Influencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombiana

dc.contributor.advisorColmenares Montañez, Julio Esteban
dc.contributor.authorBasto Urbina, Diego Fernando
dc.contributor.researchgroupGeotechnical Engineering Knowledge and Innovation Genkispa
dc.coverage.cityOrinoquía - Colombia
dc.date.accessioned2023-01-13T17:29:11Z
dc.date.available2023-01-13T17:29:11Z
dc.date.issued2023-01-12
dc.descriptionilustraciones, fotografías a blanco y negro, fotografías a color, gráficasspa
dc.description.abstractSe realizó un trabajo experimental sobre la influencia de la cementación en la resistencia al corte de un suelo limo-arcilloso, con alto contenido de arena, obtenido de la Orinoquía colombiana. La cementación se indujo artificialmente mediante la incorporación de cemento Portland. Se estudió el comportamiento del suelo base y de tres mezclas de suelo-cemento mediante ensayos de compresión inconfinada y compresión triaxial. El esfuerzo de cedencia en compresión isotrópica, la resistencia al corte y la rigidez inicial aumentaron por el efecto de la cementación. En ensayos triaxiales CD y CU, las muestras con mayor grado de cementación -y consolidadas isotrópicamente a un esfuerzo efectivo de confinamiento menor al esfuerzo de cedencia en compresión isotrópica (σ'c < p'c0)- mostraron estados de esfuerzos y picos de resistencia por encima de la línea del estado crítico (CSL). Superado el pico, las trayectorias de esfuerzos tendieron hacia la CSL, mostrando la degradación de la cementación durante el corte. A medida que se aumentó la cementación, el suelo se volvió más frágil. A bajas presiones de confinamiento se observó una transición de un comportamiento dúctil/compresivo a uno frágil/dilatante a medida que la cementación aumentaba, sin embargo, al aumentar el esfuerzo de confinamiento el comportamiento exhibió una nueva transición a dúctil/compresivo. La superficie de cedencia del material no cementado fue ajustada con los parámetros avanzados n y r del modelo CASM. A medida que la cementación (b) creció, la superficie de cedencia se agrandó conservando la forma de la superficie de cedencia del material no cementado, lo cual, permitió validar las bases conceptuales propuestas por Gens y Nova (1993) y la aplicabilidad del modelo extendido C-CASM en el material estudiado. La estabilización con cemento y su mejora en las propiedades de la resistencia al corte, mostraron que, la mezcla del suelo con un bajo contenido de cemento es una alternativa viable tanto desde el punto de vista técnico como económico, pues se obtuvieron resultados satisfactorios. (Texto tomado de la fuente)spa
dc.description.abstractAn experimental work on the influence of cementation on the shear strength of a silt-clayey soil with a high content of sand was carried out. Cementation in the soil was artificially induced by incorporating Portland cement. The behavior of the soil and three different soil-cement mixtures was studied by means of unconfined compression and triaxial compression tests. The yield stress in isotropic compression, the shear strength and the initial stiffness increased due to the effect of cementation. In drained (CD) and undrained (CU) triaxial tests, the samples with a higher degree of cementation -isotropically consolidated at effective confining stress lower than the effective yield stress in isotropic compression (σ'c < p'c0)- exhibited states of stresses and strength above the critical state line (CSL). After crossing the peak strength, the stress paths tended towards the CSL, showing the degradation of the cementation during shear. As the cementation was increased, the soil became more brittle. At low confining pressures, a transition from a ductile/compressive behavior to a brittle/dilating one was observed as the increased cementation. However, as the confining stress was increased, the behavior exhibited a new transition to ductile/compressive. The yield surface of the uncemented material was adjusted with the advanced parameters n and r of the CASM model. As cementation (b) increased, the yield surface of cemented soil was enlarged, preserving the shape of the yield surface of the uncemented material. It allowed validation of the conceptual bases proposed by Gens & Nova (1993) and the applicability of the extended C-CASM model in the studied material. The stabilization with cement and the improvement in the properties of the shear resistance, showed that the mixture of the soil with a low cement content is a viable alternative both from the technical and economic point of view, since satisfactory results were obtained.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaRelaciones constitutivas de suelos, rocas y materiales afinesspa
dc.format.extentxx, 140 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82921
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAFCAP. (2014). Review of specification for the use of laterite in road pavements.spa
dc.relation.referencesArroyo, M., Ciantia, M., Castellanza, R., Gens, A., & Nova, R. (2012). Simulation of cement-improved clay structures with a bonded elasto-plastic model: A practical approach. Computers and Geotechnics, 45, 140–150. https://doi.org/10.1016/j.compgeo.2012.05.008spa
dc.relation.referencesAtkinson, J. H., & Bransby, P. L. (1978). The Mechanics of Soils. McGRAW-HILL Book Company (UK) Limited.spa
dc.relation.referencesBeen, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99–112. https://doi.org/10.1680/geot.1985.35.2.99spa
dc.relation.referencesBergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in Lowland and other environments. ASCE PRESS.spa
dc.relation.referencesBergado, D. T., Taechakumthorn, C., Lorenzo, G. A., & Abuel-Naga, H. M. (2006). Stress-Deformation Behavior Under Anisotropic Drained Triaxial Consolidation of Cement-Treated Soft Bangkok Clay. Soils and Foundations, 46(5), 629–637. https://doi.org/10.3208/SANDF.46.629spa
dc.relation.referencesBurland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnique, 40(3), 329–378. https://doi.org/10.1680/geot.1990.40.3.329spa
dc.relation.referencesChai, J., & Carter, J. P. (2011). Deformation Analysis in Soft Ground Improvement (Vol. 18). Springer Netherlands. https://doi.org/10.1007/978-94-007-1721-3spa
dc.relation.referencesCOLLINS, I. F., & YU, H. S. (1996). UNDRAINED CAVITY EXPANSIONS IN CRITICAL STATE SOILS. International Journal for Numerical and Analytical Methods in Geomechanics, 20(7), 489–516. https://doi.org/10.1002/(SICI)1096-9853(199607)20:7<489::AID-NAG829>3.0.CO;2-Vspa
dc.relation.referencesDe Medina, J. (1964). Laterite and their Application to Highway Construction.spa
dc.relation.referencesElliott, G. M., & Brown, E. T. (1985). Yield of a soft, high porosity rock. Géotechnique, 35(4), 413–423. https://doi.org/10.1680/geot.1985.35.4.413spa
dc.relation.referencesEndo, M. (1976). Recent development in dredged material stabilization and deep chemical mixing in Japan.spa
dc.relation.referencesEstabragh, A. R., Beytolahpour, I., & Javadi, A. A. (2011). Effect of Resin on the Strength of Soil-Cement Mixture. Journal of Materials in Civil Engineering, 23(7), 969–976. https://doi.org/10.1061/(asce)mt.1943-5533.0000252spa
dc.relation.referencesFernández París, J. (1975). La pasta hidratada de cemento portland. Materiales de Construcción, 157, 17–26.spa
dc.relation.referencesFredlund, D. G., Rahadjo, H., & Fredlund, M. G. (2012). Unsaturated Soil Mechanics in Engineering Practice (Inc. John Wiley & Sons, Ed.). https://doi.org/10.1002/9781118280492spa
dc.relation.referencesGarcía Toro, J. R. (2019). Estudio de la técnica de suelo-cemento para la estabilización de vías terciarias en Colombia que posean un alto contenido de caolín. Universidad Católica de Colombia.spa
dc.relation.referencesGens, A., & Nova, R. (1993). Conceptual bases for a constitutive model for bonded soil and weak rocks. International Conference on Hard Soils-Soft Rocks, 483–494.spa
dc.relation.referencesGonzález, N. (2011). Development of a family of constitutive models for geotechnical applications (Issue May). Universidad Politécnica de Catalunya.spa
dc.relation.referencesGonzález, N. A., Arroyo, M., & Gens, A. (2009). Identification of Bonded Clay Parameters in SBPM Tests: A Numerical Study. Soils and Foundations, 49(3), 329–340. https://doi.org/10.3208/sandf.49.329spa
dc.relation.referencesHorpibulsuk, S., Miura, N., & Bergado, D. T. (2004). Undrained Shear Behavior of Cement Admixed Clay at High Water Content. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1096–1105. https://doi.org/10.1061/(asce)1090-0241(2004)130:10(1096)spa
dc.relation.referencesHuang, J. T., & Airey, D. W. (1998). Properties of Artificially Cemented Carbonate Sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), 492–499. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(492)spa
dc.relation.referencesIngeominas, & UIS. (2010). Geología del Piedemonte llanero en la cordillera oriental, departamentos de Arauca y Casanare. Memoria Explicativa. Convenio UIS-INGEOMINAS.spa
dc.relation.referencesJaky, J. (1948). Pressure in soils. 2nd International Conference on Soil Mechanics and Foundation Engineering, 103–107.spa
dc.relation.referencesKamruzzaman, A. H., Chew, S. H., & Lee, F. H. (2009). Structuration and Destructuration Behavior of Cement-Treated Singapore Marine Clay. Journal of Geotechnical and Geoenvironmental Engineering, 135(4), 573–589. https://doi.org/10.1061/(asce)1090-0241(2009)135:4(573)spa
dc.relation.referencesKolovos, K. G., Asteris, P. G., Cotsovos, D. M., Badogiannis, E., & Tsivilis, S. (2013). Mechanical properties of soilcrete mixtures modified with metakaolin. Construction and Building Materials, 47, 1026–1036. https://doi.org/10.1016/j.conbuildmat.2013.06.008spa
dc.relation.referencesLefebvre, G. (1970). Contribution à l’étude de la stabilité des pentes dans les argiles cimenteés [PhD thesis]. Université Laval.spa
dc.relation.referencesLeroueil, S., & Vaughan, P. R. (1990). The general and congruent effects of structure in natural soils and weak rocks. Geotechnique, 40(3), 467–488. https://doi.org/10.1680/geot.1990.40.3.467spa
dc.relation.referencesLorenzo, G. A., & Bergado, D. T. (2004). Fundamental Parameters of Cement-Admixed Clay—New Approach. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1042–1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)spa
dc.relation.referencesLorenzo, G. A., & Bergado, D. T. (2006). Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 18(2), 161–174. https://doi.org/10.1061/(asce)0899-1561(2006)18:2(161)spa
dc.relation.referencesMaher, M., & Ho, Y. (1993). Behavior of Fiber-Reinforced Cemented Sand Under Static and Cyclic Loads. Geotechnical Testing Journal, 16(3), 330. https://doi.org/10.1520/GTJ10054Jspa
dc.relation.referencesMitchell, J. K., & Soga, K. (2005). Fundamentals of Soil Behavior (Inc. John Wiley & Sons, Ed.; 3rd ed.).spa
dc.relation.referencesMuhunthan, B., & Sariosseiri, F. (2008). Interpretation of Geotechnical Properties of Cement Treated Soils.spa
dc.relation.referencesNguyen, L. (2016). Developing constitutive model to simulate behaviour of cement treated clay composite capturing effect of cementation degradation. University of Technology Sydney.spa
dc.relation.referencesPanda, A. P., & Narasimha Rao, S. (1998). Undrained strength characteristics of an artificially cemented marine clay. Marine Georesources and Geotechnology, 16(4), 335–353. https://doi.org/10.1080/10641199809379976spa
dc.relation.referencesPorbaha, A. (1998). State of the art in deep mixing technology: part I. Basic concepts and overview. Ground Improvement, 2(2), 81–92. https://doi.org/10.1680/gi.1998.020204spa
dc.relation.referencesPorbaha, A., Shibuya, S., & Kishida, T. (2000). State of the art in deep mixing technology. Part III:geomaterial characterization. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(3), 91–110. https://doi.org/10.1680/grim.2000.4.3.91spa
dc.relation.referencesPrusinski, J. R., & Bhattacharja, S. (1999). Effectiveness of portland cement and lime in stabilizing clay soils. Transportation Research Record, 1(1652), 215–227. https://doi.org/10.3141/1652-28spa
dc.relation.referencesRios, S., Ciantia, M., González, N., Arroyo, M., & da Fonseca, A. V. (2016). Simplifying calibration of bonded elasto-plastic models. Computers and Geotechnics, 73, 100–108. https://doi.org/10.1016/j.compgeo.2015.11.019spa
dc.relation.referencesRoscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behaviour of ‘wet’ clay. In J. Heyman & F. Leckie (Eds.), Engineering Plasticity (pp. 535–609). Cambridge University Press.spa
dc.relation.referencesRoscoe, K. H., & Schofield, A. N. (1963). Mechanical behaviour of an idealized ’wet’ clay. In Proc. 2nd Eur. Conf. Soil Mech., 1963 (pp. 47–54).spa
dc.relation.referencesRoscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the Yielding of Soils. Géotechnique, 8(1), 22–53. https://doi.org/10.1680/geot.1958.8.1.22spa
dc.relation.referencesRowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500–527. https://doi.org/10.1098/rspa.1962.0193spa
dc.relation.referencesSasanian, S. (2011). The Behaviour of Cement Stabilized Clay At High Water Contents (Issue April). University of Western Ontario.spa
dc.relation.referencesSchofield, A. N., & Wroth, C. P. (1968). Critical state soil mechanics. In Lecturers in Engineering at Cambridge University.spa
dc.relation.referencesSuebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified Structured Cam Clay: A generalized critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 37(7–8), 956–968. https://doi.org/10.1016/j.compgeo.2010.08.002spa
dc.relation.referencesTan, T. S., Goh, T. L., & Yong, K. Y. (2002). Properties of Singapore marine clays improved by cement mixing. Geotechnical Testing Journal, 25(4), 422–433. https://doi.org/10.1520/gtj11295jspa
dc.relation.referencesTejedor Bonilla, C. A. (2022). Efecto de la cementación en la el comportamiento volumétrico unidimensional de un suelo de la Orinoquía Colombiana. Universidad Nacional de Colombia.spa
dc.relation.referencesUddin, K., Balasubramaniam, A. S., & Bergado, D. T. (1997). Engineering behavior of cement-treated Bangkok soft clay. In Geotechnical Engineering (Vol. 28, Issue 1, pp. 89–119).spa
dc.relation.referencesUNAL. (2021). Estudio para el desarrollo de un laboratorio virtual de Ingeniería Geotécnica.spa
dc.relation.referencesWild, K. M., Barla, M., Turinetti, G., & Amann, F. (2017). A multi-stage triaxial testing procedure for low permeable geomaterials applied to Opalinus Clay. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 519–530. https://doi.org/10.1016/j.jrmge.2017.04.003spa
dc.relation.referencesWood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139878272spa
dc.relation.referencesYu, H. S. (1998). CASM: a unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8<621::AID-NAG937>3.0.CO;2-8spa
dc.relation.referencesYu, H.-S. (2006). Plasticity and geotechnics. In Choice Reviews Online (Vol. 44, Issue 07). https://doi.org/10.5860/choice.44-3893spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.lembCementaciónspa
dc.subject.lembCementationeng
dc.subject.lembEndurecimiento superficialspa
dc.subject.lembCase hardeningeng
dc.subject.proposalSuelos cementados artificialmentespa
dc.subject.proposalcementaciónspa
dc.subject.proposalensayo de compresión triaxialspa
dc.subject.proposalmodelo C-CASMspa
dc.subject.proposalArtificially cemented soilseng
dc.subject.proposalcementationeng
dc.subject.proposaltriaxial compression testeng
dc.subject.proposalC-CASM modeleng
dc.titleInfluencia de la cementación en la resistencia al corte de un suelo de la Orinoquía colombianaspa
dc.title.translatedInfluence of cementation on the shear strength of a soil from the Colombian Orinoquia
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032467354.2022.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: