Combinación de acciones entre cambiadores de tomas y compensaciones reactivas en situaciones de emergencia cercanas al colapso de tensión

dc.contributor.advisorCandelo Becerra, John Edwin
dc.contributor.authorArias Gaviria, Jose Manuel
dc.date.accessioned2022-07-25T14:53:59Z
dc.date.available2022-07-25T14:53:59Z
dc.date.issued2022-05-06
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa estabilidad de tensión en los sistemas de potencia es una temática que en la actualidad sigue siendo objeto de investigación. Los colapsos de tensión generan grandes pérdidas económicas y sociales. Para evitarlos, el operador dispone de diversas acciones de control que mejoran la estabilidad. En ocasiones, se hace necesario la aplicación de dos acciones de manera combinada en situaciones críticas de la red para restaurar los valores de tensión. Aunque en la literatura se ha investigado el uso de acciones de forma individual y también de forma combinada, poco se ha estudiado sobre la combinación de cambiadores de tomas de transformadores y compensaciones reactivas. En este trabajo, se propone un automatismo que combina de manera coordinada estas dos acciones y toma decisiones con base en indicadores tales como el margen de carga. El automatismo se implementa en los sistemas de potencia IEEE 14 nodos y 39 nodos con escenarios críticos. Para validar su desempeño se evalúan las acciones de manera individual y combinada para comparar ambas opciones. Los resultados evidencian que el uso de acciones individuales no es suficiente en algunos casos para recuperar una adecuada operación de la red, mientras que las acciones combinadas son capaces de lograrlo, obteniéndose además, mejoras de hasta 18% del margen de carga, en comparación con el 4% encontrado en la literatura. Ambas acciones tienen la ventaja de brindarle autonomía al operador para mejorar la estabilidad sin depender de la colaboración de terceros, además de que son más económicas comparadas con las demás. (Texto tomado de la fuente)spa
dc.description.abstractVoltage stability in power systems is a topic that currently keeps being investigated. Voltage collapses generate big economic and social losses. To avoid them, the network operator counts on diverse control actions which improve the stability. Sometimes, it’s necessary the application of two combined actions in network’s critical situations to recover voltages. Though the use of individual and combined actions has been researched in literature, the combination of transformers’ tap changers and reactive compensators has been researched by few people. On this document, an automatism is proposed, which combines these two actions and makes decisions based on indicators such as load margin. The automatism is implemented on the IEEE 14-bus and IEEE 39-bus power systems with critical scenarios. To validate its performance, the control actions are evaluated individually and then are combined in order to compare both options. The results show that sometimes the use of individual actions is not enough to recover the suitable network’s operation, however, combined actions are enough, and also, improve the load margin up to 18%, compared to 4% found in literature. Both actions have the advantage to give the operator autonomy to improve the stability without depending on generator agents. Furthermore, these control actions are more economic compared to the rest.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaEstabilidad de tensión en sistemas de potenciaspa
dc.format.extentxviii, 174 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81736
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesB. Bhattacharyya, S. Rani, R. I. Vais, and I. P. Bharti, “GA based optimal planning of VAR sources using Fast Voltage Stability Index method,” Archives of Electrical Engineering, The Journal of Polish Academy of Sciences, vol. 65, no. 4, pp. 789–802, 2016, doi: 10.1515/aee-2016-0055spa
dc.relation.references“Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387–1401, Aug. 2004, doi: 10.1109/TPWRS.2004.825981spa
dc.relation.referencesM. G. Halacli and A. Demiroren, “Robust Voltage/VAR Control Using PSO Based STATCOM: A Case Study in Turkey,” Electric Power Components and Systems, vol. 44, no. 8, 2016, doi: 10.1080/15325008.2016.1140849spa
dc.relation.referencesY. Choi, B. Lee, and T. Kim, “Optimal Shunt Compensation for Improving Voltage Stability and Transfer Capability in Metropolitan Area of the Korean Power System,” Journal of Electrical Engineering and Technology, vol. 10, no. 4, pp. 1502–1507, Jul. 2015, doi: 10.5370/JEET.2015.10.4.1502spa
dc.relation.referencesY.-Y. Hong and H.-Y. Wang, “Investigation of the voltage stability region involving on-load tap changers,” Electric Power Systems Research, vol. 32, no. 1, pp. 45–54, Jan. 1995, doi: 10.1016/0378-7796(94)00894-Aspa
dc.relation.referencesM. D. Maram and N. Amjady, “Event-based remedial action scheme against super-component contingencies to avert frequency and voltage instabilities,” IET Generation, Transmission and Distribution, vol. 8, no. 9, 2014, doi: 10.1049/iet-gtd.2013.0780spa
dc.relation.referencesK. Tomsovic and V. Venkatasubramanian, “Introduction,” in Power System Analysis, Pullman, WA: School of Electrical Engineering and Computer Science Washington State University. doi: 10.1016/B978-012170960-0/50056-6spa
dc.relation.referencesT. Cutsem and C. Vournas, Voltage Stability of Electric Power Systems. Boston, MA: Springer US, 1998. doi: 10.1007/978-0-387-75536-6spa
dc.relation.referencesG. Zhang, “EPRI Power System Dynamics Tutorial,” Electric Power Research Institute, pp. 1–1010, 2009spa
dc.relation.referencesHi. Ohtsuki, A. Yokoyama, and Y. Sekine, “Reverse Action Of On-Load Tap Changer In Association With Voltage Collapse,” IEEE Transactions on Power Systems, vol. 6, no. 1, pp. 300–306, 1991, doi: 10.1109/59.131076spa
dc.relation.referencesW. H. (William H. Hayt, J. E. (Jack E. Kemmerly, and S. M. Durbin, “Engineering circuit analysis,” p. 856, 2006spa
dc.relation.referencesZ. Jia and B. Jeyasurya, “Contingency ranking for on-line voltage stability assessment,” IEEE Transactions on Power Systems, vol. 15, no. 3, pp. 1093–1097, 2000, doi: 10.1109/59.871738spa
dc.relation.referencesF. Capitanescu and T. van Cutsem, “Unified sensitivity analysis of unstable or low voltages caused by load increases or contingencies,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 321–329, 2005, doi: 10.1109/TPWRS.2004.841243spa
dc.relation.referencesC. Vournas and M. Karystianos, “Load Tap Changers in Emergency and Preventive Voltage Stability Control,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 492–498, Feb. 2004, doi: 10.1109/TPWRS.2003.818728spa
dc.relation.referencesD. Marujo, A. C. Zambroni de Souza, B. I. L. Lopes, M. v. Santos, and K. L. Lo, “On Control Actions Effects by Using QV Curves,” IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1298–1305, May 2015, doi: 10.1109/TPWRS.2014.2340131spa
dc.relation.referencesN. Yorino, M. Danyoshi, and M. Kitagawa, “Interaction among multiple controls in tap change under load transformers,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 430–436, 1997, doi: 10.1109/59.575757spa
dc.relation.referencesF. Capitanescu, B. Otomega, H. Lefebvre, V. Sermanson, and T. van Cutsem, “Decentralized tap changer blocking and load shedding against voltage instability: Prospective tests on the RTE system,” International Journal of Electrical Power & Energy Systems, vol. 31, no. 9, pp. 570–576, Oct. 2009, doi: 10.1016/j.ijepes.2009.03.025spa
dc.relation.referencesA. C. Zambroni de Souza, L. M. Honório, G. L. Torres, and G. Lambert-Torres, “Increasing the Loadability of Power Systems Through Optimal-Local-Control Actions,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 188–194, 2004, doi: 10.1109/TPWRS.2003.818602spa
dc.relation.referencesY. Amrane, M. Boudour, A. Elmaouhab, and A. A. Ladjici, “Optimal VAR control for real power loss minimization using differential evolution algorithm,” International Journal of Electrical Power & Energy Systems, vol. 66, pp. 262–271, 2015, doi: 10.1016/J.IJEPES.2014.10.018spa
dc.relation.referencesQ. Wu, D. H. Popović, D. J. Hill, and C. J. Parker, “Voltage security enhancement via coordinated control,” IEEE Transactions on Power Systems, vol. 16, no. 1, pp. 127–135, 2001, doi: 10.1109/59.910790spa
dc.relation.referencesJ. Y. Wen, Q. H. Wu, S. Member, D. R. Turner, S. J. Cheng, and J. Fitch, “Optimal Coordinated Voltage Control for Power System Voltage Stability,” Power, vol. 19, no. 2, pp. 1115–1122, 2004, doi: 10.1109/TPWRS.2004.825897spa
dc.relation.referencesC. L. DeMarco, “A new method of constructing Lyapunov functions for power systems,” in 1988., IEEE International Symposium on Circuits and Systems, 1988, pp. 905–908. doi: 10.1109/ISCAS.1988.15070spa
dc.relation.referencesT. Nagao, K. Tanaka, and K. Takenaka, “Development of static and simulation programs for voltage stability studies of bulk power system,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 273–281, 1997, doi: 10.1109/59.574948spa
dc.relation.referencesN. Yorino, S. Harada, and Haozhong Cheng, “A method to approximate a closest loadability limit using multiple load flow solutions,” IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 424–429, 1997, doi: 10.1109/59.575754spa
dc.relation.referencesT. J. Overbye and C. L. de Marco, “Voltage security enhancement using energy based sensitivities,” IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 1196–1202, 1991, doi: 10.1109/59.119266spa
dc.relation.referencesJ. Modarresi, E. Gholipour, and A. Khodabakhshian, “A comprehensive review of the voltage stability indices,” Renewable and Sustainable Energy Reviews, vol. 63, pp. 1–12, Sep. 2016, doi: 10.1016/j.rser.2016.05.010spa
dc.relation.referencesM. Cupelli, C. Doig Cardet, and A. Monti, “Comparison of line voltage stability indices using dynamic real time simulation,” in 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Oct. 2012, pp. 1–8. doi: 10.1109/ISGTEurope.2012.6465625spa
dc.relation.referencesN. A. M. Ismail, A. A. M. Zin, A. Khairuddin, and S. Khokhar, “A comparison of voltage stability indices,” in 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Mar. 2014, pp. 30–34. doi: 10.1109/PEOCO.2014.6814394spa
dc.relation.referencesC. Reis and F. P. Maciel Barbosa, “A Comparison of Voltage Stability Indices,” pp. 1007–1010, 2006spa
dc.relation.referencesF. Karbalaei, H. Soleymani, and S. Afsharnia, “A comparison of voltage collapse proximity indicators,” in 2010 Conference Proceedings IPEC, Oct. 2010, pp. 429–432. doi: 10.1109/IPECON.2010.5697034spa
dc.relation.referencesZ. J. Lim, M. W. Mustafa, and Z. bt Muda, “Evaluation of the effectiveness of voltage stability indices on different loadings,” in 2012 IEEE International Power Engineering and Optimization Conference, Jun. 2012, pp. 543–547. doi: 10.1109/PEOCO.2012.6230925spa
dc.relation.referencesJ. Zhao, Y. Yang, and Z. Gao, “A review on on-line voltage stability monitoring indices and methods based on local phasor measurement,” Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 34, pp. 1–6, Oct. 2010spa
dc.relation.referencesR. Seydel, Practical Bifurcation and Stability Analysis, vol. 5. New York, NY: Springer New York, 2010. doi: 10.1007/978-1-4419-1740-9spa
dc.relation.referencesDIgSILENT PowerFactory 2021, “https://www.digsilent.de/en/powerfactory.html,” 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.otherSistema eléctrico de potencia
dc.subject.proposalCambiadores de tomasspa
dc.subject.proposalCompensaciones reactivasspa
dc.subject.proposalEstabilidad de tensiónspa
dc.subject.proposalMargen de cargaspa
dc.subject.proposalSistemas de potenciaspa
dc.subject.proposalTap Changereng
dc.subject.proposalReactive Compensatorseng
dc.subject.proposalVoltage Stabilityeng
dc.subject.proposalLoad Margineng
dc.subject.proposalPower systemseng
dc.titleCombinación de acciones entre cambiadores de tomas y compensaciones reactivas en situaciones de emergencia cercanas al colapso de tensiónspa
dc.title.translatedCombination of actions between tap changers and reactive compensators in emergency situations close to voltage collapseeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035230129.2022.pdf
Tamaño:
15.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: