Heterosis en el rendimiento y reposo entre genotipos de los Grupos Stenotomum y Phureja

dc.contributor.advisorÑustez López, Carlos Eduardo
dc.contributor.authorCastro Morales, Luisa Fernanda
dc.contributor.orcidCastro Morales, Luisa Fernanda [0009000296769801]
dc.contributor.researchgroupGrupo de Investigación en Papa
dc.coverage.countryColombia
dc.date.accessioned2025-11-11T13:48:26Z
dc.date.available2025-11-11T13:48:26Z
dc.date.issued2025-11
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractEl Grupo Phureja es importante en Colombia, dado que sus variedades son altamente apreciadas por sus cualidades organolépticas; sin embargo, su manejo postcosecha se ve limitado por la ausencia o muy corto periodo de reposo. Para mejorar este carácter, una estrategia viable consiste en realizar cruzamientos con materiales del Grupo diploide Stenotomum, que presentan periodos de reposo intermedios a largos. La presente investigación tuvo como objetivo evaluar la heterosis en familias F1 derivadas de cruzamientos dialélicos 6 × 6 (F1 y parentales) entre tres genotipos de los Grupos Stenotomum y Phureja. Se estableció un diseño completamente al azar, con tres repeticiones. Para el análisis se adaptó el modelo propuesto por Gardner y Eberhart, lo que permitió calcular los efectos de heterosis varietal y específica. La principal modificación en el análisis consistió en la consideración de dos poblaciones: la primera, conformada por progenitores clonales sin variación genética, y la segunda, la población F1, generada a partir de material heterocigoto. A diferencia de los análisis dialélicos con líneas homocigotas, este enfoque permitió considerar la variabilidad no solo entre familias, sino también a nivel intrafamiliar. En la población F1 se estimó una heterosis media del 32% en el rendimiento total de tubérculo (g/planta), atribuible principalmente a efectos de dominancia. Las combinaciones Stn × Stn mostraron los mayores niveles de heterobeltiosis, con rendimientos hasta un 60 % superiores, mientras que algunas combinaciones Phu × Phu, particularmente aquellas con Criolla Colombia, presentaron efectos heteróticos negativos. En el periodo de reposo postcosecha se observó una alta variabilidad: 81,8 días en Stn × Stn, 46,2 días en Stn × Phu y 11,2 días en Phu × Phu. Se identificaron efectos heteróticos específicos posiblemente relacionados con dominancia y/o epistasis, especialmente en cruzamientos como 703168 × Paola, 703168 × 703698 y 703279 × Paola. En conjunto, los resultados evidencian el potencial del Grupo Stenotomum como fuente de alelos favorables tanto para incrementar el rendimiento como para aumentar el periodo de reposo, consolidándose como una alternativa estratégica en los planes de cruzamientos para el mejoramiento genético de papa diploide (Texto tomado de la fuente).spa
dc.description.abstractThe Phureja Group is important in Colombia because its varieties are highly valued for their organoleptic qualities. However, their postharvest management is constrained due to an absent or very short dormancy period. A viable strategy to improve this trait involves crosses with materials from the diploid Stenotomum Group, which exhibit intermediate to long dormancy periods. This research aimed to evaluate heterosis in F1 families derived from 6 × 6 diallel crosses (F1 and parents) among three genotypes from the Stenotomum and Phureja Groups, estimating their parental value for tuber yield and dormancy period traits for use in genetic improvement. A completely randomized design with three replicates was established. The analytical model proposed by Gardner and Eberhart was adapted to estimate varietal and specific heterosis effects. The main modification in the analysis was the consideration of two populations: the first composed of clonal progenitors without genetic variation, and the second comprising the heterozygous F1 population. Unlike diallel analyses using homozygous lines, this approach allowed for consideration of variability not only between families but also within families. In the F1 population, an average heterosis of 32% for total tuber yield (g/plant) was estimated, primarily attributable to dominance effects. Stn × Stn combinations showed the highest levels of heterobeltiosis, with yields up to 60% greater, while certain Phu × Phu combinations, particularly those involving Criolla Colombia, exhibited negative heterotic effects. A high variability in postharvest dormancy period was observed: 81.8 days in Stn × Stn, 46.2 days in Stn × Phu, and 11.2 days in Phu × Phu crosses. Specific heterotic effects, possibly related to dominance and/or epistasis, were identified, especially in crosses such as 703168 × Paola, 703168 × 703698, and 703279 × Paola. Collectively, the results demonstrate the potential of the Stenotomum Group as a source of favorable alleles for both enhancing yield and extending dormancy periods, positioning it as a strategic alternative for crossing plans in diploid potato genetic improvement.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.methodsLa metodología se diseñó para evaluar líneas endogámicas diploides bajo los supuestos de homocigosis, segregación diploide normal, dos alelos por locus, ausencia de efectos maternos y epistasis, y apareamiento al azar (Hayman, 1954). El análisis permite identificar el tipo de acción genética en el carácter estudiado, mediante varianzas y covarianzas, siendo bastante útil cuando se tiene un esquema completo de cruzamientos (Salazar et al., 2005). Hayman (1954) desarrolló dos modelos para el análisis de cruzamientos dialélicos. El modelo de efecto reciproco que analiza diferencias entre cruzamientos según el rol de los parentales (femenino o masculino), y el modelo de efecto materno, que evalúa la influencia del genotipo materno sobre los descendientes. Ambos modelos incluyen componentes genéticos como: efectos aditivos, dominancia, efectos maternos y diferencias recíprocas.
dc.description.researchareaGenética y fitomejoramiento
dc.format.extent113 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89117
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesAbbasi, K. S., Masud, T., Ali, S., Khan, S. U., Mahmood, T., & Qayyum, A. (2015). Sugar-starch metabolism and antioxidant potential in potato tubers in response to different antisprouting agents during storage. Potato Research, 58(4), 361–375. https://doi.org/10.1007/s11540-015-9306-4
dc.relation.referencesAbate, Z. A., & McKendry, A. L. (2010). Diallel analysis of Fusarium head blight resistance in genetically diverse winter wheat germplasm. Euphytica, 175(3), 409–421. https://doi.org/10.1007/s10681-010-0195-y
dc.relation.referencesAdams, J. R., De Vries, M. E., Zheng, C., & Van Eeuwijk, F. A. (2022). Little heterosis found in diploid hybrid potato: The genetic underpinnings of a new hybrid crop. G3 Genes|Genomes|Genetics, 12(6), jkac076. https://doi.org/10.1093/g3journal/jkac076
dc.relation.referencesAhmadu, Tijjani, Abdullahi, A., & Ahmad, Khairulmazmi. (2021). The Role of Crop Protection in Sustainable Potato (Solanum tuberosum L.) Production to Alleviate Global Starvation Problem: An Overview. En M. Yildiz & Y. Ozgen (Eds.), Solanum tuberosum—A promising crop for starvation problem (1.a ed.). IntechOpen. https://doi.org/10.5772/intechopen.94735
dc.relation.referencesAksenova, N. P., Sergeeva, L. I., Konstantinova, T. N., Golyanovskaya, S. A., Kolachevskaya, O. O., & Romanov, G. A. (2013). Regulation of potato tuber dormancy and sprouting. In Russian Journal of Plant Physiology, 60 (3), 301-312. https://doi.org/10.1134/S1021443713030023
dc.relation.referencesAliaga, A. C. (2008). Caracterización fenotípica y molecular de la diversidad genética de papas cultivadas por su tolerancia al endulzamiento en frío [Tesis de pregrado, Universidad Nacional Mayor de San Marcos]. Repositorio Lationamericano. http://repositorioslatinoamericanos.uchile.cl/handle/2250/4875831
dc.relation.referencesAllard, R. W. (1960). Principles of plant breeding. New York: Wiley. http://archive.org/details/principlesofplan0000alla
dc.relation.referencesÁlvarez, M. F., Angarita, M., Delgado, M. C., García, C., Jiménez-Gomez, J., Gebhardt, C., & Mosquera, T. (2017). Identification of novel associations of candidate genes with resistance to late blight in Solanum tuberosum group phureja. Frontiers in Plant Science, 8, 1040. https://doi.org/10.3389/fpls.2017.01040
dc.relation.referencesAmjad, A., Javed, M. S., Hameed, A., Hussain, M., & Ismail, A. (2020). Changes in sugar contents and invertase activity during low temperature storage of various chipping potato cultivars. Food Science and Technology (Brazil), 40(2), 340–345. https://doi.org/10.1590/fst.00219
dc.relation.referencesArias, V., Bustos, P y Ñústez L., C. (1996). Evaluación del rendimiento en papa criolla (Solanum phureja) variedad "yema de huevo", bajo diferentes densidades de siembra en la sabana de Bogotá. Agronomía Colombiana 13(2), 152-161. 25442-89478-1-PB.pdf
dc.relation.referencesAwata, L. A. O., Ifie, B. E., Tongoona, P., Danquah, E., & Marchelo-Dragga, W. (2018). Common mating designs in agricultural research and their reliability in estimation of genetic parameters. IOSR Journal of Agriculture and Veterinary Science, 11(7), 16–36. https://doi.org/10.9790/2380-1107021636
dc.relation.referencesBamberg, J. B. (1999). Dependence on exogenous gibberellin for seed germination in Solanum acaule bitter and other Solanum (potato) species. American Journal of Potato Research, 76(6), 351–355. https://doi.org/10.1007/BF02910008/METRICS
dc.relation.referencesBallesteros, D. C., Gómez, G., Delgado, M. C., Álvarez, M. F., Juyó, D., Cuéllar, D. y Mosquera, T. (2010). Posible presencia de un gen R1 en germoplasma de Solanum tuberosum Grupo Phureja. Agronomía Colombiana, 28(2), 137-146. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-99652010000200002&lng=en&nrm=iso&tlng=es
dc.relation.referencesBechoff, A., Shee, A., Mvumi, B. M., Ngwenyama, P., Debelo, H., Ferruzzi, M. G., Nyanga, L. K., Mayanja, S., & Tomlins, K. I. (2022). Estimation of nutritional postharvest losses along food value chains: A case study of three key food security commodities in sub-Saharan Africa. Food Security, 14(3), 571–590. https://doi.org/10.1007/s12571-021-01238-9
dc.relation.referencesBertan, I., de Carvalho, F. I., & Oliveira, A. C. D. (2007). Parental selection strategies in plant breeding programs. Journal of Crop Science and Biotechnology, 10(4), 211-222.
dc.relation.referencesBestfleisch, M., Möhring, J., Hanke, M. V., Peil, A., & Flachowsky, H. (2014). A diallel crossing approach aimed at selection for ripening time and yield in breeding of new strawberry (Fragaria × ananassa Duch.) cultivars. Plant Breeding, 133(1), 115–120. https://doi.org/10.1111/pbr.12120
dc.relation.referencesBisognin, D. A., Müller, D. R., Streck, N. A., & Gnocato, F. S. (2017). Thermal sum of potato plants and tuber sprouting. Ciencia Rural, 47(10). https://doi.org/10.1590/0103-8478cr20160806
dc.relation.referencesBonierbale, M., Amoros, W., Salas, E., & Jong, W. (2020). Chapter 6: Potato breeding. In M. Bonierbale (Ed.), The potato crop: Its agricultural, nutritional and social contribution to humankind (pp. 163–207). Springer International Publishing. https://doi.org/10.1007/978-3-030-28683-5
dc.relation.referencesBonilla, C. M., Cardozo, P. F.y Morales, C. A. (2009). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la papa en Colombia con énfasis en papa criolla. Ministerio de Agricultura y Desarrollo Rural.
dc.relation.referencesBourke, P. A. (1964). Emergence of potato blight, 1843-46
dc.relation.referencesBradshaw, J. E., Stewart, H. E., Wastie, R. L., Dale, M. F. B., Phillips, M. S., & Wastie, R. L. (1995). Use of seedling progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics, 90(5), 820–826. https://doi.org/10.1007/BF00222029
dc.relation.referencesBradshaw, J. E. (2022). A brief history of the impact of potato genetics on the breeding of tetraploid potato cultivars for tuber propagation. Potato Research, 65(3), 461–501. https://doi.org/10.1007/s11540-021-09517-w
dc.relation.referencesBrown, J., & Caligari, P. (2011). An introduction to plant breeding. John Wiley y Sons.
dc.relation.referencesButler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. G., & Thompson, R. (2017). ASReml-R reference manual (Version 4). VSN International Ltd.
dc.relation.referencesCai, C., Liu, S., Liu, J., Wen, H., Li, L., Wang, Q., Li, L., & Wang, X. (2023). Screening and Identification of Potato StSPS1, a Potential Crucial Gene Regulating Seed Potato Vigor. Horticulturae, 9(4). https://doi.org/10.3390/horticulturae9040511
dc.relation.referencesCentro internacional de la Papa-CIP. (2011). Procedimientos y técnicas para cruzamientos de papa. Centro Internacional de la Papa. https://www.youtube.com/playlist?list=PL1776A4DA6D9DECEB
dc.relation.referencesCIP. 2016. Catálogo de variedades de papa nativa de Huancavelica. CIP. https://hdl.handle.net/10568/101328
dc.relation.referencesChalwe, A., Melis, R., Shanahan, P., & Chiona, M. (2015). Inheritance of resistance to cassava green mite and other useful agronomic traits in cassava grown in Zambia. Euphytica, 205(1), 103–119. https://doi.org/10.1007/s10681-015-1404-5
dc.relation.referencesClaassens, M. M. J., & Vreugdenhil, D. (2000). Is dormancy breaking of potato tubers the reverse of tuber initiation? Potato Research, 43(4), 347–369. https://doi.org/10.1007/BF02360540/METRICS
dc.relation.referencesComstock, R. E., & Robinson, H. F. (1948). The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics, 4(4), 254-266.
dc.relation.referencesCruz, C. D. (2013). GENES - A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum. Agronomy, 35(3), 271–276. https://doi.org/10.4025/actasciagron.v35i3.21251
dc.relation.referencesDe Haan, S., Forbes, A., Amoros, W., Gastelo, M., Salas, E., Hualla, V. y Bonierbale, M. (2014). Metodologías de evaluación estándar y manejo de datos de clones avanzados de papa. Módulo 2: Evaluación del rendimiento de tubérculos sanos de clones avanzados de papa: Guía para colaboradores internacionales. Centro Internacional de la Papa.
dc.relation.referencesDe Jong, H. (2016). Impact of the potato on society. American Journal of Potato Research, 93(5), 415–429. https://doi.org/10.1007/s12230-016-9529-1
dc.relation.referencesDi, X., Wang, Q., Zhang, F., Feng, H., Wang, X., & Cai, C. (2024). Advances in the Modulation of Potato Tuber Dormancy and Sprouting. Journal of Molecular Sciences 25(10) 5078. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms25105078
dc.relation.referencesDurães, N. N. L., Crevelari, J. A., Vettorazzi, J. C. F., Ferreira, J. A., Santana, F. de A., & Pereira, M. G. (2017). Combining ability for traits associated with yield and quality in super sweet corn (Zea mays L. saccharata). Australian Journal of Crop Science, 11(9), 1188–1194. https://doi.org/10.21475/ajcs.17.11.09.pne538
dc.relation.referencesEspitia M. M., Vallejo, F. A., y Baena, D. (2006). Efectos heteróticos y habilidad combinatoria para el rendimiento por planta en Cucurbita moschata Duch. Revista Facultad Nacional de Agronomía Medellín, 59(1), 3105–3121. https://revistas.unal.edu.co/index.php/refame/article/view/24294
dc.relation.referencesEstrada, N. (1997). Los recursos genéticos en el mejoramiento de la papa. Corporación Colombiana de Investigación Agropecuaria - Agrosavia. https://repository.agrosavia.co/handle/20.500.12324/16875
dc.relation.referencesFalconer, D. S., & Mackay, T. F. C. (2006). Values and means. En Introducción a la genética cuantitativa (4.a ed., pp. 108-115). Acribia, S.A.
dc.relation.referencesFAOSTAT. (2023). Base de datos estadística de la FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura. https://www.fao.org/faostat/es/#data/QCL
dc.relation.referencesFerreira, R. A. D. C., de Souza Pessoa, T. V., Fonseca e Silva, F., Dias, K. O. D. G., Carneiro, P. C. S., Cruz, C. D., & Machado, J. C. (2024). A diallel model with repeatability information applied in an elephant grass breeding program. Scientia Agricola, 81. https://doi.org/10.1590/1678-992X-2023-0045
dc.relation.referencesFoukaraki, S. G., Cools, K., & Terry, L. A. (2016). Differential effect of ethylene supplementation and inhibition on abscisic acid metabolism of potato (Solanum tuberosum L.) tubers during storage. Postharvest Biology and Technology, 112, 87–94. https://doi.org/10.1016/j.postharvbio.2015.10.002
dc.relation.referencesFreyre, R., Warnke, S., Sosinski, B., & Douches, D. S. (1994). Quantitative trait locus analysis of tuber dormancy in diploid potato (Solanum spp.). Theoretical and Applied Genetics, 89(4), 474-480. https://doi.org/10.1007/BF00225383
dc.relation.referencesGarcía-Flórez, M., Portela-Ramírez, A., y Flórez-Roncancio, V. J. (2009). Substancias con actividad citoquinínica estimulan la brotación de yemas en tubérculos de papa. Bragantia, 68(3), 555–562. https://doi.org/10.1590/S0006-87052009000300001
dc.relation.referencesGardner, C. O., & Eberhart, S. A. (1966). Analysis and interpretation of the variety cross diallel and related populations. Biometrics, 22(3), 439-452. https://doi.org/10.2307/2528181
dc.relation.referencesGavrilenko, T., Antonova, O., Shuvalova, A., Krylova, E., Alpatyeva, N., Spooner, D. M., & Novikova, L. (2013). Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution, 60(7), 1997–2015. https://doi.org/10.1007/s10722-013-9968-1
dc.relation.referencesGeraldi, I. O., & Miranda-Filho, J. B. (1988). Adapted models for the analysis of combining ability of varieties in partial diallel crosses. Revista Brasileira de Genética, 11, 419-430. https://doi.org/10.5555/19881673949
dc.relation.referencesGhislain, M., Andrade, D., Rodríguez, F., Hijmans, R. J., & Spooner, D. M. (2006). Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics, 113(8), 1515–1527. https://doi.org/10.1007/s00122-006-0399-7
dc.relation.referencesGlendinning, D. R. (1975). Neo-Tuberosum: New potato breeding material. 2. A comparison of Neo-Tuberosum with unselected Andigena and with Tuberosum. Potato Research, 18(3), 343-350. https://doi.org/10.1007/BF02361896
dc.relation.referencesGong, H. L., Dusengemungu, L., Igiraneza, C., y Rukundo, P. (2021). Molecular regulation of potato tuber dormancy and sprouting: a mini-review. Plant Biotechnology Reports, 15(4),417–434. Springer. https://doi.org/10.1007/s11816-021-00689-y
dc.relation.referencesGopal, J., & Minocha, J. L. (1997). Genetic divergence for cross prediction in potato. Euphytica, 97(3), 269-275. https://doi.org/10.1023/A:1003076207221
dc.relation.referencesGopal, J., & Becker, H. C. (1998). Identification of superior parents and crosses in potato breeding programmes. Theoretical and Applied Genetics, 96, 43–49. Springer-Verlag.
dc.relation.referencesGralak, E., Faria, M. V., Figueiredo, A. S. T., Rizzardi, D. A., Neumann, M., Mendes, M. C., Scapim, C. A., & Galbeiro, S. (2017). Genetic divergence among corn hybrids and combining ability for agronomic and bromatological traits of silage. Genetics and Molecular Research, 16(2). https://doi.org/10.4238/gmr16029643
dc.relation.referencesGriffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 9(4), 463. https://doi.org/10.1071/bi9560463
dc.relation.referencesGrisales-Vásquez, N. Y., & Cotes-Torres, J. M. (2019). General and Specific Combinatorial Aptitude in a F1 Population of Solanum phureja with Resistance to Phytophthora infestans. American Journal of Potato Research, 96(1), 55–61. https://doi.org/10.1007/s12230-018-9688-3
dc.relation.referencesGrommers, H. E., & van der Krogt, D. A. (2009). Chapter 11 - potato starch: Production, modifications and uses. En J. BeMiller & R. Whistler (Eds.), Starch 3rd Ed(pp. 511-539). Academic Press. https://doi.org/10.1016/B978-0-12-746275-2.00011-2
dc.relation.referencesHajirezaei, M. R., Börnke, F., Peisker, M., Takahata, Y., Lerchl, J., Kirakosyan, A., & Sonnewald, U. (2003). Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). Journal of Experimental Botany, 54(382), 477–488. https://doi.org/10.1093/jxb/erg040
dc.relation.referencesHairston, N. G., & Fox, J. A. (2017). Dormancy and diapause. En Reference Module in Life Sciences (p. B9780128096338021178). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.02117-8
dc.relation.referencesHoldridge, L. R. (1987). Ecología basada en zonas de vida (No. 83). Agroamérica.
dc.relation.referencesHallauer, A. R., & Miranda, J. B. (1981). Quantitative genetics in maize breeding. Iowa State University, p. 468.
dc.relation.referencesHardigan, M. A., Laimbeer, F. P. E., Newton, L., Crisovan, E., Hamilton, J. P., Vaillancourt, B., Wiegert-Rininger, K., Wood, J. C., Douches, D. S., Farré, E. M., Veilleux, R. E., & Buell, C. R. (2017). Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proceedings of the National Academy of Sciences of the United States of America, 114(46), E9999–E10008. https://doi.org/10.1073/pnas.1714380114
dc.relation.referencesHawkes, J. G. (1990). The potato: Evolution, biodiversity and genetic resources. Belhaven Press.
dc.relation.referencesHawkes, J. G., & Francisco-Ortega, J. (1992). The potato in Spain during the late 16th century. Economic Botany, 46(1), 86–97. https://doi.org/10.1007/BF02862258
dc.relation.referencesHayman, B. I. (1954). The theory and analysis of diallel crosses. Genetics, 39(6), 789–809. https://doi.org/10.1093/genetics/39.6.789
dc.relation.referencesHayman, B. I. (1958). The theory and analysis of diallel crosses II. Genetics, 43(1), 63–85. https://doi.org/10.1093/genetics/43.1.63
dc.relation.referencesHaynes, K. G., Qu, X., & Christ, B. J. (2014). Two cycles of recurrent maternal half-sib selection reduce foliar late blight in a diploid hybrid solanum phureja-s. Stenotomum population by two-thirds. American Journal of Potato Research, 91(3), 254-259. https://doi.org/10.1007/s12230-013-9345-9
dc.relation.referencesHaynes, K. G., & Qu, X. (2019). Three cycles of recurrent maternal half-sib selection continue to reduce foliar late blight in a diploid hybrid solanum phureja-s. Stenotomum population. American Journal of Potato Research, 96(1), 1-5. https://doi.org/10.1007/s12230-018-9681-x
dc.relation.referencesHeinz, R., Ribeiro, L. P., Gonçalves, M. C., Bhering, L. L., & Teodoro, P. E. (2019). Selection of maize top-crosses for different nitrogen levels through specific combining ability. Bragantia, 78(2), 208–214
dc.relation.referencesHou, J., Liu, T., Reid, S., Zhang, H., Peng, X., Sun, K., Du, J., Sonnewald, U., & Song, B. (2019). Silencing of α-amylase StAmy23 in potato tuber leads to delayed sprouting. Plant Physiology and Biochemistry, 139, 411–418. https://doi.org/10.1016/j.plaphy.2019.03.044
dc.relation.referencesHuamán, Z., & Spooner, D. M. (2002). Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). American Journal of Botany, 89(6), 947–965. https://doi.org/10.3732/ajb.89.6.947
dc.relation.referencesInstituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2022). Geoservicios institucionales - IDEAM. Geoservicios IDEAM. http://www.ideam.gov.co/geoservicios-institucionales
dc.relation.referencesJuyó, D., Sarmiento, F., Álvarez, M., Brochero, H., Gebhardt, C., Mosquera, T., Juyó, D., Sarmiento, F., Álvarez, M., Brochero, H., & Mosquera, T. (2015). Genetic Diversity and Population Structure in Diploid Potatoes of Solanum tuberosum Group Phureja. Crop Science, 55(2), 760–769. https://doi.org/10.2135/CROPSCI2014.07.0524
dc.relation.referencesKallio, P., & Piiroinen, P. (1959). Effect of gibberellin on the termination of dormancy in some seeds. Nature, 183(4678), 1830–1831. https://doi.org/10.1038/1831830a0
dc.relation.referencesKempthorne, O., & Curnow, R. N. (1961). The partial diallel cross. Biometrics, 17(2), 229–250. https://doi.org/10.2307/2527989
dc.relation.referencesKossmann, J., & Lloyd, J. (2000). Understanding and influencing starch biochemistry. Critical Reviews in Biochemistry and Molecular Biology, 35(3), 141-196.
dc.relation.referencesLandeo, J. A., & Hanneman, R. E. (1982). Heterosis and combining ability of Solanum tuberosum Group Andigena haploids. Potato Research, 25(3), 227–237. https://doi.org/10.1007/BF02357307
dc.relation.referencesLees, A. K., & Bradshaw, J. E. (2001). Inheritance of resistance to Fusarium sulphureum in crosses between S. tuberosum potato cultivars measured on field and glasshouse grown tubers. Potato Research, 44, 147–152.
dc.relation.referencesLenaerts, B., Collard, B. C. Y., & Demont, M. (2019). Review: Improving global food security through accelerated plant breeding. Plant Science, 287, 110207. https://doi.org/10.1016/j.plantsci.2019.110207
dc.relation.referencesLi, J., Huang, W., Cao, H., Xiao, G., Zhou, J., Xie, C., Xia, J., & Song, B. (2018). Additive and epistatic QTLs underlying the dormancy in a diploid potato population across seven environments. Scientia Horticulturae, 240, 578-584. https://doi.org/10.1016/j.scienta.2018.06.071
dc.relation.referencesLi, L., Deng, M., Lyu, C., Zhang, J., Peng, J., Cai, C., Yang, S., Lu, L., Ni, S., Liu, F., Zheng, S., Yu, L., & Wang, X. (2020). Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chemistry, 325, 126875. https://doi.org/10.1016/j.foodchem.2020.126875
dc.relation.referencesLizarazo-Peña, P. A., Moreno, L. P. y Ñústez-López, C. E. (2022). Rendimiento y variables poscosecha de cultivares de papa del grupo Phureja en ambientes contrastantes por altitud de la región Andina central de Colombia. Ciencia y Tecnología Agropecuaria, 23(2), 2197. https://doi.org/10.21930/RCTA.VOL23_NUM2_ART:2197
dc.relation.referencesMacKay, T. F. C., Stone, E. A., & Ayroles, J. F. (2009). The genetics of quantitative traits: challenges and prospects. Nature Reviews. Genetics, 10(8), 565–577. https://doi.org/10.1038/nrg2612
dc.relation.referencesMackay, I. J., Cockram, J., Howell, P., & Powell, W. (2021). Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal, 19(1), 26-34. https://doi.org/10.1111/pbi.13481
dc.relation.referencesMarulanda-Zapata, D. F., Barrera-Sánchez, C. F., & Córdoba-Gaona, O. de J. (2023). Functional growth analysis of diploid potato varieties (Solanum tuberosum Phureja group). Revista Colombiana de Ciencias Hortícolas, 17(2). https://doi.org/10.17584/RCCH.2023V17I2.15831
dc.relation.referencesMasny, A., Masny, S., Żurawicz, E., Pruski, K., & Mądry, W. (2016). Suitability of certain strawberry genotypes for breeding of new cultivars tolerant to leaf diseases based on their combining ability. Euphytica, 210(3), 341–366. https://doi.org/10.1007/s10681-016-1690-6
dc.relation.referencesMinisterio de Agricultura y Riego (MINAGRI); Grupo Yanapai; Instituto Nacional de Innovación Agraria (INIA); Centro Internacional de la Papa (CIP). 2017 Catálogo de variedades de papa nativa del sureste del departamento de Junín - Perú. Lima (Perú). Centro Internacional de la Papa (CIP). ISBN 978-92-9060-208-8. 228 p.
dc.relation.referencesMorales, G. F. J. (2007). Revista Latinoamericana de la Papa. Revista Latinoamericana de La Papa, 14(1), 1–9.
dc.relation.referencesMuhinyuza, J. B., Shimelis, H., Melis, R., Sibiya, J., & Nzaramba, M. N. (2016). Combining ability analysis of yield and late blight (Phytophthora infestans (Mont.) de Bary) resistance of potato germplasm in Rwanda. Australian Journal of Crop Science, 10(6), 799–807. https://doi.org/10.21475/ajcs.2016.10.06.p7303
dc.relation.referencesMurigi, W. W., Nyankanga, R. O., & Shibairo, S. I. (2021). Effect of storage temperature and postharvest tuber treatment with chemical and biorational inhibitors on suppression of sprouts during potato storage. Journal of Horticultural Research, 29(1), 83–94. https://doi.org/10.2478/johr-2021-0001
dc.relation.referencesMuthoni, J., Kabira, J., Shimelis, H., & Melis, R. (2014). Regulation of potato tuber dormancy: A review. Australian Journal of Crop Science, 8(5), 754–759. https://www.researchgate.net/publication/262412947
dc.relation.referencesÑústez, C. E. (2019). Variedades liberadas por la Universidad Nacional de Colombia. Grupo de Investigación en Papa. http://papaunc.com/variedades-liberadas-por-la-universidad-nacional-de-colombia
dc.relation.referencesÑústez, C. E. y Rodríguez, L. E. (2020). Contexto general de la papa criolla. En Papa criolla (Solanum tuberosum Grupo Phureja): Manual de recomendaciones técnicas para su cultivo en el departamento de Cundinamarca (pp. 27–35). Corredor Tecnológico Agroindustrial CTA-2. 09-manual-papa-criolla-2020-EBOOK.pdf (unal.edu.co)
dc.relation.referencesOchoa, C. M. (1999). Las papas de Sudamérica Perú. International Potato Center. http://archive.org/details/bub_gb_5bT-wR-zwo0C
dc.relation.referencesOrtiz , R. (2015). Heterosis and interspecific hybridization. En R. Ortiz Ríos (Ed.), Plant Breeding in the Omics Era (pp. 79-91). Springer International Publishing. https://doi.org/10.1007/978-3-319-20532-8_5
dc.relation.referencesOvchinnikova, A., Krylova, E., Gavrilenko, T., Smekalova, T., Zhuk, M., Knapp, S., Spooner, D. M., & Vavilov, N. I. (2011). Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society, 165(2), 107–155. https://academic.oup.com/botlinnean/article/165/2/107/2280867
dc.relation.referencesPacheco, J. E. (2018). Estimación de parámetros de selección y ganancia genética para rendimiento y gravedad específica en poblaciones diploides de papa (Solanum tuberosum L.) [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio institucional UNAL. Estimación de parámetros de selección y ganancia genética para rendimiento y gravedad específica en poblaciones diploides de papa (Solanum tuberosum L.)
dc.relation.referencesPaluchowska, P., Śliwka, J., & Yin, Z. (2022). Late blight resistance genes in potato breeding. In Planta, 255(6). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00425-022-03910-6
dc.relation.referencesPasare, S. A., Ducreux, L. J. M., Morris, W. L., Campbell, R., Sharma, S. K., Roumeliotis, E., Kohlen, W., van der Krol, S., Bramley, P. M., Roberts, A. G., Fraser, P. D., & Taylor, M. A. (2013). The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytologist, 198(4), 1108–1120. https://doi.org/10.1111/nph.12217
dc.relation.referencesPéra, T. G., Rocha, F. V. da, y Caixeta Filho, J. V. (2023). Tracking Food Supply Chain Postharvest Losses on a Global Scale: The Development of the Postharvest Loss Information System. Agriculture (Switzerland), 13(10). https://doi.org/10.3390/agriculture13101990
dc.relation.referencesParra-Galindo, M. A., Piñeros-Niño, C., Soto-Sedano, J. C., & Mosquera-Vásquez, T. (2019). Chromosomes I and X harbor consistent genetic factors associated with the anthocyanin variation in potato. Agronomy, 9(7), 366. https://doi.org/10.3390/agronomy9070366
dc.relation.referencesPorras, P. y Herrera, C. (2015). Modelo productivo de la papa criolla para los departamentos de Cundinamarca y Boyacá. Corporacion Colombiana de Investigación Agropecuaria - Corpoica.
dc.relation.referencesReis, T. L., Lenz, E. A., Rocha, D., Cerioli, M.-R., Da, A., & Pereira, S. (2017). Combining ability of potato parents for tuber appearance and tuber yield component traits. Crop Breeding and Applied Biotechnology, 17, 99–106. https://doi.org/10.1590/1984
dc.relation.referencesRodríguez, R. N. (2011). Sas. WIREs Computational Statistics, 3(1), 1–11. https://doi.org/10.1002/wics.131
dc.relation.referencesRodríguez. L.E. (2013). Análisis genético y molecular para rendimiento y período de reposo de tubérculo en papa a nivel diploide (S.bukasovii x S. tuberosum Grupo Phureja). [Tesis de doctorado, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia]. Repositorio Institucional Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/50386
dc.relation.referencesRodríguez-Llanes, Y., Pérez-Brito, D., Guzmán-Antonio, A., Mijangos-Cortés, J. O., Iglesias-Andreu, L. G., Canto- Flick, A., Avilés-Viñas, S. A., Pijeira-Fernández, G., & Santana-Buzzy, N. (2023). Combining ability, heterosis, and heterobeltiosis to select highly productive F1 hybrids of habanero pepper (capsicum chinense jacq.). Plant Genetic Resources: Characterization and Utilization, 21(1), 1-11. https://doi.org/10.1017/S1479262123000229
dc.relation.referencesRoss, H. (1986). Potato breeding: Problems and perspectives (pp. 82–86). Verlag Paul Parey.
dc.relation.referencesRumold, C. U., & Aldenderfer, M. S. (2016). Late Archaic-Early Formative period microbotanical evidence for potato at Jiskairumoko in the Titicaca Basin of southern Peru. Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13672–13677. https://doi.org/10.1073/pnas.1604265113
dc.relation.referencesRykaczewska, K. (2015). The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. American Journal of Potato Research, 92(3), 339–349. https://doi.org/10.1007/s12230-015-9436-x
dc.relation.referencesSaidi, A., & Hajibarat, Z. (2021). Phytohormones: Plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology, 19(1), 89. https://doi.org/10.1186/s43141-021-00192-5
dc.relation.referencesSalazar, V. F., Vallejo, F.A., Espitia, M, Lagos T.C., y Restrepo, E. al. (2005). Análisis estadístico para los diseños genéticos en fitomejoramiento. Universidad Nacional de Colombia.
dc.relation.referencesSenhorinho, H. J. C., Barth Pinto, R. J., Scapim, C. A., Milani, K. F., & Nihei, T. H. (2015). Combining abilities and inbreeding depression in commercial maize hybrids. Semina: Ciências Agrárias, 36(6), 4133–4149. https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4133
dc.relation.referencesServicio Nacional de Meteorología e Hidrología del Perú – Senamhi. (2020). Mapa climático del Peru. Clima. https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru
dc.relation.referencesShull, G. H. (1909). Hybridization methods in corn breeding. American Breeders Association Report, 6, 63–72.
dc.relation.referencesSilva, G., Pereira, A., Souza, V., Carvalho, F., & Neto, R. (2009). Estimativa de capacidades de combinação em gerações iniciais de seleção de batata. Horticultura Brasileira, 27, 275–278.
dc.relation.referencesŚliwka, J., Wasilewicz-Flis, I., Jakuczun, H., Janiszewska, M., Smyda-Dajmund, P., McLean, K., Zimnoch-Guzowska, E., Bryan, G. J., & Sharma, S. K. (2025). Historical data provide new insights into inheritance of traits important for diploid potato breeding. Planta, 261(4), 69. https://doi.org/10.1007/s00425-025-04618-z
dc.relation.referencesSonnewald, S., & Sonnewald, U. (2014). Regulation of potato tuber sprouting. Planta, 239(1), 27–38. https://doi.org/10.1007/s00425-013-1968-z
dc.relation.referencesSonnewald, U. (2001). Control of potato tuber sprouting. Trends in Plant Science, 6(8), 333–335. https://doi.org/10.1016/s1360-1385(01)02020-9
dc.relation.referencesSorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer. https://doi.org/10.1007/b98952
dc.relation.referencesSpooner, D. M., Mclean, K., Ramsay, G., Waugh, R., & Bryan, G. J. (2005a). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14694–14699. https://doi.org/10.1073/pnas.0507400102
dc.relation.referencesSpooner, D. M., Nuñez, J., Rodríguez, F., Naik, P. S., & Ghislain, M. (2005b). Nuclear and chloroplast DNA reassessment of the origin of Indian potato varieties and its implications for the origin of the early European potato. Theoretical and Applied Genetics, 110(6), 1020–1026. https://doi.org/10.1007/s00122-004-1917-0
dc.relation.referencesSpooner, D. M., Ghislain, M., Simon, R., Jansky, S. H., & Gavrilenko, T. (2014). Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Botanical Review, 80(4), 283–383. https://doi.org/10.1007/s12229-014-9146-y
dc.relation.referencesSpooner, D. M. (2016). Species delimitations in plants: Lessons learned from potato taxonomy by a practicing taxonomist. Journal of Systematics and Evolution, 54(3), 191–203. https://doi.org/10.1111/jse.12203
dc.relation.referencesSprague, G. F., & Tatum, L. A. (1942). General vs. specific combining ability in single crosses of corn. Agronomy Journal, 34(10), 923–932. https://doi.org/10.2134/agronj1942.00021962003400100008x
dc.relation.referencesStephen, L. L., Kurt, M.-K., Jeffrey, C. S., & Edgar, Q.-M. (2020). A short history of potato production systems. In Potato Production Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-39157-7_1
dc.relation.referencesSukhotu, T., & Hosaka, K. (2006). Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers. Genome, 49(6), 636–647. https://doi.org/10.1139/G06-014
dc.relation.referencesSuttle, J. C. (2004). Physiological regulation of potato tuber dormancy. American Journal of Potato Research, 81(4), 253–262. https://doi.org/10.1007/bf02871767
dc.relation.referencesSuttle, J. C. (2007). Dormancy and sprouting. En Potato Biology and Biotechnology (pp. 287-309). Elsevier. https://doi.org/10.1016/B978-044451018-1/50056-7
dc.relation.referencesThomas, S., Vásquez-Benítez, J. D., Cuéllar-Cepeda, F. A., Mosquera-Vásquez, T., & Narváez-Cuenca, C. E. (2021). Vitamin C, protein, and dietary fibre contents as affected by genotype, agro-climatic conditions, and cooking method on tubers of Solanum tuberosum Group Phureja. Food Chemistry, 349, 129207. https://doi.org/10.1016/j.foodchem.2021.129207
dc.relation.referencesThompson, P. G., Haynes, F. L., & Moll, R. H. (1980). Estimation of genetic variance components and heritability for tuber dormancy in diploid potatoes. American Potato Journal, 57(2), 39–46. https://doi.org/10.1007/BF02866423/METRICS
dc.relation.referencesToro Pantoja, M. (2016). Evaluación del efecto de 3 inhibidores de brotación en papa criolla (Solanum Phureja) variedad criolla Colombia aplicados en el proceso de poscosecha [Tesis de maestría Universidad Nacional de Colombia]. Repositorio institucional UNAL
dc.relation.referencesVallejo, A. y Estrada, E. 2016. Cruzamientos dialélicos. En Mejoramiento Genético de plantas (2.da ed., pp. 137-150). Universidad Nacional de Colombia.
dc.relation.referencesValkonen, J. P. T. (2007). Chapter 28 - Viruses: Economical losses and biotechnological potential. In D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, y H. A. Ross (Eds.), Potato Biology and Biotechnology (pp. 619–641). Elsevier Science B.V. https://www.sciencedirect.com/science/article/pii/B9780444510181500701
dc.relation.referencesVan Ittersum, M. K., Aben, F. C. B., & Keijzer, C. J. (1992). Morphological changes in tuber buds during dormancy and initial sprout growth of seed potatoes. Potato Research, 35(3), 249–260. https://doi.org/10.1007/BF02357705
dc.relation.referencesVan Den Berg, J. H., Ewing, E. E., Plaisted, R. L., McMurry, S., & Bonierbale, M. W. (1996). QTL analysis of potato tuber dormancy. Theoretical and Applied Genetics, 93(3), 317-324. https://doi.org/10.1007/BF00223171
dc.relation.referencesVesali, R. M., Baradaran, R., Hassanpanh, D., & Seghatoleslami, M. J. (2020). Generating genetic diversity through diallel crosses of promising potato cultivars (Solanum tuberosum L.) and studying cultivar hybrids under water deficit stress. Revista de Agricultura Neotropical, 7(2), 49–56.
dc.relation.referencesVisse-Mansiaux, M., Soyeurt, H., Herrera, J. M., Torche, J.-M., Vanderschuren, H., & Dupuis, B. (2022). Prediction of potato sprouting during storage. Field Crops Research, 278, 108396. https://doi.org/10.1016/j.fcr.2021.108396
dc.relation.referencesVreugdenhil, D. (2007). The canon of potato science: 39. Dormancy. Potato Research, 50, 371-373. https://doi.org/10.1007/s11540-008-9068-3
dc.relation.referencesWasserman, L. A., Kolachevskaya, O. O., Krivandin, A. V., Filatova, A. G., Gradov, O. V., Plashchina, I. G., & Romanov, G. A. (2023). Changes in Structural and Thermodynamic Properties of Starch during Potato Tuber Dormancy. International Journal of Molecular Sciences, 24(9), 8397. https://doi.org/10.3390/ijms24098397
dc.relation.referencesWatanabe, K., & Peloquin, S. J. (1989). Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in tuber-bearing Solanums. TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 78(3), 329–336. https://doi.org/10.1007/BF00265292
dc.relation.referencesWegary, D., Vivek, B., & Labuschagne, M. (2013). Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica, 191(2), 205–216. https://doi.org/10.1007/s10681-012-0757-2
dc.relation.referencesWijesinha-Bettoni, R., & Mouillé, B. (2019). The contribution of potatoes to global food security, nutrition and healthy diets. American Journal of Potato Research, 96(2), 139-149. https://doi.org/10.1007/s12230-018-09697-1
dc.relation.referencesWiltshire, J. J. J., & Cobb, A. H. (1996). A review of the physiology of potato tuber dormancy. The Annals of Applied Biology, 129(3), 553–569. https://doi.org/10.1111/j.1744-7348.1996.tb05776.x
dc.relation.referencesXie, Y., Onik, J. C., Hu, X., Duan, Y., & Lin, Q. (2018). Effects of (S)-carvone and gibberellin on sugar accumulation in potatoes during low temperature storage. Molecules, 23(12), 3118. https://doi.org/10.3390/molecules23123118
dc.relation.referencesYu, D., Gu, X., Zhang, S., Dong, S., Miao, H., Gebretsadik, K., & Bo, K. (2021). Molecular basis of heterosis and related breeding strategies reveal its importance in vegetable breeding. Horticulture Research, 8, 120. https://doi.org/10.1038/s41438-021-00552-9
dc.relation.referencesYuen, J. (2021). Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Security, 13(2), 247–253. https://doi.org/10.1007/s12571-021-01141-3
dc.relation.referencesZhang, X., Fujino, K., & Shimura, H. (2023). Transcriptomic Analyses Reveal the Role of Cytokinin and the Nodal Stem in Microtuber Sprouting in Potato (Solanum tuberosum L.). International Journal of Molecular Sciences, 24(24). https://doi.org/10.3390/IJMS242417534
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)
dc.subject.lembPAPAS (TUBERCULOS)-VARIEDADESspa
dc.subject.lembPotatoes - Varietieseng
dc.subject.lembSISTEMAS DE CULTIVOspa
dc.subject.lembCropping systemseng
dc.subject.lembSISTEMAS AGRICOLASspa
dc.subject.lembAgricultural systemseng
dc.subject.lembPAPAS (TUBERCULOS)-EPOCAS DE COSECHAspa
dc.subject.lembPotatoes - Harvesting timeeng
dc.subject.proposalCruzamientos dialélicosspa
dc.subject.proposalHeterobeltiosisspa
dc.subject.proposalSobredominanciaspa
dc.subject.proposalEpistasisspa
dc.subject.proposalDiallel crosseseng
dc.subject.proposalOverdominanceeng
dc.subject.proposalHeterobeltiosiseng
dc.subject.proposalEpistasiseng
dc.titleHeterosis en el rendimiento y reposo entre genotipos de los Grupos Stenotomum y Phurejaspa
dc.title.translatedHeterosis in yield and dormancy among genotypes of the Stenotomum and Phureja groupseng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023019928_2025.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: