Evaluación de intermediarios de la degradación electrocatalítica de hidrocarburos presentes en aguas residuales de la industria petroquímica, utilizando cromatografía de gases con espectrometría de masas
dc.contributor.advisor | Ramirez Franco, Jose Herney | |
dc.contributor.author | Pinzón Rodríguez, Omar Andrés | |
dc.contributor.researchgroup | Grupo de Investigación en Materiales, Catálisis y Medio Ambiente | spa |
dc.date.accessioned | 2022-09-26T21:00:46Z | |
dc.date.available | 2022-09-26T21:00:46Z | |
dc.date.issued | 2022-09-26 | |
dc.description | ilustraciones, graficas | spa |
dc.description.abstract | La industria petrolera en sus procesos de perforación y extracción requiere un alto consumo de agua la cual inevitablemente se contamina con hidrocarburos y debe ser tratada para su disposición. La contaminación también se genera por derrames, fugas o malos procedimientos operacionales requiriendo grandes inversiones y tecnología de punta para su remoción. En este trabajo se empleó electrocatálisis para degradar la molécula de tolueno, que es uno de los contaminantes presentes en aguas residuales. Se optimizaron las condiciones de corriente y el tiempo de reacción, además se seleccionó el mejor electrolito para obtener mejores porcentajes de degradación. Los resultados obtenidos mostraron que el mayor porcentaje de degradación de tolueno fue del 94% en 40 minutos de reacción, además se logró la identificación de ácido benzoico y ácido acético como intermediarios de la degradación electrocatalítica, demostrando así que utilizando la técnica SPME para la extracción de las moléculas y su análisis mediante cromatografía de gases acoplado a detector de masas (GC-MS) es posible evaluar compuestos volátiles presentes en agua. Esta metodología fue aplicada para degradar una muestra real de agua contaminada proveniente del proceso de producción de petróleo de la industria colombiana, logrando degradar en 90 minutos la fracción de hidrocarburos livianos en el rango de pentano (C5) a nonano (C9). En esta muestra se obtuvo una degradación de tolueno del 75.7%. El procedimiento desarrollado en este trabajo puede ser considerado como una alternativa para tratar aguas contaminadas con hidrocarburos livianos. (Texto tomado de la fuente) | spa |
dc.description.abstract | The oil and gas industry in its drilling and extraction processes requires a high consumption of water, which is inevitably contaminated with hydrocarbons and must be treated for disposal. Contamination is also generated by spills, leaks or poor operational procedures requiring large investments and new technology for its removal. In this work, electrocatalysis was used to degrade toluene, which is one of the wastewater pollutants. The electric current and reaction time were optimized, and the best electrolyte was selected to obtain better degradation percentages. The results obtained showed that the highest percentage of toluene degradation was 94% in 40 minutes of reaction, in addition, the identification of benzoic acid and acetic acid as intermediates of the electrocatalytic degradation was achieved, with GC-MS-SPME is possible to evaluate volatile compounds present in water. This methodology was applied to degrade a real sample of contaminated water from oil & gas production process from Colombian industry, in 90 minutes the fraction of light hydrocarbons was degraded in the range of pentane (C5) to nonane (C9). In this sample a toluene degradation of 75.7% was obtained. The procedure developed in this work can be considered as an alternative to wastewater treatment contaminated with light hydrocarbons. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.format.extent | xix, 86 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/82330 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abreu, Rebeca. 2017. “Tratamiento de Aguas Residuales Fenólicas de Refinería Por Métodos Electroquímicos.” Multiciencias 16 (3): 239–46. | spa |
dc.relation.references | Adams, Randy. 1999. “Bioremediation Potential of Oil Impacted Soil and Water in the Mexican Tropics.” Terra 17: 159–74. | spa |
dc.relation.references | Agencia Nacional de Hidrocarburos ANH. 2019. “Cifras y Estadísticas.” 2019. https://www.anh.gov.co/estadisticas-del-sector/sistemas-integrados-operaciones/estadísticas-producción. | spa |
dc.relation.references | Agudo, Antonio. 2009. “Los Hidrocarburos Los Hidrocarburos Aromáticos Policíclicos ( HAP ).” In, 9-15 . | spa |
dc.relation.references | Alcalá, Universidad de. 2011. “Velocidades y Mecanismos de Las Reacciones Químicas.” In , 109–17. | spa |
dc.relation.references | Alvarez, Maria F. 2009. “Estudio Del Comportamiento Fotoquímico Y Determinación De Compuestos Fitosanitarios En Matrices Medioambientales Y Agroalimentarias Mediante Técnicas Avanzadas De Extracción Y Microextracción.”, 51-59. | spa |
dc.relation.references | Angulo, Monica, and Alejandra V Betancourt. 2008. “Optimización De Los Parámetros De Operación En Un Proceso De Tratamiento De Aguas Por Electro-Oxidación.” 40 -51. | spa |
dc.relation.references | Arthur, C.L. 1990. “Analytical Chemistry.” In . | spa |
dc.relation.references | Avellaneda Cusaría, Alfonso. 2013. “Petróleo, Seguridad Ambiental y Exploración Petrolera Marina En Colombia.” Íconos - Revista de Ciencias Sociales 0 (21): 11-21. https://doi.org/10.17141/iconos.21.2005.81. | spa |
dc.relation.references | Baimatova, Nassiba, Bulat Kenessov, Jacek A. Koziel, Lars Carlsen, Marat Bektassov, and Olga P. Demyanenko. 2016. “Simple and Accurate Quantification of BTEX in Ambient Air by SPME and GC-MS.” Talanta 154: 46–52. https://doi.org/10.1016/j.talanta.2016.03.050. | spa |
dc.relation.references | Battisti, Achille De, and Carlos A Martı. 2018. “Electrocatalysis in Wastewater Treatment,” 119–31. https://doi.org/10.1016/B978-0-12-813160-2.00005-5. | spa |
dc.relation.references | Briceño, Carlos, and Lilia Rodríguez. 1993. Química. | spa |
dc.relation.references | Burgos-N, Saudith, Amado Navarro, and José Marrugo. 2017. “Policyclic Aromatic Hydrocarbons and Heavy Metals in the Cispata Bay, Colombia: A Marine Tropical Ecosystem.” Marine Pollution Magazine 120: 379–86. | spa |
dc.relation.references | Cano Blanco, Daniel. 2021. “Electrochemical Oxidation of Toluene for Water Treatment Using a Ti/Pt Anode.” 5-11. | spa |
dc.relation.references | Carballo, Luis. 2002. Introducción a La Catálisis Heterogénea. | spa |
dc.relation.references | Chandrasekhar, K., G. Velvizhi, and S. Venkata Mohan. 2021. “Bio-Electrocatalytic Remediation of Hydrocarbons Contaminated Soil with Integrated Natural Attenuation and Chemical Oxidant.” Chemosphere 280.-5-9 https://doi.org/10.1016/j.chemosphere.2021.130649. | spa |
dc.relation.references | Chaparro, Luis Rodrigo. 2001. “Emisiones Al Ambiente En Colombia.” | spa |
dc.relation.references | Comerma, E. 2012. “Comportamiento de Los Hidrocarburos Derramados En El Medio Marino.” 99- 108 | spa |
dc.relation.references | Cordero, A. 2008. “Catalizadores Para La Protección Del Medio Ambiente,” no. 2. 65-78 | spa |
dc.relation.references | Dargahi, Abdollah, Amin Ansari, Davood Nematollahi, Ghorban Asgari, Reza Shokoohi, and Mohammad Reza Samarghandi. 2019. “Parameter Optimization and Degradation Mechanism for Electrocatalytic Degradation of 2,4-Diclorophenoxyacetic Acid (2,4-D) Herbicide by Lead Dioxide Electrodes.fernandez” RSC Advances 9 (9): 5064–75. https://doi.org/10.1039/c8ra10105a. | spa |
dc.relation.references | Department of Health, New Jersey. 2017. “Hoja Informativa Sobre Sustancias Peligrosas Aber.” | spa |
dc.relation.references | Department of Health, US. 2017. “Toxicological Profile for Toluene,” no. June. | spa |
dc.relation.references | E1618, ASTM. 2019. “Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris.” | spa |
dc.relation.references | Ecopetrol. 2020. “Indicadores de Gestión de Agua Según El Estándar GRI,” 38–40. | spa |
dc.relation.references | Ecopetrol. 2021. “Reporte Integrado de Gestión Sostenible” Cap. 7: 196–97. | spa |
dc.relation.references | ENEL Codensa. 2022. “Tarifas de Energía Electrica Reguladas Por La Comisión de Regulación de Energía y Gas.” | spa |
dc.relation.references | Fernández A, María. 2009. “Estudio Del Comportamiento Fotoquímico Y Determinación De Compuestos Fitosanitarios En Matrices Medioambientales Y Agroalimentarias Mediante Técnicas Avanzadas De Extracción Y Microextracción.” | spa |
dc.relation.references | Galán, Patricia. 2014. “Contaminacion Petrolera.” In 179-190 . | spa |
dc.relation.references | Gaurav, Gajendra Kumar, Tariq Mehmood, Manoj Kumar, Liu Cheng, Kuppusamy Sathishkumar, Amit Kumar, and Deepak Yadav. 2021. “Review on Polycyclic Aromatic Hydrocarbons (PAHs) Migration from Wastewater.” Journal of Contaminant Hydrology 236 (May 2020). https://doi.org/10.1016/j.jconhyd.2020.103715. | spa |
dc.relation.references | Gonzalez, Jaime. 2020. “Electrocatálisis,” no. February. 634-665 | spa |
dc.relation.references | Ideam. 2005a. “Guia 25 - Tolueno,” 371–86. | spa |
dc.relation.references | Ideam. 2005b. “Guia 7. Benceno,” 129–40. | spa |
dc.relation.references | Jing Cheng, Changda Gao, Ming Jing, Jian Lu, Hui Lin*, Zhaoxia Han, and and Dawei Zhang Zhengji Ni. 2018. “Photo-Catalysis Water Splitting by Platinum-Loaded Zeolite A.” Materials Research Express (5) 1-7. | spa |
dc.relation.references | Khenkin, Alexander M., Adi Herman, Eynat Haviv, and Ronny Neumann. 2021. “Electrocatalytic Oxyesterification of Hydrocarbons by Tetravalent Lead.” ACS Catalysis 11: 10494–501. https://doi.org/10.1021/acscatal.1c01674. | spa |
dc.relation.references | Kolmetz, Karl. 2020. “Introduction to Crude Oil Refining , Kolmetz Handbook Of Process Equipment Design Kolmetz Handbook Of Process Equipment Design Introduction to Crude Oil Refining ( ENGINEERING DESIGN GUIDELINES ),” no. January 2017.6-81 | spa |
dc.relation.references | Laboratorio de Cromatografia, Museo Nacional de España. 2016a. “Cromatografia de Gases.” | spa |
dc.relation.references | Laboratorio de Cromatografia, Museo Nacional de España. 2016b. “Espectrometria de Masas.” | spa |
dc.relation.references | Lee, Maw Rong, Chia Min Chang, and Jianpeng Dou. 2007. “Determination of Benzene, Toluene, Ethylbenzene, Xylenes in Water at Sub-Ng l-1 Levels by Solid-Phase Microextraction Coupled to Cryo-Trap Gas Chromatography-Mass Spectrometry.” Chemosphere 69 (9): 1381–87. https://doi.org/10.1016/j.chemosphere.2007.05.004. | spa |
dc.relation.references | Li, Kuiling, Lili Xu, Yong Zhang, Aixin Cao, Yujue Wang, Haiou Huang, and Jun Wang. 2019. “A Novel Electro-Catalytic Membrane Contactor for Improving the Efficiency of Ozone on Wastewater Treatment.” Applied Catalysis B: Environmental 249 (March): 316–21. https://doi.org/10.1016/j.apcatb.2019.03.015. | spa |
dc.relation.references | Lin, Lili, Yuzhen Ge, Hongbo Zhang, Meng Wang, Dequan Xiao, and Ding Ma. 2021. “Heterogeneous Catalysis in Water.” JACS Au.(11) 1834-1848 https://doi.org/10.1021/jacsau.1c00319. | spa |
dc.relation.references | Lochmüller, Charles H. 2009. “Quality Assurance and Quality Control in the Analytical Chemical Laboratory.” 139-214. | spa |
dc.relation.references | Lozano Rivas, William Antonio. 2016. “Diseño de Plantas de Tratamiento de Aguas Residuales,” no. December 2012: 0–195 | spa |
dc.relation.references | Lyu, Yue, Caiting Li, Xueyu Du, Youcai Zhu, Yindi Zhang, and Shanhong Li. 2020. “Catalytic Oxidation of Toluene over MnO2 Catalysts with Different Mn (II) Precursors and the Study of Reaction Pathway.” Fuel 262 (November 2019): 116610. https://doi.org/10.1016/j.fuel.2019.116610. | spa |
dc.relation.references | Martínez-Huitle, Carlos A., and Enric Brillas. 2008. “Electrochemical Alternatives for Drinking Water Disinfection.” Angewandte Chemie - International Edition 47 (11): 1998–2005. https://doi.org/10.1002/anie.200703621. | spa |
dc.relation.references | Mesa, Sandra Liliana, Johana Milena Orjuela, Angie Tatiana Ortega Ramírez, and Juan-Andrés Sandoval. 2018. “Revisión Del Panorama Actual Del Manejo de Agua de Producción En La Industria Petrolera Colombiana.” Gestión y Ambiente 21 (1): 87–98. https://doi.org/10.15446/ga.v21n1.69792. | spa |
dc.relation.references | MinAmbiente, Ministerio de. 2018. “Resolución 0883 de 2018.” | spa |
dc.relation.references | Ministerio de Ambiente y desarrollo sostenible. 2015. Resolución 631. | spa |
dc.relation.references | Ministerio de medio ambiente. 2002. “Guia Para La Gestión, Manejo, Tratamiento y Disposición Final de Las Aguas Residuales Municipales.” | spa |
dc.relation.references | Mojiri, Amin, John L. Zhou, Akiyoshi Ohashi, Noriatsu Ozaki, and Tomonori Kindaichi. 2019. “Comprehensive Review of Polycyclic Aromatic Hydrocarbons in Water Sources, Their Effects and Treatments.” Science of the Total Environment (696) 49-66. https://doi.org/10.1016/j.scitotenv.2019.133971. | spa |
dc.relation.references | Nakajima, Daisuke, Tin-Tin-Win-Shwe, Masaki Kakeyama, Hidekazu Fujimaki, and Sumio Goto. 2006. “Determination of Toluene in Brain of Freely Moving Mice Using Solid-Phase Microextraction Technique.” NeuroToxicology 27 (4): 615–18. https://doi.org/10.1016/j.neuro.2005.12.006. | spa |
dc.relation.references | Nichela, Daniela A. 2012. Estudio Del Mecanismo y La Cinética de Degradación de Contaminantes Aromáticos Empleando Reacciones Tipo Fenton , Electro-Fenton y Foto-Fenton. 73-150 http://sedici.unlp.edu.ar/bitstream/handle/10915/2630/Documento_completo_original.pdf?sequence=1. | spa |
dc.relation.references | Noyola, A., J. Morgan, and L. Guereca. 2013. Selección de Tecnologías Para El Tratamiento de Aguas Residuales Municipales. International Development Research Centre. http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipales.(1) 7-15 | spa |
dc.relation.references | Olatunde, Kofoworola A. 2021. “Determination of Petroleum Hydrocarbon Contamination in Soil Using VNIR DRS and PLSR Modeling.” Heliyon 7 (4): 0–5. https://doi.org/10.1016/j.heliyon.2021.e06794. | spa |
dc.relation.references | Olguín, Patricia, and Hector Rodríguez. 2004. “Cromatografia de Gases.” In . | spa |
dc.relation.references | Pataquiva-Mateus, A. Y., H. R. Zea, and J. H. Ramirez. 2017. “Degradation of Orange II by Fenton Reaction Using Ilmenite as Catalyst.” Environmental Science and Pollution Research 24 (7): 6187–94. https://doi.org/10.1007/s11356-016-7263-3. | spa |
dc.relation.references | Pawliszyn, J. 1999. “Applications of Solid Phase Microextraction.” | spa |
dc.relation.references | Peñalver, Alejandra. 2002. “Aplicación de La Microextracción En Fase Sólida Al Análisis Medioambiental.”37-45 | spa |
dc.relation.references | Pérez-Landeiro, A., M. A. Allende-Bandrés, M. J. Agustín Fernandez, and P. Palomo Palomo. 2002. “Teratogénesis: Clasificaciones.” Farmacia Hospitalaria 26 (3): 171–77. | spa |
dc.relation.references | Radwan, Mahmoud, Mohamed Gar Alalm, and Hisham Kh El-Etriby. 2019. “Application of Electro-Fenton Process for Treatment of Water Contaminated with Benzene, Toluene, and p-Xylene (BTX) Using Affordable Electrodes.” Journal of Water Process Engineering 31 (January): 100837. https://doi.org/10.1016/j.jwpe.2019.100837. | spa |
dc.relation.references | Rojas, Ana Yuri. 2020. “Desarrollo de Estructura Metal-Orgánica Soportada Sobre Policloruro de Vinilo y Su Aplicación En El Control de Colorantes En Medios Acuosos,” 91. | spa |
dc.relation.references | Romero, Arturo. 2004. “Catalizadores y Procesos Catalíticos.”50-56 | spa |
dc.relation.references | Ruderman, Andres. 2016. “Electrocatálisis En Electrodos Nano Estructurados de Plata.”85-94 | spa |
dc.relation.references | Salamero, M. 2017. “Microextracción En Fase Sólida: Aplicaciones de Interés Farmaceutico.”7-21 | spa |
dc.relation.references | Secretaría de Energía, Republica Argentina. 2003. “Conceptos Sobre Hidrocarburos.” In . | spa |
dc.relation.references | Segura, Luis Eduardo. 2007. “Estudio de Antecedentes Sobre La Contaminación Hídrica En Colombia.” ESAP. | spa |
dc.relation.references | Sheikh A, Siti, Israa Al-Baldawi, and Asia F Almansoory. 2020. “Plant-Assisted Remediation of Hydrocarbons in Water Soil: Application, Mechanisms, Challenges and Opportunnities.” Chemosphere.(247)-125932 | spa |
dc.relation.references | Simões, Natércia Guerra, Vitor Vale Cardoso, Elisabete Ferreira, Maria João Benoliel, and Cristina M.M. Almeida. 2007. “Experimental and Statistical Validation of SPME-GC-MS Analysis of Phenol and Chlorophenols in Raw and Treated Water.” Chemosphere 68 (3): 501–10. https://doi.org/10.1016/j.chemosphere.2006.12.057. | spa |
dc.relation.references | Stashenko, Elena E, and Jairo René Martínez. 2010. “GC y GC-MS : Configuración Del Equipo Versus Aplicaciones” 2: 33–59. | spa |
dc.relation.references | Stauffer, Eric, Julia A. Dolan, and Reta Newman. 2008a. “Interpretation of Data Obtained from Neat Ignitable Liquids.” In Fire Debris Analysis. | spa |
dc.relation.references | Stauffer, Eric, Julia A. Dolan, and Reta Newman. 2008b. “Review of Basic Organic Chemistry.” Fire Debris Analysis, 49–83. https://doi.org/10.1016/b978-012663971-1.50007-5. | spa |
dc.relation.references | Stellman, J, and M McCann. 2006. “Encyclopaedia of Occupational Health and Safety” fourth. | spa |
dc.relation.references | Suhadolnik, Luka, Andrej Pohar, Uroš Novak, Blaž Likozar, Aleš Mihelič, and Miran Čeh. 2019. “Continuous Photocatalytic, Electrocatalytic and Photo-Electrocatalytic Degradation of a Reactive Textile Dye for Wastewater-Treatment Processes: Batch, Microreactor and Scaled-up Operation.” Journal of Industrial and Engineering Chemistry 72: 178–88. https://doi.org/10.1016/j.jiec.2018.12.017. | spa |
dc.relation.references | SWGTOX. 2013. “Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation in Forensic Toxicology.” Journal of Analytical Toxicology 37 (7): 452–74. https://doi.org/10.1093/jat/bkt054. | spa |
dc.relation.references | US EPA, Chemical Summary. 2012. “Toluene,” no. 1: 1–5 | spa |
dc.relation.references | US EPA, Chemical Summary. 2019. “Benzene.” Statistical Field Theor 53 (9): 1689–99. https://doi.org/10.1017/CBO9781107415324.004. | spa |
dc.relation.references | Valencia, Alexander, Rodrigo Suárez Castaño, Alejandra Sánchez, and Marcela Bonilla. 2010. “Gestión de La Contaminación Ambiental : Cuestión de Corresponsabilidad Management of Environmental Pollution : A Matter Of,” 90–99. | spa |
dc.relation.references | Vásquez, Morales, and Miguel Angel. 2016. “Electrocatálisis y Fotocatálisis Para La Producción de Hidrógeno a Partir de Agua , Utilizando Metalocorrolatos y Metalopofirinas Electrocatálisis y Fotocatálisis Para La Producción de Hidrógeno a Partir de Agua , Utilizando Metalocorrolatos y Metaloporfi.” | spa |
dc.relation.references | Wang, Zhiwei, Peijie Ma, Kun Zheng, Can Wang, Yuxi Liu, Hongxing Dai, Chongchen Wang, Hsing Cheng Hsi, and Jiguang Deng. 2020. “Size Effect, Mutual Inhibition and Oxidation Mechanism of the Catalytic Removal of a Toluene and Acetone Mixture over TiO2 Nanosheet-Supported Pt Nanocatalysts.” Applied Catalysis B: Environmental 274 (March): 118963. https://doi.org/10.1016/j.apcatb.2020.118963. | spa |
dc.relation.references | Zali, Sara, Fahimeh Jalali, Ali Es-haghi, and Mojtaba Shamsipur. 2016. “New Nanostructure of Polydimethylsiloxane Coating as a Solid-Phase Microextraction Fiber: Application to Analysis of BTEX in Aquatic Environmental Samples.” Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 1033–1034: 287–95. https://doi.org/10.1016/j.jchromb.2016.08.045. | spa |
dc.relation.references | Zhu, Haiou, Zhigang Lu, Jianhe Cai, Jianjun Li, and Lirong Gao. 2009. “Development of a Headspace-SPME-GC/MS Method to Determine Volatile Organic Compounds Released from Textiles.” Polymer Testing 28 (5): 521–27. https://doi.org/10.1016/j.polymertesting.2009.03.015. | spa |
dc.relation.references | Zhu, Yanji, Kai Jin, Hongwei Li, Huijuan Qian, Huaiyuan Wang, and Li Zhao. 2018. “A Novel Anode with Anticorrosive Coating for Efficient Degradation of Toluene.” Chemical Engineering Journal 334 (June 2017): 206–15. https://doi.org/10.1016/j.cej.2017.10.048. | spa |
dc.relation.references | Zinola, Carlos F, Maria E Martins, Elena Pastor Tejera, Newton Pimenta, and Neves Jr. 2012. “Electrocatalysis : Fundamentals and Applications” 2012. https://doi.org/10.1155/2012/874687. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | spa |
dc.subject.proposal | Electrocatálisis | spa |
dc.subject.proposal | Contaminación | spa |
dc.subject.proposal | Aguas residuales | spa |
dc.subject.proposal | Hidrocarburos | spa |
dc.subject.proposal | Degradación | spa |
dc.subject.proposal | Cromatografía de gases-masas | spa |
dc.subject.proposal | Micro extracción en fase sólida | spa |
dc.subject.proposal | Electrocatalysis | eng |
dc.subject.proposal | Contamination | eng |
dc.subject.proposal | Wastewater | eng |
dc.subject.proposal | Hydrocarbons | eng |
dc.subject.proposal | Degradation | eng |
dc.subject.proposal | GC-MS | eng |
dc.subject.proposal | SPME | eng |
dc.title | Evaluación de intermediarios de la degradación electrocatalítica de hidrocarburos presentes en aguas residuales de la industria petroquímica, utilizando cromatografía de gases con espectrometría de masas | spa |
dc.title.translated | Evaluation of hydrocarbon electrocatalytic degradation intermediates present in wastewater from the petrochemical industry using gas chromatography mass spectrometry | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 80166024.2022.pdf
- Tamaño:
- 2.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: