Exploration of hybrid simulation methodologies for the computational study of fluid flow phenomena in airways

dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorEspinosa Moreno, Andres Santiago
dc.contributor.cvlacEspinosa Moreno, Andres Santiago [0001619872]spa
dc.contributor.googlescholarEspinosa Moreno, Andres Santiago [HCrJtfwAAAAJ&hl=es]spa
dc.contributor.orcidEspinosa Moreno, Andres Santiago [0000-0002-3562-6658]spa
dc.contributor.researchgateEspinosa Moreno, Andres Santiago [Andres-Espinosa-Moreno]spa
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2023-01-16T15:04:08Z
dc.date.available2023-01-16T15:04:08Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, gráficas, tablasspa
dc.description.abstractIn recent years, numerical simulation has emerged as a robust tool for the analysis of physiological phenomena. The application of computational fluid dynamics (CFD) techniques to the study of biofluids is a constantly growing field, especially the focus given to simulations of blood through the circulatory system and air within the human airways. A high complexity arises in the analysis of these systems. On the one hand, the extension and configuration of the geometrical model (branches, networks), and on the other hand, the multiphysics nature of many of these phenomena. This research work was developed with the aim of exploring methodologies that help to simplify the complexity of simulations associated with biofluids, particularly in human airways. In the first part, a specification of the basic concepts was developed, focusing on the description of the airways and the fluid dynamics associated with air transport in the respiratory system. In turn, a background of numerical simulation applied to biofluids, and a classification of the hybrid simulation methodologies was discussed. In the second part, a first simplification strategy was studied, specifically the use of synthetic airway models. For this purpose, a comparison study of the use of these models vs real patient-specific models was carried out. In addition, a study of the effect of the variation of some morphological parameters on the flow, such as bifurcation angle and carina radius rounding, was developed. In the third part, the implementation and validation of a hybrid simulation methodology was performed, based on a dimensional reduction from the airway homothety ratios. A boundary condition for the pressure, which is the result of this methodology, was implemented in a open source, and tested with two application cases: a study of airways in asthma condition and a study of branch collapse. Finally, general conclusions about the application of the spatial simplification strategy and the use of the hybrid simulation methodology were detailed, as well as recommendations and future work.eng
dc.description.abstractEn los últimos años, la simulación numérica se ha potenciado como una herramienta robusta para el análisis de fenómenos fisiológicos. La aplicación de técnicas de dinámica de fluidos computacional (CFD) para el estudio de bio-fluidos es un campo en constante crecimiento, en especial, el enfoque dado a las simulaciones de sangre a través del sistema circulatorio y de aire a través de las vías respiratorias. Una elevada complejidad surge en el análisis de estos sistemas. Por un lado, la extensión y la configuración del modelo geométrico (ramificaciones, redes), y por otro, la naturaleza multi-física de muchos fenómenos. Este trabajo de investigación fue desarrollado con la intención de explorar metodologías que ayuden a simplificar la complejidad de las simulaciones asociadas a bio-fluidos, particularmente en vías respiratorias humanas. En la primera parte, una especificación de los conceptos básicos fue desarrollada, centrándose en la descripción de las vías respiratorias y la dinámica de fluidos asociada al transporte de aire en el sistema respiratorio. A su vez, un background de la simulación numérica aplicada a bio-fluidos, y la consecución de una clasificación de las metodologías de simulación híbridas, fue discutido. En la segunda parte, una primera estrategia de simplificación fue estudiada, específicamente el uso de modelos sintéticos de vías respiratorias. Para esto, un estudio de comparación del uso de estos modelos contra los modelos reales específicos de paciente fue llevado a cabo. Ademas, un estudio del efecto de la variación de algunos parámetros morfológicos sobre el flujo, como lo son el ángulo de bifurcación y el redondeo de radio de carina, fue desarrollado. En la tercera parte, la implementación y validación de una metodología de simulación híbrida fue realizada, basados en una reducción dimensional a partir de los factores homotéticos de vías respiratorias. Una condición de frontera para la presión, la cual es el resultado de dicha metodología, fue implementada en un software libre, y puesta a prueba con dos casos aplicativos: un estudio de vías respiratorias en condición de asma y un estudio de colapso de ramificaciones. Finalmente, las conclusiones generales acerca de la aplicación de la estrategia de simplificación espacial y del uso de la metodología de simulación híbrida fueron detalladas, así como las debidas recomendaciones y trabajos futuros. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Mecánicaspa
dc.description.researchareaThermal and fluid sciencesspa
dc.format.extentxiii, 119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82936
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesKatrin Adler and Christoph Brücker. Dynamic flow in a realistic model of the upper human lung airways. Experiments in Fluids, 43(2):411–423, 2007.spa
dc.relation.referencesS Manuchehr Alavi, Theodore E Keats, and William M O’Brien. The angle of tracheal bifurcation: its normal mensuration. American Journal of Roentgenology, 108(3):546–549, 1970.spa
dc.relation.referencesAndrea Aliverti and Antonio Pedotti. Mechanics of breathing: new insights from new technologies. Springer, 2014.spa
dc.relation.referencesWJ Bair. The icrp human respiratory tract model for radiological protection. Radiation Protection Dosimetry, 60(4):307–310, 1995.spa
dc.relation.referencesMaria C Basil and Edward E Morrisey. Respiratory bronchioles: a unique structure in the human lung. Lung Stem Cells in Development, Health and Disease, 91:114, 2021.spa
dc.relation.referencesJason HT Bates. Lung mechanics: an inverse modeling approach. Cambridge University Press, 2009.spa
dc.relation.referencesK Bauer and Ch Brücker. The role of ventilation frequency in airway reopening. Journal of Biomechanics, 42(8):1108–1113, 2009.spa
dc.relation.referencesKatrin Bauer and Christoph Brücker. The influence of airway tree geometry and ventilation frequency on airflow distribution. Journal of biomechanical engineering, 137(8), 2015.spa
dc.relation.referencesMehdi Behbahani, M Behr, M Hormes, U Steinseifer, D Arora, O Coronado, and M Pasquali. A review of computational fluid dynamics analysis of blood pumps. European Journal of Applied Mathematics, 20(4):363–397, 2009.spa
dc.relation.referencesTim Behrens. Openfoam’s basic solvers for linear systems of equations. Chalmers, Department of Applied Mechanics, 18(02), 2009.spa
dc.relation.referencesPhilipp Berg, Gabor Janiga, and Dominique Thevenin. Investigation of the unsteady blood flow in cerebral aneurysms with stent using the open-source software openfoam®. In Proc. Open Source CFD International Conference (OSCIC), pages 1–8, 2011.110spa
dc.relation.referencesBruno Blais, David Vidal, Francois Bertrand, Gregory S Patience, and Jamal Chaouki. Experimental methods in chemical engineering: Discrete element method—dem. The Canadian Journal of Chemical Engineering, 97(7):1964–1973, 2019.spa
dc.relation.referencesPablo J Blanco, Márcio R Pivello, Santiago A Urquiza, and Raúl A Feijóo. Building coupled 3d–1d–0d models in computational hemodynamics. In 1st International Conference on Mathematical and Computational Biomedical Engineering-CMBE2009, 2009.spa
dc.relation.referencesMark Brouns, Santhosh T Jayaraju, Chris Lacor, Johan De Mey, Marc Noppen, Walter Vincken, and Sylvia Verbanck. Tracheal stenosis: a flow dynamics study. Journal of Applied Physiology, 102(3):1178–1184, 2007.spa
dc.relation.referencesRajnish Kaur Calay, Jutarat Kurujareon, and Arne Erik Holdø. Numerical simulation of respiratory flow patterns within human lung. Respiratory physiology & neurobiology, 130(2):201–221, 2002.spa
dc.relation.referencesJoão PF Campos, Karla RB Melo, and Gabriela C Lopes. Implementation, validation and application of a lubrication force model in cfd-dem simulations. Brazilian Journal of Chemical Engineering, 39(2):429–440, 2022.spa
dc.relation.referencesE Garcı́a Castillo, M Chicot Llano, DA Rodrı́guez Serrano, and E Zamora Garcı́a. Ventilación mecánica no invasiva e invasiva. Medicine-Programa de Formación Médica Continuada Acreditado, 11(63):3759–3767, 2014.spa
dc.relation.referencesKwang K Chang, Ki Beom Kim, Mark W McQuilling, and Reza Movahed. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery. American Journal of Orthodontics and Dentofacial Orthopedics, 153(6):895–904, 2018.spa
dc.relation.referencesJie Chen, Xi-Yun Lu, and Wen Wang. Non-newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. Journal of Biomechanics, 39(11): 1983–1995, 2006.spa
dc.relation.referencesJT Chen, Charles E Putman, Laurence W Hedlund, NS Dahmash, and L Roberts. Widening of the subcarinal angle by pericardial effusion. American Journal of Roentgenology, 139(5):883–887, 1982.spa
dc.relation.referencesXiaole Chen, Wenqi Zhong, Xianguang Zhou, Baosheng Jin, and Baobin Sun. Cfd-dem simulation of particle transport and deposition in pulmonary airway. Powder technology, 228:309–318, 2012.spa
dc.relation.referencesJiwoong Choi, Guohua Xia, Merryn H Tawhai, Eric A Hoffman, and Ching-Long Lin. Numerical study of high-frequency oscillatory air flow and convective mixing in a ct-based human airway model. Annals of biomedical engineering, 38(12):3550–3571, 2010.spa
dc.relation.referencesRajesh Chowdhary, Virendra Singh, AE Tattersfield, SD Sharma, Subir Kar, and AB Gupta. Relationship of flow and cross-sectional area to frictional stress in airway models of asthma. Journal of Asthma, 36(5):419–426, 1999.spa
dc.relation.referencesSimoni Christou, Thanasis Chatziathanasiou, Stelios Angeli, Pantelis Koullapis, Fotos Stylianou, Josué Sznitman, Haiwei Henry Guo, and Stavros C Kassinos. Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies. Journal of Applied Physiology, 130(3):678–707, 2021.spa
dc.relation.referencesDogan Ciloglu and Adem Karaman. A numerical simulation of the airflow and aerosol particle deposition in a realistic airway model of a healthy adult. Journal of Pharmaceutical Sciences, 2022.spa
dc.relation.referencesMitchel J Colebank, M Umar Qureshi, Sudarshan Rajagopal, Richard A Krasuski, and Mette S Olufsen. A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 321(2):H318–H338, 2021.spa
dc.relation.referencesPatricia Corieri. Experimental and numerical investigation of flows in bifurcations within lung airways. PhD thesis, Ph. D. thesis, von Karman Institute for Fluid Dynamics, Université Libre de …, 1994.spa
dc.relation.referencesHL Dailey, HC Yalcin, and SN Ghadiali. Fluid-structure modeling of flow-induced alveolar epithelial cell deformation. Computers & structures, 85(11-14):1066–1071, 2007.spa
dc.relation.referencesJW De Backer, WG Vos, CD Gorlé, P Germonpré, B Partoens, FL Wuyts, Paul M Parizel, and W De Backer. Flow analyses in the lower airways: patient-specific model and boundary conditions. Medical engineering & physics, 30(7):872–879, 2008.spa
dc.relation.referencesWo R Dean. Xvi. note on the motion of fluid in a curved pipe. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4(20):208–223, 1927.spa
dc.relation.referencesZhenya Fan, David W Holmes, Emilie Sauret, Mohammad S Islam, Suvash C Saha, Zoran Ristovski, and YuanTong Gu. A multiscale modeling method incorporating spatial coupling and temporal coupling into transient simulations of the human airways. International Journal for Numerical Methods in Fluids, 93(9):2905–2920, 2021.spa
dc.relation.referencesYu Feng and Clement Kleinstreuer. Ddpm-dem simulations of particulate flows in human tracheobronchial airways. In ASME International Mechanical Engineering Congress and Exposition, volume 56222, page V03BT03A030. American Society of Mechanical Engineers, 2013spa
dc.relation.referencesJerry Fine. Applied biofluid mechanics. McGraw-Hill Education, 2017.spa
dc.relation.referencesBrendan T Finucane, Albert H Santora, and Ban Chi-Ho Tsui. Principles of airway management. Springer, 2003.spa
dc.relation.referencesLuca Formaggia, Alfio Quarteroni, and Allesandro Veneziani. Cardiovascular Mathematics: Modeling and simulation of the circulatory system, volume 1. Springer Science & Business Media, 2010.spa
dc.relation.referencesFrank E Fresconi and Ajay K Prasad. Secondary velocity fields in the conducting airways of the human lung. Journal of Biomechanical Engineering, 129:722–732, 2007.spa
dc.relation.referencesLennart Fries, Sergiy Antonyuk, Stefan Heinrich, Daniel Dopfer, and Stefan Palzer. Collision dynamics in fluidised bed granulators: A dem-cfd study. Chemical engineering science, 86:108–123, 2013.spa
dc.relation.referencesManikantam G Gaddam and Arvind Santhanakrishnan. Effects of varying inhalation duration and respiratory rate on human airway flow. Fluids, 6(6):221, 2021.spa
dc.relation.referencesT Gemci, Valery Ponyavin, Y Chen, H Chen, and R Collins. Computational model of airflow in upper 17 generations of human respiratory tract. Journal of Biomechanics, 41(9):2047–2054, 2008.spa
dc.relation.referencesAS Green. Modelling of peak-flow wall shear stress in major airways of the lung. Journal of Biomechanics, 37(5):661–667, 2004.spa
dc.relation.referencesFernando Gutiérrez Muñoz. Ventilación mecánica. Acta médica peruana, 28(2):87–104, 2011.spa
dc.relation.referencesPamela H Haskin and Lawrence R Goodman. Normal tracheal bifurcation angle: a reassessment. American Journal of Roentgenology, 139(5):879–882, 1982.spa
dc.relation.referencesBeatriz Herranz, Marı́a Dolores Álvarez, and Jara Pérez-Jiménez. Association of plasma and urine viscosity with cardiometabolic risk factors and oxidative status. a pilot study in subjects with abdominal obesity. PloS one, 13(10):e0204075, 2018.spa
dc.relation.referencesWerner Hofmann. Modelling inhaled particle deposition in the human lung—a review. Journal of Aerosol Science, 42(10):693–724, 2011.spa
dc.relation.referencesK Horsfield and G Cumming. Angles of branching and diameters of branches in the human bronchial tree. The Bulletin of mathematical biophysics, 29(2):245–259, 1967.spa
dc.relation.referencesKeith Horsfield, Gladys Dart, Dan E Olson, Giles F Filley, and Gordon Cumming. Models of the human bronchial tree. Journal of applied physiology, 31(2):207–217, 1971spa
dc.relation.referencesMd Mahfuzul Islam, Huiru Li, Huidan Yu, and Xiaoping Du. Physics-based regression vs. cfd for hagen-poiseuille and womersley flows and uncertainty quantification. In Eleventh International Conference on Computational Fluid Dynamics, volume ICCFD11, pages ICCFD11–3301. ICCFD, 2022.spa
dc.relation.referencesM Ismail, A Comerford, and WA3130232 Wall. Coupled and reduced dimensional modeling of respiratory mechanics during spontaneous breathing. International journal for numerical methods in biomedical engineering, 29(11):1285–1305, 2013.spa
dc.relation.referencesDalibor Jajcevic, Eva Siegmann, Charles Radeke, and Johannes G Khinast. Large-scale cfd–dem simulations of fluidized granular systems. Chemical Engineering Science, 98: 298–310, 2013.spa
dc.relation.referencesM Elshin Joel and M Anburajan. 3d modeling of stenotic internal carotid artery treated with stent: a cfd analysis of blood. In International Conference on Computer, Networks and Communication Engineering (ICCNCE 2013), pages 148–151. Atlantis Press, 2013.spa
dc.relation.referencesNasrul Hadi Johari, Jegatis Balaiyah, and Zulkifli Ahmad. Effect of chronic obstructive pulmonary disease on airflow motion using computational fluid dynamics analysis. In 2014 International Conference on Computer, Communications, and Control Technology (I4CT), pages 249–254. IEEE, 2014.spa
dc.relation.referencesRoger D Kamm. Airway wall mechanics. Annual review of biomedical engineering, 1(1):47–72, 1999.spa
dc.relation.referencesMin-Yeong Kang, Jeongeun Hwang, and Jin-Won Lee. Effect of geometric variations on pressure loss for a model bifurcation of the human lung airway. Journal of biomechanics, 44(6):1196–1199, 2011.spa
dc.relation.referencesBipinchandra Khade, AR Waheed, Nisha Yadav, and CV Diwan. Study of sub carinal angle of human trachea by computerized tomography. Int J Anat Res, 4(3):2828–32, 2016.spa
dc.relation.referencesHyoung-Ho Kim, Young Ho Choi, Seung Bae Lee, Yasutaka Baba, Kyung-Wuk Kim, and Sang-Ho Suh. Numerical analysis of the urine flow in a stented ureter with no peristalsis. Bio-medical materials and engineering, 26(s1):S215–S223, 2015.spa
dc.relation.referencesJ Kren, Miroslav Horák, F Zát’ura, and Mı́t’a Rosenberg. Mathematical model of the male urinary tract. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 145(2):91–96, 2001.spa
dc.relation.referencesSwashna Lal. Assessing the Impact of E-cigarette Particle Size on Aerosol Transport and Deposition in the Lung. PhD thesis, ResearchSpace@ Auckland, 2022spa
dc.relation.referencesBart N Lambrecht and Hamida Hammad. The immunology of asthma. Nature immunology, 16(1):45–56, 2015.spa
dc.relation.referencesDongyoub Lee, Seong S Park, George A Ban-Weiss, Michelle V Fanucchi, Charles G Plopper, and Anthony S Wexler. Bifurcation model for characterization of pulmonary architecture. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology, 291(4):379–389, 2008.spa
dc.relation.referencesMichael G Levitzky. Pulmonary physiology, volume 1. : McGraw-Hill Education,, 2018.spa
dc.relation.referencesTina A Lewis, Yang-Sheng Tzeng, Erin L McKinstry, Angela C Tooker, Kwansoo Hong, Yanping Sun, Joey Mansour, Zachary Handler, and Mitchell S Albert. Quantification of airway diameters and 3d airway tree rendering from dynamic hyperpolarized 3he magnetic resonance imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 53(2):474–478, 2005.spa
dc.relation.referencesChen Lin, Jui-Heng Lee, and Chih-Min Hsieh. The correlation between subcarinal angle and left atrial volume. Age (years old), 67(16.4):15–96, 2012.spa
dc.relation.referencesYang Liu, RMC So, and CH Zhang. Modeling the bifurcating flow in a human lung airway. Journal of biomechanics, 35(4):465–473, 2002.spa
dc.relation.referencesDuncan A Lockerby, Carlos A Duque-Daza, Matthew K Borg, and Jason M Reese. Time-step coupling for hybrid simulations of multiscale flows. Journal of Computational Physics, 237:344–365, 2013.spa
dc.relation.referencesM Malve, S Chandra, JL Lopez-Villalobos, EA Finol, A Ginel, and M Doblare. Cfd analysis of the human airways under impedance-based boundary conditions: application to healthy, diseased and stented trachea. Computer methods in biomechanics and biomedical engineering, 16(2):198–216, 2013.spa
dc.relation.referencesBenoit Mandelbrot. Fractals. Freeman San Francisco, 1977.spa
dc.relation.referencesElaine N Marieb and K Hoehn. Urinary system. Essentials of Human Anatomy and Physiology, pages 501–526, 2006.spa
dc.relation.referencesTB Martonen, Y Yang, and ZQ Xue. Effects of carinal ridge shapes on lung airstreams. Aerosol science and technology, 21(2):119–136, 1994.spa
dc.relation.referencesTB Martonen, X Guan, and RM Schreck. Fluid dynamics in airway bifurcations: I. primary flows. Inhalation toxicology, 13(4):261–279, 2001.spa
dc.relation.referencesBenjamin Mauroy, M Filoche, ER Weibel, and B Sapoval. An optimal bronchial tree may be dangerous. Nature, 427(6975):633–636, 2004.spa
dc.relation.referencesPuneet Mehra. Fluid-Structure Interaction Modeling of Human Upper Airway Collapse in Obstructive Sleep Apnea. PhD thesis, University of Cincinnati, 2019.spa
dc.relation.referencesDouglas J Minnich and Douglas J Mathisen. Anatomy of the trachea, carina, and bronchi. Thoracic surgery clinics, 17(4):571–585, 2007.spa
dc.relation.referencesTaghi Miri et al. Viscosity and oscillatory rheology. Practical food rheology: An interpretive approach, pages 7–28, 2011.spa
dc.relation.referencesJoe J Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30:543–574, 1992.spa
dc.relation.referencesJoseph J Monaghan. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44:323–346, 2012.spa
dc.relation.referencesJG Murray, AL Brown, EA Anagnostou, and R Senior. Widening of the tracheal bifurcation on chest radiographs: value as a sign of left atrial enlargement. AJR. American journal of roentgenology, 164(5):1089–1092, 1995.spa
dc.relation.referencesJustus Kavita Mutuku, Wei-Hsin Chen, et al. Flow characterization in healthy airways and airways with chronic obstructive pulmonary disease (copd) during different inhalation conditions. Aerosol and Air Quality Research, 18(10):2680–2694, 2018.spa
dc.relation.referencesAchuth Nair Balachandran Nair, Stefan Pirker, and Mahdi Saeedipour. Resolved cfd-dem simulation of blood flow with a reduced-order rbc model. Computational Particle Mechanics volume, 9:759–774, 2021.spa
dc.relation.referencesPietro Nardelli, Kashif A Khan, Alberto Corvò, Niamh Moore, Mary J Murphy, Maria Twomey, Owen J O’Connor, Marcus P Kennedy, Raúl San José Estépar, Michael M Maher, et al. Optimizing parameters of an open-source airway segmentation algorithm using different ct images. Biomedical engineering online, 14(1):1–24, 2015.spa
dc.relation.referencesMatthew E Nipper and J Brandon Dixon. Engineering the lymphatic system. Cardiovascular engineering and technology, 2(4):296–308, 2011.spa
dc.relation.referencesYang-Yao Niu and Ding-Yu Chang. Cfd simulation of shear stress and secondary flows in urethra. Biomedical Engineering: Applications, Basis and Communications, 19(02):117–127, 2007.spa
dc.relation.referencesMette S Olufsen. Structured tree outflow condition for blood flow in larger systemic arteries. American journal of physiology-Heart and circulatory physiology, 276(1):H257–H268, 1999.spa
dc.relation.referencesMette S Olufsen, Charles S Peskin, Won Yong Kim, Erik M Pedersen, Ali Nadim, and Jesper Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of biomedical engineering, 28 (11):1281–1299, 2000.spa
dc.relation.referencesJesús Manuel Fernández Oro. Técnicas numéricas en ingenierı́a de fluidos: introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos. Reverté, 2012.spa
dc.relation.referencesMarco Paggi, Andrea Amicarelli, and Pietro Lenarda. Sph modelling of hydrodynamic lubrication along rough surfaces. Lubricants, 7(12):103, 2019.spa
dc.relation.referencesTJ Pedley, RC Schroter, and MF Sudlow. Energy losses and pressure drop in models of human airways. Respiration physiology, 9(3):371–386, 1970.spa
dc.relation.referencesTJ Pedley, RC Schroter, and MF Sudlow. The prediction of pressure drop and variation of resistance within the human bronchial airways. Respiration physiology, 9(3):387–405, 1970.spa
dc.relation.referencesTJ Pedley, RC Schroter, and MF Sudlow. Flow and pressure drop in systems of repeatedly branching tubes. Journal of Fluid Mechanics, 46(2):365–383, 1971.spa
dc.relation.referencesK Perktold and D Hilbert. Numerical simulation of pulsatile flow in a carotid bifurcation model. Journal of biomedical engineering, 8(3):193–199, 1986.spa
dc.relation.referencesSvetla Petkova, Alamgir Hossain, Jamal Naser, and Enzo Palombo. Cfd modelling of blood flow in portal vein hypertension with and without thrombosis. In Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melborne, Australia, pages 10–12, 2003.spa
dc.relation.referencesAK Politis, GP Stavropoulos, MN Christolis, FG Panagopoulos, NS Vlachos, and NC Markatos. Numerical modeling of simulated blood flow in idealized composite arterial coronary grafts: Steady state simulations. Journal of Biomechanics, 40(5): 1125–1136, 2007.spa
dc.relation.referencesR Ponzini, R Da Vià, S Bnà, C Cottini, and A Benassi. Coupled cfd-dem model for dry powder inhalers simulation: validation and sensitivity analysis for the main model parameters. Powder Technology, 385:199–226, 2021.spa
dc.relation.referencesChristian J Roth, Mahmoud Ismail, Lena Yoshihara, and Wolfgang A Wall. A comprehensive computational human lung model incorporating inter-acinar dependencies: Application to spontaneous breathing and mechanical ventilation. International journal for numerical methods in biomedical engineering, 33(1):e02787, 2017.spa
dc.relation.referencesChristian J Roth, Lena Yoshihara, Mahmoud Ismail, and Wolfgang A Wall. Computational modelling of the respiratory system: discussion of coupled modelling approaches and two recent extensions. Computer Methods in Applied Mechanics and Engineering, 314:473–493, 2017.spa
dc.relation.referencesConor A Ruzycki, Emadeddin Javaheri, and Warren H Finlay. The use of computational fluid dynamics in inhaler design. Expert opinion on drug delivery, 10(3):307–323, 2013.spa
dc.relation.referencesDaisy Sahni, Yatindra Kumar Batra, and Subramanyam Rajeev. Anatomical dimensions of trachea, main bronchi, subcarinal and bronchial angles in fetuses measured exvivo. Pediatric Anesthesia, 18(11):1029–1034, 2008.spa
dc.relation.referencesAndreas Schmidt, Stephan Zidowitz, Andres Kriete, Thorsten Denhard, Stefan Krass, and Heinz-Otto Peitgen. A digital reference model of the human bronchial tree. Computerized Medical Imaging and Graphics, 28(4):203–211, 2004.spa
dc.relation.referencesRC Schroter and MF Sudlow. Flow patterns in models of the human bronchial airways. Respiration physiology, 7(3):341–355, 1969.spa
dc.relation.referencesEnrico Sciubba. A critical reassessment of the hess–murray law. Entropy, 18(8):283, 2016.spa
dc.relation.referencesShahrokh Shahriari and Damien Garcia. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. Physics in Medicine & Biology, 63(20):205011, 2018.spa
dc.relation.referencesLauralee Sherwood. The urinary system. Human physiology from cells to system. 8th ed. Canada: Brooks/Cole, pages 504–26, 2013.spa
dc.relation.referencesYubing Shi, Patricia Lawford, and Rodney Hose. Review of zero-d and 1-d models of blood flow in the cardiovascular system. Biomedical engineering online, 10(1):1–38, 2011.spa
dc.relation.referencesPejman Shojaee and Hanieh Niroomand-Oscuii. Cfd analysis of drug uptake and elimination through vascularized cancerous tissue. Biomedical Physics & Engineering Express, 5(3):035032, 2019.spa
dc.relation.referencesRakesh Kumar Shukla, Vivek Kumar Srivastav, Akshoy Ranjan Paul, and Anuj Jain. Fluid structure interaction studies of human airways. Sādhanā, 45(1):1–6, 2020.spa
dc.relation.referencesVenkataramana K Sidhaye, Kelly S Schweitzer, Michael J Caterina, Larissa Shimoda, and Landon S King. Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proceedings of the National Academy of Sciences, 105(9):3345–3350, 2008.spa
dc.relation.referencesB Snyder and DE Olson. Flow development in a model airway bronchus. Journal of Fluid Mechanics, 207:379–392, 1989.spa
dc.relation.referencesBrooke N Steele, Mette S Olufsen, and Charles A Taylor. Fractal network model for simulating abdominal and lower extremity blood flow during resting and exercise conditions. Computer Methods in Biomechanics and Biomedical Engineering, 10(1): 39–51, 2007.spa
dc.relation.referencesCarlos Jose Suarez, Suzanne M Dintzis, and Charles W Frevert. Respiratory. In Comparative anatomy and histology, pages 121–134. Elsevier, 2012.spa
dc.relation.referencesMelody A Swartz. The physiology of the lymphatic system. Advanced drug delivery reviews, 50(1-2):3–20, 2001.spa
dc.relation.referencesShahab Taherian, Hamid Rahai, Bernardo Z Gomez, Thomas Waddington, and Jeremy R Bonifacio. Tracheal stenosis: a cfd approach for evaluation of drug delivery. In ASME International Mechanical Engineering Congress and Exposition, volume 57380, page V003T03A096. American Society of Mechanical Engineers, 2015.spa
dc.relation.referencesE Tsega and V Katiyar. Numerical simulations of inspiratory airflow in healthy and asthmatic human airways. Am J Biomed Eng, 9:5–12, 2019.spa
dc.relation.referencesCaroline Van Ertbruggen, Charles Hirsch, and Manuel Paiva. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. Journal of applied physiology, 98(3):970–980, 2005.spa
dc.relation.referencesLorenzo Vasquez Giuliano, Antonio Buffo, Marco Vanni, Alessandra Sabina Lanotte, Valentina Arima, Monica Bianco, Francesca Baldassarre, and Graziano Frungieri. Response of shear-activated nanotherapeutic particles in a clot-obstructed blood vessel by cfd-dem simulations. The Canadian Journal of Chemical Engineering, 2022.spa
dc.relation.referencesXiang-Qi Wang, Arun S Mujumdar, and Christopher Yap. Effect of bifurcation angle in tree-shaped microchannel networks. Journal of Applied Physics, 102(7):073530, 2007.spa
dc.relation.referencesYUAN WANG. CFD-DEM Simulation of Particle Transport and Deposition in Human Airway. PhD thesis, Monash University, 2017.spa
dc.relation.referencesMark A Warner and Bela Patel. Mechanical ventilation. Benumof and Hagberg’s airway management, pages 981–997, 2013.spa
dc.relation.referenceswald R Weibel, Andre F Cournand, and Dickinson W Richards. Morphometry of the human lung, volume 1. Springer, 1963.spa
dc.relation.referencesGeoffrey B West, James H Brown, and Brian J Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276(5309):122–126, 1997spa
dc.relation.referencesJohn Burnard West. Pulmonary pathophysiology: the essentials. Lippincott Williams & Wilkins, 2008.spa
dc.relation.referencesJohn Burnard West. Respiratory physiology: the essentials. Lippincott Williams & Wilkins, 2012.spa
dc.relation.referencesBR Wiggs, R Moreno, JC Hogg, C Hilliam, and PD Pare. A model of the mechanics of airway narrowing. Journal of Applied Physiology, 69(3):849–860, 1990.spa
dc.relation.referencesBR Wiggs, C Bosken, PD Pare, A James, and JC Hogg. A model of airway narrowing in asthma and in chronic obstructive pulmonary disease1-3. Am Rev Respir Dis, 145: 1251–1258, 1992.spa
dc.relation.referencesGuohua Xia, Merryn H Tawhai, Eric A Hoffman, and Ching-Long Lin. Airway wall stiffening increases peak wall shear stress: a fluid–structure interaction study in rigid and compliant airways. Annals of biomedical engineering, 38(5):1836–1853, 2010.spa
dc.relation.referencesXL Yang, Yang Liu, RMC So, and JM Yang. The effect of inlet velocity profile on the bifurcation copd airway flow. Computers in biology and medicine, 36(2):181–194, 2006.spa
dc.relation.referencesLena Yoshihara, Mahmoud Ismail, and Wolfgang A Wall. Bridging scales in respiratory mechanics. In Computer Models in Biomechanics, pages 395–407. Springer, 2013.spa
dc.relation.referencesBin Zhang, Shuang Liu, Yinxia Liu, Bo Wu, Xuhui Zhang, Xin Wang, Xuezhi Liang, Xiaoming Cao, Dongwen Wang, and Chin-Lee Wu. Novel cfd modeling approaches to assessing urine flow in prostatic urethra after transurethral surgery. Scientific Reports, 11(1):1–9, 2021.spa
dc.relation.referencesPeng Zhang, Na Zhang, Yuefan Deng, and Danny Bluestein. A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma. Journal of computational physics, 284:668–686, 2015.spa
dc.relation.referencesYao Zhao and Baruch B Lieber. Steady inspiratory flow in a model symmetric bifurcation. Journal of biomechanical engineering, 116(4):488–496, 1994.spa
dc.rightsDerechos reservados al autor, 2022spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.decsFenómenos Fisiológicos Circulatorios y Respiratoriosspa
dc.subject.decsCirculatory and Respiratory Physiological Phenomenaeng
dc.subject.proposalComputational Fluid Dynamics (CFD)eng
dc.subject.proposalHybrid Numerical Simulationeng
dc.subject.proposalLower Airwayseng
dc.subject.proposalHomothety ratioseng
dc.subject.proposalReal Airway Patient-Specificeng
dc.subject.proposalSynthetic Airway Modelseng
dc.subject.proposalDinámica de fluidos computacional (CFD)spa
dc.subject.proposalSimulación numérica híbridaspa
dc.subject.proposalVías respiratorias inferioresspa
dc.subject.proposalFactores homotéticosspa
dc.subject.proposalModelos de vías respiratorias reales de paciente especificospa
dc.subject.proposalModelos sintéticos de vías respiratoriasspa
dc.subject.spinesMecánica de fluidosspa
dc.titleExploration of hybrid simulation methodologies for the computational study of fluid flow phenomena in airwayseng
dc.title.translatedExploración de metodologías de simulación híbridas para el estudio computacional de fenómenos de flujos de fluidos en vías respiratoriasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1073164931.2022.pdf
Tamaño:
19.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: