Modelos de Poisson no homogéneos en el estudio de contaminantes en la ciudad de Bogotá

dc.contributor.advisorRodrigues, Eliane Reginaspa
dc.contributor.advisorBlanco Castañeda, Lilianaspa
dc.contributor.authorSuárez Sierra, Biviana Marcelaspa
dc.date.accessioned2020-07-15T20:00:44Zspa
dc.date.available2020-07-15T20:00:44Zspa
dc.date.issued2020spa
dc.description.abstractLos modelos de Poisson no homogéneos han tenido gran importancia en los problemas, donde el conteo de excedencias de contaminantes del aire es relevante, para llegar a formular alguna solución. En el presente trabajo, en primer lugar se formularán modelos univariados, donde se estudia de manera independiente cada contaminante, en un intervalo de tiempo determinado, llegando de manera precisa al modelo que ajusta lo observado, en cuando a las excedencias acumuladas hasta un cierto tiempo. Como estos primeros modelos adolecen de la dependencia que genera la interacción de los diferentes contaminantes en un mismo intervalo de tiempo de observación, en una misma región, en segundo lugar se propondrá un modelo bivariado que permita estudiar tal situación. De tal manera, en el presente trabajo, se establecerá una función que relacione las excedencias de dos contaminantes, para su respectivo umbral, así como su función de media bivariada acumulada para datos de contaminación de aire de Bogotá a partir de funciones cópula. Esto último se establecerá en el marco de los procesos de Poisson no homogéneos bivariados.spa
dc.description.abstractThe non-homogeneous Poisson models have had great importance in the problems, where the air pollutant excess count is relevant, in order to formulate a solution. In the present work, firstly, univariate models will be formulated, where each pollutant is studied independently, in a certain interval of time, arriving precisely at the model that adjusts what is observed, in terms of accumulated excesses up to a certain time. As these first models suffer from the dependence generated by the interaction of the different pollutants in the same observation time interval, in the same region, in the second place a bivariate model will be proposed to study such situation. In this way, in the present work, a function will be established that relates the exceedances of two pollutants, for their respective threshold, as well as their function of accumulated bivariate mean for air pollution data of Bogotá from copula functions. The latter will be established within the framework of the bivariate non-homogenous Poisson processes.spa
dc.description.additionalDoctor en Ciencias-Estadísticaspa
dc.description.degreelevelDoctoradospa
dc.format.extent197spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77780
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesAchcar, J., Fern andez-Bremauntz, A., Rodrigues, E., and Tzintzun, G. (2008). Estimating the number of ozone peaks in mexico city using a non-homogeneous poisson model. Environmetrics, 19:469{485.spa
dc.relation.referencesAchcar, J., Rodrigues, E. R., Paulino, C., and Soares, P. (2010). Non-homogeneous Poisson processes with a change-point: an application to ozone exceedances in M exico City. Environmental and Ecological Statistics, 17:521{541.spa
dc.relation.referencesAchcar, J., Rodrigues, E. R., and Tzintzun, G. (2011). Using non-homogeneous Poisson models with multiple change-points to estimate the number of ozone exceedances in Mexico City. Environmetrics, 22:1{12.spa
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identi cation. IEEE Transactions on Automatic Control, 19(6):716{723.spa
dc.relation.referencesAkaike, H. (1980). Likelihood and the bayes procedure. Trabajos de Estadistica Y de Investigacion Operativa, 31(1):143{166.spa
dc.relation.referencesAMB (2019). Alcald a de bogot a. https://bogota.gov.co/mi-ciudad/turismo/informacionde- bogota-en-2019. Accessed on 06 November 2019.spa
dc.relation.referencesCarriere, J. F. (2000). Bivariate survival models for coupled lives. Scandinavian Actuarial Journal, 1:17{32.spa
dc.relation.referencesCid Ramirez, J. E. and Achcar, J. A. (1999). Bayesian inference for nonhomogeneous Poisson processes in software reliability models assuming nonmonotonic intensity functions. Computational Statistics & Data Analysis, 32(2):147{159.spa
dc.relation.referencesCONPES (2005a). Documento conpes 3344, lineamientos para la formulación de la política de Prevención y control de la contaminación del aire. Consejo Nacional de Política Económica y Social, República de Colombia.spa
dc.relation.referencesCONPES (2005b). Resolución 3500: Las condiciones mínimas que deben cumplir los centros de diagnóstico automotor para realizar las revisiones técnico-mecánica y de gases de los vehículos automotores que transiten por el territorio nacional. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Ministerio de Transporte.spa
dc.relation.referencesCowles, M. K. and Carlin, B. P. (1996). Markov chain monte carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91(434):883{904.spa
dc.relation.referencesCox, D. and Lewis, P. (1966). The Statistical Analysis of Series of Events, volume 1 of Methuen's Monographs on Applied Probability and Statistics. Springer Netherlands.spa
dc.relation.referencesDos Santos, A. C. (2010). Dados de sobrevivencia multivariados na presenca de covariaveis e observacoes censuradas: Uma abordagem bayesiana. Technical report, Universidad Federal de Sao Carlos-DEs, UFSCar, Phd Thesis.spa
dc.relation.referencesEl Adlouni, S., Favre, A.-C., and Bob ee, B. (2006). Comparison of methodologies to assess the convergence of markov chain monte carlo methods. Computational Statistics Data Analysis, 50:2685{2701.spa
dc.relation.referencesEPA (2018). Us environmental protection agency. www. epa.gov/pm-pollution/healthandenvironmental- efects-particulate-matter-pm. Accessed on 06 June 2018.spa
dc.relation.referencesFarlie, D. J. G. (1960). The performance of some correlation coecients for a general bivariate distribution. Biometrika, 47(3/4):307{323.spa
dc.relation.referencesFeng, S., Gao, D., Liao, F., Zhou, F., and Wang, X. (2016). The health efects of ambient pm2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128:67 { 74.spa
dc.relation.referencesFernandez, C. (2016). Ni~nos y adultos mayores, los que más sufren cuando hay aire de mala calidad. Periodico de Tiempo, Octubre 23:4.spa
dc.relation.referencesGelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4):457{472.spa
dc.relation.referencesGeweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Bayesian Statistics, Oxford Univ. Press., 4:169{193.spa
dc.relation.referencesGoel, A. L. and Okumoto, K. (1978). An analysis of recurrent software errors in a real-time control system. In Proceedings of the 1978 Annual Conference, ACM '78, pages 496{501, New York, NY, USA. ACM.spa
dc.relation.referencesGumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55(292):698{707.spa
dc.relation.referencesHastings, W. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57:97{109.spa
dc.relation.referencesHeidelberger, P. and Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Oper. Res., 31(6):1109{1144.spa
dc.relation.referencesIARC (2013). Outdoor air pollution a leading environmental cause of cancer deaths. Press release 221, World Health Organization, Geneva, Switzerland.spa
dc.relation.referencesJanssen, N., Fischer, P., Marra, M., Ameling, C., and Cassee, F. (2013). Short-term efects of pm2.5, pm10 and pm2.5{10 on daily mortality in the netherlands. Science of The Total Environment, 463-464:20 26.spa
dc.relation.referencesLawless, J. F. (2002). Statistical Models and Methods for Lifetime Data. John Wiley and Sons, Inc., second edition.spa
dc.relation.referencesLunn and Jackson (2012). The bugs book : A practical introduction to bayesian analysis.spa
dc.relation.referencesMauderly, J. and Oberdorster., G. (2010). Current understanding of the health efects of particles and characteristics that determined dose efects, in formation and characterization of particles. Technical report, Report of he 1996 Health Efects Institute Workshop.spa
dc.relation.referencesMetropolis, N. Ulam, S. (1949). The monte carlo method. J. Amer. Statist. Assoc, 44:335{ 341.spa
dc.relation.referencesMorgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8:234{235.spa
dc.relation.referencesMudholkar, G. S., Srivastava, D. K., and Freimer, M. (1995). The exponentiated weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37(4):436{445.spa
dc.relation.referencesMuldholkar, G.S., S. D. F. M. (1995). The exponentiated-weibull family: a reanalysis of the bus-motor failure data. Technometrics, 37:436{445.spa
dc.relation.referencesMusa, J. D. and Okumoto, K. (1984). A logarithmic poisson execution time model for software reliability measurement. In Proceedings of the 7th International Conference on Software Engineering, ICSE '84, pages 230{238, Piscataway, NJ, USA. IEEE Press.spa
dc.relation.referencesNelsen, R. B. (2006). An Introduction to Copulas (Springer Series in Statistics). Springer- Verlag, Berlin, Heidelberg.spa
dc.relation.referencesNOM (2002). Modificación de la norma social mexicana nom-020-ssa1-1993. Diario oficial de La federación.spa
dc.relation.referencesNOM (2014). Norma oficial mexicana nom-020-ssa1-2014. Diario oficial de la federación.spa
dc.relation.referencesRaftery, A. and Lewis, S. (1992). How many iterations in the gibbs sampler? In Bayesian Statistics, 4 (J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, eds.). Oxford, U.K.: Oxford University Press, 4:763-773.spa
dc.relation.referencesRES (2008). Resolución 909, por la cual se establecen las normas y estándares de emisión admisibles de contaminantes a la atmosfera por fuentes fijas y se dictan otras disposiciones. Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesRES (2009). Resolución 2604, por la cual se determinan los combustibles limpios. Ministerio de Minas y Energía, Ministerio de Protección Social y Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesRES (2010a). Resolución 2153: Protocolo para el control y vigilancia de la contaminación atmosférica generada por fuentes fijas, adoptado a través de la resolución 760 de 2010 y se Adoptan otras disposiciones. Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesRES (2010b). Resolución 610, por la cual se modifica la resolución 601 del 4 de abril de 2006. Ministerio de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesRES (2010c). Resolución 650, por la cual se adopta el protocolo para el monitoreo y Seguimiento de la calidad del aire. Ministro de Ambiente, Vivienda y Desarrollo Territorial.spa
dc.relation.referencesRobert, C. and Casella, G. (2010). Introducing Monte Carlo Methods with R. Springer New York Dordrecht Heidelberg London.spa
dc.relation.referencesRodrigues, E. and Achcar, J. (2012). Applications of Discrete-time Markov Chains and Poisson Processes to Air Pollution Modeling and Studies.spa
dc.relation.referencesRodrigues, E. R. and Achcar, J. (2013). Applications of Discrete-time Markov Chains and Poisson Processes to Air Pollution Modeling and Studies. Number 1 in SpringerBriefs in Mathematics. Springer-Verlag New York.spa
dc.relation.referencesRojas, N. (2016). Nuevos vientos para el ambiente en la ciudad. Peri odico El tiempo, Octubre 23:4.spa
dc.relation.referencesRoss, S. (2010). Introduction to Probability Models. Elsevier Science.spa
dc.relation.referencesSahlin, K. (2011). Estimating convergence of markov chain monte carlo simulations. Technical report, Mathematical Statistics, Stockholm University, Master Thesis.spa
dc.relation.referencesSaltzman, E. (2008). Multivariate nonhomogeneous poisson processes. Technical report, College of William and Mary.spa
dc.relation.referencesSankaran, P. and Gleeja, V. (2006). On bivariate reversed hazard rates. Japan Statistics Society, (36):213{224.spa
dc.relation.referencesSklar, A. (1959). Fonctions de r epartition a n dimensions et leurs marges. Publications de l'Institut Statistique de l'Universit e de Paris, 8:229{231.spa
dc.relation.referencesSklar, A. (1996). Random variables, distribution functions, and copulas|a personal look backward and forward, volume Volume 28 of Lecture Notes{Monograph Series, pages 1{14. Institute of Mathematical Statistics, Hayward, CA.spa
dc.relation.referencesSpiegelhalter, D., Best, N., and Carlin, B. (1998). Bayesian deviance, the e ective number of parameters, and the comparison of arbitrarily complex models. Journal of Royal Statistical Society, 64.spa
dc.relation.referencesSpiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and t. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583{639.spa
dc.relation.referencesSu arez-Sierra, B., Rodrigues, E., and Tzintzun, G. (2019a). An application of a non homogeneous poisson model to study pm2:5 exceedances in mexico city and bogota. Journal of Applied Statistics, Preprint:1{17.spa
dc.relation.referencesSu arez-Sierra, B., Rodrigues, E., and Tzintzun, G. (2019b). Rate of ozone and pm 10 exceedances: A case study comparing data from mexico city and bogota. Communications in Statistics: Case Studies, Data Analysis and Applications, 5:1{17.spa
dc.relation.referencesWHO (2017). Organizacion mundial de la salud. http://www.who.int/mediacentre/factsheets/fs313/es/. Accessed on 04 April 2017.spa
dc.relation.referencesXing, Y.-F., Xu, Y.-H., Shi, M.-H., and Lian, Y.-X. (2016). The impact of pm2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1).spa
dc.relation.referencesYang, T. and Kuo, L. (2001). Bayesian binary segmentation procedure for a poisson process with multiple change-points. Journal of Computational and Graphical Statistics, 10(4):772{785.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.proposalProcesos de Poisson no homogeneospa
dc.subject.proposalNon-homogeneous Poisson processeseng
dc.subject.proposalBayesian inferenceeng
dc.subject.proposalInferencia bayesianaspa
dc.subject.proposalMarkov chainseng
dc.subject.proposalCadenas de Markovspa
dc.subject.proposalMCMCspa
dc.subject.proposalMCMCeng
dc.subject.proposalMetropolis Hastingseng
dc.subject.proposalMetropolis Hastingsspa
dc.subject.proposalFunción copulaspa
dc.subject.proposalCoupling functioneng
dc.subject.proposalSurvival Featureseng
dc.subject.proposalFunciones de supervivenciaspa
dc.titleModelos de Poisson no homogéneos en el estudio de contaminantes en la ciudad de Bogotáspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Version220620.pdf
Tamaño:
15.17 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: