc.relation.references | E. Jaynes y F. Cummings, “Comparison of Quantum and Semiclassical Radia- tion Theory with Application to the Beam Maser”, Proc. IEEE 51, 89 (1963). | spa |
| dc.relation.references | Q. Xie, H. Zhong, M. T. Batchelor y C. Lee, “The quantum Rabi model: solution and dynamics”, Journal of Physics A: Mathematical and Theoretical 50, 113001 (2017). | spa |
| dc.relation.references | M. Tavis y F. W. Cummings, “Exact Solution for an N -Molecule—Radiation- Field Hamiltonian”, Phys. Rev. 170, 379 (1968). | spa |
| dc.relation.references | H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Texts and monographs in physics (Springer, 1999). | spa |
| dc.relation.references | F. P. Heinz-Peter Breuer, The theory of open quantum systems (Oxford Uni- versity Press, 2002). | spa |
| dc.relation.references | C. W. Gardiner y M. J. Collett, “Input and output in damped quantum sys- tems: Quantum stochastic differential equations and the master equation”, Phys. Rev. A 31, 3761 (1985). | spa |
| dc.relation.references | W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits”, Phys. Rev. Lett. 80, 2245 (1998). | spa |
| dc.relation.references | D. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodrı́guez y D. Ballarini, “Entanglement properties of quantum polari- tons”, Phys. Rev. B 93, 205302 (2016). | spa |
| dc.relation.references | M. J. Gullans, Y.-Y. Liu, J. Stehlik, J. R. Petta y J. M. Taylor, “Phonon- Assisted Gain in a Semiconductor Double Quantum Dot Maser”, Phys. Rev. Lett. 114, 196802 (2015). | spa |
| dc.relation.references | F. Beaudoin, J. M. Gambetta y A. Blais, “Dissipation and ultrastrong coupling in circuit QED”, Phys. Rev. A 84, 043832 (2011). | spa |
| dc.relation.references | L. Childress, A. S. Sørensen y M. D. Lukin, “Mesoscopic cavity quantum elec- trodynamics with quantum dots”, Phys. Rev. A 69, 042302 (2004). | spa |
| dc.relation.references | J. Combes, J. Kerckhoff y M. Sarovar, “The SLH framework for modeling quantum input-output networks”, Adv. Phys. X 2, 784 (2017). | spa |
| dc.relation.references | J. Gough y M. R. James, “The Series Product and Its Application to Quantum Feedforward and Feedback Networks”, IEEE Trans. Automat. Contr. 54, 2530 (2009). | spa |
| dc.relation.references | D. Walls y G. Milburn, Quantum Optics (Springer, Berlin, 2007). | spa |
| dc.relation.references | M. Scully y M. Zubairy, Quantum Optics (Cambridge University Press, Cam- bridge, 1997). | spa |
| dc.relation.references | T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin y A. Wallraff, “Dipole Coupling of a Double Quantum Dot to a Microwave Resonator”, Phys. Rev. Lett. 108, 046807 (2012). | spa |
| dc.relation.references | J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais y A. Wallraff, “Dressed Collective Qubit States and the Tavis- Cummings Model in Circuit QED”, Phys. Rev. Lett. 103, 083601 (2009). | spa |
| dc.relation.references | F. Gao y L. Han, “Implementing the Nelder-Mead simplex algorithm with adap- tive parameters”, Computational Optimization and Applications 51, 259 (2012). | spa |
| dc.relation.references | B. Thorgrimsson, D. Kim, Y.-C. Yang, L. W. Smith, C. B. Simmons, D. R. Ward, R. H. Foote, J. Corrigan, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith y M. A. Eriksson, “Extending the coherence of a quantum dot hybrid qubit”, npj Quantum Information 3, 32 (2017). | spa |
| dc.relation.references | J. C. Abadillo-Uriel, M. A. Eriksson, S. N. Coppersmith y M. Friesen, “En- hancing the dipolar coupling of a S-T0 qubit with a transverse sweet spot”, Nature Communications 10, 5641 (2019). | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
| dc.subject.proposal | Electrodinámica cuántica de circuitos | spa |
| dc.subject.proposal | Circuit Quantum Electrodynamics | eng |
| dc.subject.proposal | Hybrid Quantum Systems | eng |
| dc.subject.proposal | Sistemas cuánticos hı́bridos | spa |
| dc.subject.proposal | Entrelazamiento qubit-qubit | spa |
| dc.subject.proposal | Qubit-Qubit Entanglement | eng |
| dc.subject.proposal | Transferencia cuántica | spa |
| dc.subject.proposal | Quantum Transfer | eng |
| dc.subject.proposal | Strong Coupling Regime | eng |
| dc.subject.proposal | Régimen de acoplamiento fuerte y ultrafuerte | spa |
| dc.subject.proposal | UltraStrong Coupling Regime | eng |
| dc.title | Efectos dinámicos en la emisión óptica de sistemas cavidad-qubit en el régimen de acoplamiento ultrafuerte | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

