Effect of spraying parameters on the microstructure of a nickel aluminide coating applied by Atmospheric Plasma Spray on a nickel-base alloy substrate
| dc.contributor.advisor | Toro, Alejandro | |
| dc.contributor.author | Puche Ojeda, Carlos Daniel | |
| dc.contributor.orcid | Puche Ojeda, Carlos [0009000748748949} | |
| dc.contributor.orcid | Toro, Alejandro [0000000255895820] | |
| dc.contributor.researchgroup | Grupo de Tribología y Superficies | |
| dc.date.accessioned | 2026-01-21T18:22:29Z | |
| dc.date.available | 2026-01-21T18:22:29Z | |
| dc.date.issued | 2025-12-01 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | El presente trabajo evaluó la fabricación de recubrimientos Ni5wt%Al por proyección térmica mediante un diseño de experimentos en el cual se varió la composición de gases y la distancia de aspersión. Se midio el espesor, la rugosidad, la porosidad y las fases presentes. Para garantizar la repetibilidad del experimento se realizaron tres réplicas para las condiciones formuladas. Los recubrimientos fueron depositados mediante la técnica APS haciendo uso de una pistola SimplexPro sobre muestras de Inconel 625. El análisis de la microestructura de los recubrimientos fue llevado a cabo mediante técnicas de microscopía y Difracción de Rayos X, con las cuales se observó la aparición óxidos en los recubrimientos. La cantidad de defectos de la sección transversal de los recubrimientos fue evaluada mediante un tratamiento digital de imágenes. Se observó que la mejor condición presentó un porcentaje de porosidad de 2,2 ± 0,4% y fracción de óxidos de 5,2 ± 0,9%. Los resultados obtenidos mostraron diferencias en las respuestas de espesor, porosidad y rugosidad, se evaluó la resistencia adhesivo-cohesiva mediante la norma ASTMC-633, obteniéndose un valor de 62,82 ± 5 MPa. Además, se evaluó la resistencia a la fatiga térmica observándose un aumento de la oxidación el recubrimiento. Finalmente se evaluó la microdureza de la condición seleccionada mediante la norma ASTME-384 y se obtuvo un valor de 221 ± 18 Hv0.05 antes de los ensayos de fatiga térmica y posteriormente se observó un aumento a 271 Hv0.05 debido a la oxidación. (Texto tomado de la fuente) | spa |
| dc.description.abstract | The present study evaluated the fabrication of Ni5wt%Al coatings using a design of experiments changing the gas composition and spraying distance. The resulting coatings were assessed in terms of thickness, roughness, porosity, and phase composition to obtain relevant information. To ensure experimental repeatability, three replicates were performed for each formulated condition. The coatings were deposited using the Atmospheric Plasma Spray technique with a SimplexPro torch on Inconel 625 substrates. The microstructural analysis of the coatings was carried out using microscopy techniques and X-ray diffraction (XRD), which revealed the formation of oxides within the coatings. The amount of defects in the cross-sections was quantified through digital image processing. The optimal condition exhibited a porosity level of 2.2 ± 0.4% and oxide content of 5.2 ± 0.9%. Given the differences observed in thickness, porosity, and roughness among the experimental conditions, the adhesive-cohesive strength of the best-performing coating was evaluated according to ASTM C633. The coating showed an adhesive-cohesive strength of 62.82 ± 5 MPa. In addition, thermal fatigue resistance was evaluated, revealing an increase in coating oxidation. Finally, the microhardness of the selected condition was evaluated according to ASTM E384, yielding a value of 221 ± 18 Hv0.05 before thermal fatigue testing. After testing, the microhardness increased to 271 Hv0.05 due to oxidation. | eng |
| dc.description.curriculararea | Materiales Y Nanotecnología.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | |
| dc.description.researcharea | Tribologia y Superficies | |
| dc.format.extent | 1 recurso en línea (196 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89283 | |
| dc.language.iso | eng | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Minas | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | |
| dc.relation.references | J. Restrepo-Trujillo, R. Moreno-Chuquen, F. N. Jiménez-García, W. C. Flores, and H. R. Chamorro, “Scenario Analysis of an Electric Power System in Colombia Considering the El Niño Phenomenon and the Inclusion of Renewable Energies,” Energies 2022, Vol. 15, Page 6690, vol. 15, no. 18, p. 6690, Sep. 2022, doi: 10.3390/EN15186690. | |
| dc.relation.references | S. S. Salazar, Y. Muñoz, and A. Ospino, “Analysis of geothermal energy as an alternative source for electricity in Colombia,” Geothermal Energy, vol. 5, no. 1, pp. 1–12, Nov. 2017, doi: 10.1186/S40517-017-0084-X/FIGURES/7. | |
| dc.relation.references | I. Barwinska, M. Kopec, D. Kukla, C. Senderowski, and Z. L. Kowalewski, “Thermal Barrier Coatings for High-Temperature Performance of Nickel-Based Superalloys: A Synthetic Review,” Coatings 2023, Vol. 13, Page 769, vol. 13, no. 4, p. 769, Apr. 2023, doi: 10.3390/COATINGS13040769. | |
| dc.relation.references | J. Fiebig, E. Bakan, T. Kalfhaus, G. Mauer, O. Guillon, and R. Vaßen, “Thermal Spray Processes for the Repair of Gas Turbine Components,” Adv Eng Mater, vol. 22, no. 6, p. 1901237, Jun. 2020, doi: 10.1002/ADEM.201901237. | |
| dc.relation.references | V. Viswanathan, N. K. Katiyar, G. Goel, A. Matthews, and S. Goel, “Role of thermal spray in combating climate change,” Emergent Mater, vol. 4, no. 6, pp. 1515–1529, Dec. 2021, doi: 10.1007/S42247-021-00307-1/FIGURES/10. | |
| dc.relation.references | S. Deshpande, S. Sampath, and H. Zhang, “Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings—Case study for Ni–Al,” Surf Coat Technol, vol. 200, no. 18–19, pp. 5395–5406, May 2006, doi: 10.1016/J.SURFCOAT.2005.07.072. | |
| dc.relation.references | A. Nikiforov, Z. Chen, A. Nikiforov, and Z. Chen, “Atmospheric Pressure Plasma - from Diagnostics to Applications,” Atmospheric Pressure Plasma - from Diagnostics to Applications, Apr. 2019, doi: 10.5772/INTECHOPEN.75279. | |
| dc.relation.references | S. Sampath, X. Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, and A. Vaidya, “Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni–5 wt.%Al bond coats,” Materials Science and Engineering: A, vol. 364, no. 1–2, pp. 216–231, Jan. 2004, doi: 10.1016/J.MSEA.2003.08.023. | |
| dc.relation.references | S. Saladi, J. Menghani, and S. Prakash, “A Study on the Cyclic Oxidation Behavior of Detonation-Gun-Sprayed Ni-5Al Coatings on Inconel-718 at 900 °C,” J Mater Eng Perform, vol. 23, no. 12, pp. 4394–4403, Dec. 2014, doi: 10.1007/S11665-014-1240-0/METRICS. | |
| dc.relation.references | P. A. Gómez Flórez, A. T. Betancur, J. E. Morales Galeano, and J. M. Velásquez, “PAW and GTAW Welding Repair of HP/IP and Generator Rotors of a Steam Turbine for Electric Power Generation,” Advances in Materials, Manufacturing, and Repair for Power Plants: Proceedings from the Tenth International Conference, vol. 84871, pp. 247–258, Oct. 2024, doi: 10.31399/ASM.CP.AM-EPRI-2024P0247/32709/PAW-AND-GTAW-WELDING-REPAIR-OF-HP-IP-AND-GENERATOR. | |
| dc.relation.references | M. Bogdan and I. Peter, “A Comprehensive Understanding of Thermal Barrier Coatings (TBCs): Applications, Materials, Coating Design and Failure Mechanisms,” Metals 2024, Vol. 14, Page 575, vol. 14, no. 5, p. 575, May 2024, doi: 10.3390/MET14050575. | |
| dc.relation.references | S. Saladi, J. Menghani, and S. Prakash, “A Study on the Cyclic Oxidation Behavior of Detonation-Gun-Sprayed Ni-5Al Coatings on Inconel-718 at 900 °C,” J Mater Eng Perform, vol. 23, no. 12, pp. 4394–4403, Dec. 2014, doi: 10.1007/S11665-014-1240-0/METRICS. | |
| dc.relation.references | R. A. Mahesh, R. Jayaganthan, and S. Prakash, “A study on hot corrosion behaviour of Ni–5Al coatings on Ni- and Fe-based superalloys in an aggressive environment at 900 °C,” J Alloys Compd, vol. 460, no. 1–2, pp. 220–231, Jul. 2008, doi: 10.1016/J.JALLCOM.2007.05.092. | |
| dc.relation.references | F. K. Sirjani, A. Shabani, K. Raeissi, S. M. Nahvi, and A. M. Molavian, “Effect of heat treatment on microstructure and high-temperature oxidation behavior of flame-sprayed Ni-5 wt.% Al coating on low carbon steel,” Results in Surfaces and Interfaces, vol. 19, p. 100515, May 2025, doi: 10.1016/J.RSURFI.2025.100515. | |
| dc.relation.references | J. A. Hearley, J. A. Little, and A. J. Sturgeon, “The erosion behaviour of NiAl intermetallic coatings produced by high velocity oxy-fuel thermal spraying,” Wear, vol. 233–235, pp. 328–333, Dec. 1999, doi: 10.1016/S0043-1648(99)00240-9. | |
| dc.relation.references | “Thermal Spray Materials Guide,” 2015. | |
| dc.relation.references | D. V. V. Satyanarayana and N. Eswara Prasad, “Chapter 9 Nickel-Based Superalloys D.V.V.,” Aerospace Materials and Material Technologies Volume 1: Aerospace Materials, vol. 1, no. May, pp. 199–228, 2017, Accessed: Apr. 06, 2025. [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-981-10-2134-3.pdf%0Ahttp://link.springer.com/10.1007/978-981-10-2134-3 | |
| dc.relation.references | R. C. Reed, “The Superalloys: Fundamentals and Applications,” The Superalloys: Fundamentals and Applications, vol. 9780521859042, pp. 1–372, Jan. 2006, doi: 10.1017/CBO9780511541285. | |
| dc.relation.references | A. K. Lahiri, “Applied Metallurgy and Corrosion Control,” 2017, doi: 10.1007/978-981-10-4684-1. | |
| dc.relation.references | H. Warlimont and W. Martienssen, Eds., “Springer Handbook of Materials Data,” 2018, doi: 10.1007/978-3-319-69743-7. | |
| dc.relation.references | “Springer Handbook of Condensed Matter and Materials Data,” Springer Handbook of Condensed Matter and Materials Data, 2005, doi: 10.1007/3-540-30437-1. | |
| dc.relation.references | I. Baker, “Fifty materials that make the world,” Fifty Materials That Make the World, pp. 1–271, Jun. 2018, doi: 10.1007/978-3-319-78766-4/COVER. | |
| dc.relation.references | D. Maya Rodríguez, “Correlación de la microestructura con la tenacidad a la fractura en recubrimientos de barrera térmica (TBC) para aplicaciones de turbinas a gas (In spanish),” Feb. 2013, Accessed: Apr. 06, 2025. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/20985 | |
| dc.relation.references | R. Troncy, “Synthesis and high-temperature behavior of self-restoring coatings,” Nov. 2021, doi: 10.34894/VQ1DJA. | |
| dc.relation.references | Z. D. Xiang, J. S. Burnell-Gray, and P. K. Datta, “Aluminide coating formation on nickel-base superalloys by pack cementation process,” J Mater Sci, vol. 36, no. 23, pp. 5673–5682, Dec. 2001, doi: 10.1023/A:1012534220165/METRICS. | |
| dc.relation.references | L. Tong, Y. Dengzun, and Z. Chungen, “Low-temperature Formation of Aluminide Coatings on Ni-base Superalloys by Pack Cementation Process,” Chinese Journal of Aeronautics, vol. 23, no. 3, pp. 381–385, Jun. 2010, doi: 10.1016/S1000-9361(09)60231-4. | |
| dc.relation.references | “Ammar Naji - Design of Al Diffusion Coatings for Fe-based and Ni-based Alloys.” Accessed: Apr. 06, 2025. [Online]. Available: https://www.shaker.eu/en/content/catalogue/index.asp?lang=en&ID=8&ISBN=978-3-8440-6204-5 | |
| dc.relation.references | E. Gariboldi Maurizio Vedani, A. Cigada, and X. Han, “Diffusion coatings for high-temperature applications on Ni-base superalloys,” 2023, Accessed: Apr. 06, 2025. [Online]. Available: https://www.politesi.polimi.it/handle/10589/56789 | |
| dc.relation.references | R. Mévrel, C. Duret, and R. Pichoir, “Pack cementation processes,” Materials Science and Technology, vol. 2, no. 3, pp. 201–206, 1986, doi: 10.1179/MST.1986.2.3.201. | |
| dc.relation.references | G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou, and M. Vardavoulias, “Ni-Al and NiO-Al Composite Coatings by Combustion-Assisted Flame Spraying,” Coatings 2014, Vol. 4, Pages 231-252, vol. 4, no. 2, pp. 231–252, Apr. 2014, doi: 10.3390/COATINGS4020231. | |
| dc.relation.references | F. Gao, “Plasma spray and pack cementation process optimization and oxidation behaviour of novel multilayered coatings,” 2013, doi: 10.22215/ETD/2013-09604. | |
| dc.relation.references | M. R. Khajavi, M. H. Shariat, and A. Pasha, “Aluminide Coatings for Nickel Based Superalloys,” Surface Engineering, vol. 20, no. 4, pp. 261–265, Aug. 2004, doi: 10.1179/026708404X4672. | |
| dc.relation.references | L. Čelko, L. Klakurková, O. Man, and J. Švejcar, “Use of the Powder Liquid Method for Aluminide Diffusion Coatings Formation on Inconel 713LC Nickel-Based Superalloy,” Materials and Manufacturing Processes, vol. 24, no. 10–11, pp. 1155–1161, Oct. 2009, doi: 10.1080/10426910902979439. | |
| dc.relation.references | K. Volkov and K. Volkov, “Hypersonic and Supersonic Flight - Advances in Aerodynamics, Materials, and Vehicle Design,” Hypersonic and Supersonic Flight - Advances in Aerodynamics, Materials, and Vehicle Design, Apr. 2023, doi: 10.5772/INTECHOPEN.104045. | |
| dc.relation.references | M. Zielińska, J. Sieniawski, M. Yavorska, and M. Motyka, “Influence of chemical composition of nickel based superalloy on the formation of aluminide coatings,” Archives of Metallurgy and Materials, vol. 56, no. 1, pp. 193–197, 2011, doi: 10.2478/V10172-011-0023-Y. | |
| dc.relation.references | S. Bose, “OXIDATION- AND CORROSION-RESISTANT COATINGS,” High Temperature Coatings, pp. 71–154, Jan. 2007, doi: 10.1016/B978-075068252-7/50007-X. | |
| dc.relation.references | L. Chen, “Compositional and structural effects on the high-temperature oxidation and hot corrosion behavior of MCrAlY coating alloys at 900℃,” 2018. | |
| dc.relation.references | C. M, “Processing & Characterization of Nickel-Aluminide Coating on Metal Substrates,” 2007. | |
| dc.relation.references | M. Eskner, “Mechanical Behaviour of Gas Turbine Coatings,” 2004, Accessed: Apr. 06, 2025. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3776 | |
| dc.relation.references | L. Chen, “Compositional and structural effects on the high-temperature oxidation and hot corrosion behavior of MCrAlY coating alloys at 900℃,” 2018. | |
| dc.relation.references | J. Lee, “Novel fabrication of Alloy 625 and MCrAlY bond coat by laser powder bed fusion and microstructure control,” Jun. 2020, doi: 10.34894/VQ1DJA. | |
| dc.relation.references | J. W. Fergus, “High Temperature Corrosion of Intermetallic Alloys,” Shreir’s Corrosion, pp. 646–667, Jan. 2010, doi: 10.1016/B978-044452787-5.00078-0. | |
| dc.relation.references | N. Cinca, C. R. C. Lima, and J. M. Guilemany, “An overview of intermetallics research and application: Status of thermal spray coatings,” Journal of Materials Research and Technology, vol. 2, no. 1, pp. 75–86, Jan. 2013, doi: 10.1016/J.JMRT.2013.03.013. | |
| dc.relation.references | D. Yang et al., “An investigation of plasma sprayed nickel-based and pure aluminum coatings on austenitic stainless steel AISI 304,” IOP Conf Ser Mater Sci Eng, vol. 1172, no. 1, p. 012025, Aug. 2021, doi: 10.1088/1757-899X/1172/1/012025. | |
| dc.relation.references | S. Gialanella and A. Malandruccolo, “Aerospace Alloys,” 2020, doi: 10.1007/978-3-030-24440-8. | |
| dc.relation.references | S. Sampath, V. P. Ravi, and S. Sundararajan, “An Overview on Synthesis, Processing and Applications of Nickel Aluminides: From Fundamentals to Current Prospects,” Crystals 2023, Vol. 13, Page 435, vol. 13, no. 3, p. 435, Mar. 2023, doi: 10.3390/CRYST13030435. | |
| dc.relation.references | D. Shi, B. Wen, R. Melnik, S. Yao, and T. Li, “First-principles studies of Al–Ni intermetallic compounds,” J Solid State Chem, vol. 182, no. 10, pp. 2664–2669, Oct. 2009, doi: 10.1016/J.JSSC.2009.07.026. | |
| dc.relation.references | F. Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk, and J. C. Gachon, “Enthalpies of formation of the Al–Ni intermetallic compounds,” J Alloys Compd, vol. 364, no. 1–2, pp. 121–126, Feb. 2004, doi: 10.1016/S0925-8388(03)00493-6. | |
| dc.relation.references | E. Stefan, B. Talic, Y. Larring, A. Gruber, and T. A. Peters, “Materials challenges in hydrogen-fuelled gas turbines,” International Materials Reviews, vol. 67, no. 5, pp. 461–486, Jul. 2022, doi: 10.1080/09506608.2021.1981706. | |
| dc.relation.references | Z. Wu, “Empirical modeling for processing parameters’ effects on coating properties in plasma spraying process,” J Manuf Process, vol. 19, pp. 1–13, Aug. 2015, doi: 10.1016/J.JMAPRO.2015.03.007. | |
| dc.relation.references | K. M. Doleker, Y. Ozgurluk, and A. C. Karaoglanli, “TGO growth and kinetic study of single and double layered TBC systems,” Surf Coat Technol, vol. 415, p. 127135, Jun. 2021, doi: 10.1016/J.SURFCOAT.2021.127135. | |
| dc.relation.references | J. Yang, L. Wang, D. Li, X. Zhong, H. Zhao, and S. Tao, “Stress Analysis and Failure Mechanisms of Plasma-Sprayed Thermal Barrier Coatings,” Journal of Thermal Spray Technology, vol. 26, no. 5, pp. 890–901, Jun. 2017, doi: 10.1007/S11666-017-0544-7/METRICS. | |
| dc.relation.references | H. E. Evans, “Oxidation failure of TBC systems: An assessment of mechanisms,” Surf Coat Technol, vol. 206, no. 7, pp. 1512–1521, Dec. 2011, doi: 10.1016/J.SURFCOAT.2011.05.053. | |
| dc.relation.references | J. M. Andersson, “Linköping Studies in Science and Technology Controlling the Formation and Stability of Alumina Phases,” 2005. | |
| dc.relation.references | H. Mei, X. Tan, and C. Chen, “Interactions between radionuclides and the oxide-water interfaces in the environment,” Interface Science and Technology, vol. 29, pp. 39–105, Jan. 2019, doi: 10.1016/B978-0-08-102727-1.00002-9. | |
| dc.relation.references | D. R. . Gaskell, “Introduction to the thermodynamics of materials,” p. 613, 2012. | |
| dc.relation.references | C. Wännman, “Erosion Behaviour of Thermal Barrier Coatings,” 2021, Accessed: Jul. 31, 2025. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176646 | |
| dc.relation.references | S. K. Essa, “Experimental and Modeling Studies of Thermal Barrier Coating Failure Under Isothermal Oxidation and Solid Particle Erosion,” 2020, doi: 10.22215/ETD/2020-14230. | |
| dc.relation.references | P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, “Thermal spray fundamentals: From powder to part,” Thermal Spray Fundamentals: From Powder to Part, pp. 1–1566, Jan. 2014, doi: 10.1007/978-0-387-68991-3/COVER. | |
| dc.relation.references | M. Z. Alam, D. Chatterjee, S. V. Kamat, V. Jayaram, and D. K. Das, “Evaluation of ductile–brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method,” Materials Science and Engineering: A, vol. 527, no. 26, pp. 7147–7150, Oct. 2010, doi: 10.1016/J.MSEA.2010.07.059. | |
| dc.relation.references | M. Eskner and R. Sandström, “Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique,” Surf Coat Technol, vol. 165, no. 1, pp. 71–80, Feb. 2003, doi: 10.1016/S0257-8972(02)00702-8. | |
| dc.relation.references | M. Lorenzo-bañuelos, A. Díaz, D. Rodríguez, I. I. Cuesta, A. Fernández, and J. M. Alegre, “Influence of Atmospheric Plasma Spray Parameters (APS) on the Mechanical Properties of Ni-Al Coatings on Aluminum Alloy Substrate,” Metals 2021, Vol. 11, Page 612, vol. 11, no. 4, p. 612, Apr. 2021, doi: 10.3390/MET11040612. | |
| dc.relation.references | K. Yuan, “Thermal and Mechanical Behaviors of High Temperature Coatings,” 2013, Accessed: Jul. 31, 2025. [Online]. Available: http://www.liu.seLinköping, | |
| dc.relation.references | J. Yun, S. Wee, S. Park, J. M. Lee, H. Song, and C. S. Seok, “Method for Predicting Thermal Fatigue Life of Thermal Barrier Coatings Using TGO Interface Stress,” International Journal of Precision Engineering and Manufacturing, vol. 21, no. 9, pp. 1677–1685, Sep. 2020, doi: 10.1007/S12541-020-00363-3/METRICS. | |
| dc.relation.references | C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi, “Failure mechanism for thermal fatigue of thermal barrier coating systems,” Journal of Thermal Spray Technology, vol. 18, no. 2, pp. 223–230, Mar. 2009, doi: 10.1007/S11666-009-9307-4/METRICS. | |
| dc.relation.references | J. R. Davis, “Handbook of Thermal Spray Technology,” Technology (Singap World Sci), p. 329, 2004, Accessed: Mar. 18, 2025. [Online]. Available: https://books.google.com/books/about/Handbook_of_Thermal_Spray_Technology.html?hl=fr&id=S0PryYc9T70C | |
| dc.relation.references | L. Pawlowski, “The Science and Engineering of Thermal Spray Coatings: Second Edition,” The Science and Engineering of Thermal Spray Coatings: Second Edition, pp. 1–626, Mar. 2008, doi: 10.1002/9780470754085. | |
| dc.relation.references | D. Tejero-Martin, M. Rezvani Rad, A. McDonald, and T. Hussain, “Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings,” Journal of Thermal Spray Technology 2019 28:4, vol. 28, no. 4, pp. 598–644, Apr. 2019, doi: 10.1007/S11666-019-00857-1. | |
| dc.relation.references | J. M. M. Herrera Ramirez, R. P. P. Bustamante, C. A. A. Isaza Merino, and A. M. M. Arizmendi Morquecho, “Unconventional techniques for the production of light alloys and composites,” Unconventional Techniques for the Production of Light Alloys and Composites, pp. 1–201, Jan. 2020, doi: 10.1007/978-3-030-48122-3/COVER. | |
| dc.relation.references | J. A. Arboleda Gómez, “Efecto de los parámetros de aspersión sobre la microestructura de recubrimientos de Al2O3 + 13%TiO2 aplicados mediante aspersión térmica por combustión (In spanish),” Sep. 2016, Accessed: Apr. 08, 2025. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/57434 | |
| dc.relation.references | E. Kornienko et al., “Microstructure and properties of Ni-Al coatings obtained by conventional and high-velocity atmospheric plasma spraying,” Results in Surfaces and Interfaces, vol. 6, p. 100038, Feb. 2022, doi: 10.1016/J.RSURFI.2022.100038. | |
| dc.relation.references | G. Rizzi, A. Scrivani, M. Fini, and R. Giardino, “Biomedical Coatings to Improve the Tissue-Biomaterial Interface,” Int J Artif Organs, vol. 27, no. 8, pp. 649–657, 2004, doi: 10.1177/039139880402700802. | |
| dc.relation.references | R. H. Unger and W. D. Grossklaus, “A Comparison of the Technical Properties of Arc Sprayed Versus Plasma Sprayed Nickel-5 Aluminum,” SAE Technical Papers, Apr. 1992, doi: 10.4271/920931. | |
| dc.relation.references | M. Gupta, “Design of Thermal Barrier Coatings,” 2015, doi: 10.1007/978-3-319-17254-5. | |
| dc.relation.references | J. De la Roche-Yepes, “Hot corrosion resistance of dense Ceria-Yttria Stabilized Zirconia/Yttria stabilized Zirconia Bilayer coatings deposited by atmospheric plasma spray,” Mar. 2020, Accessed: Apr. 11, 2025. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/77579 | |
| dc.relation.references | F. W. Bach, A. Laarmann, and T. Wenz, “Modern Surface Technology,” Modern Surface Technology, pp. 1–325, Aug. 2006, doi: 10.1002/3527608818. | |
| dc.relation.references | M. Lufitha, “Effect of substrate temperature on coating adhesion,” 2001. Accessed: Apr. 08, 2025. [Online]. Available: http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58842.pdf | |
| dc.relation.references | V. Pershin, M. Lufitha, S. Chandra, and J. Mostaghimi, “Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings,” Journal of Thermal Spray Technology, vol. 12, no. 3, pp. 370–376, Sep. 2003, doi: 10.1361/105996303770348249/METRICS. | |
| dc.relation.references | K. Yang, M. Liu, K. Zhou, and C. Deng, “Recent Developments in the Research of Splat Formation Process in Thermal Spraying,” J Mater, vol. 2013, no. 1, p. 260758, Jan. 2013, doi: 10.1155/2013/260758. | |
| dc.relation.references | M. Abbas, “Microstructural characterization of high-velocity oxy-fuel (HVOF) sprayed nickel coatings,” 2021, doi: 10.26190/UNSWORKS/22630. | |
| dc.relation.references | J. A. Gan and C. C. Berndt, “Quantification and taxonomy of pores in thermal spray coatings by image analysis and stereology approach,” Metall Mater Trans A Phys Metall Mater Sci, vol. 44, no. 10, pp. 4844–4858, Oct. 2013, doi: 10.1007/S11661-013-1818-4/METRICS. | |
| dc.relation.references | A. S. M. Ang and C. C. Berndt, “A review of testing methods for thermal spray coatings,” International Materials Reviews, vol. 59, no. 4, pp. 179–223, 2014, doi: 10.1179/1743280414Y.0000000029. | |
| dc.relation.references | O. Culha, E. Celik, N. F. Ak Azem, I. Birlik, M. Toparli, and A. Turk, “Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate,” J Mater Process Technol, vol. 204, no. 1–3, pp. 221–230, Aug. 2008, doi: 10.1016/J.JMATPROTEC.2007.11.036. | |
| dc.relation.references | S. Saladi, P. V. Ramana, and P. B. Tailor, “Evaluation of Microstructural Features of HVOF Sprayed Ni–20Al Coatings,” Transactions of the Indian Institute of Metals, vol. 71, no. 10, pp. 2387–2394, Oct. 2018, doi: 10.1007/S12666-018-1369-X/METRICS. | |
| dc.relation.references | W. Hu, M. Li, and M. Fukumoto, “Preparation and properties of HVOF NiAl nanostructured coatings,” Materials Science and Engineering: A, vol. 478, no. 1–2, pp. 1–8, Apr. 2008, doi: 10.1016/J.MSEA.2007.05.048. | |
| dc.relation.references | M. Górnik, E. Jonda, M. Nowakowska, and L. Łatka, “The Effect of Spray Distance on Porosity, Surface Roughness and Microhardness of WC-10Co-4Cr Coatings Deposited by HVOF,” Advances in Materials Science, vol. 21, no. 4, pp. 99–111, Dec. 2021, doi: 10.2478/ADMS-2021-0028. | |
| dc.relation.references | H. Nayak, N. Krishnamurthy, and S. R. A, “Development and Adhesion Strength of Plasma-Sprayed Thermal Barrier Coating on the Cast Iron Substrate,” International Journal of Integrated Engineering, vol. 13, no. 1, pp. 46–59, Jan. 2021, doi: 10.30880/ijie.2021.13.01.006. | |
| dc.relation.references | J. G. Odhiambo, W. G. Li, Y. T. Zhao, and C. L. Li, “Porosity and Its Significance in Plasma-Sprayed Coatings,” Coatings 2019, Vol. 9, Page 460, vol. 9, no. 7, p. 460, Jul. 2019, doi: 10.3390/COATINGS9070460. | |
| dc.relation.references | H. Du, J. H. Shin, and S. W. Lee, “Study on porosity of plasma-sprayed coatings by digital image analysis method,” Journal of Thermal Spray Technology, vol. 14, no. 4, pp. 453–461, Dec. 2005, doi: 10.1361/105996305X76450/METRICS. | |
| dc.relation.references | L. Tobon, “Influencia de los ciclos térmicos sobre la porosidad de recubrimientos de barrera térmica (TBC) aplicados por proyección térmica por plasma (In spanish),” 2014, Accessed: Apr. 11, 2025. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/51761 | |
| dc.relation.references | X. Luo, G. M. Smith, and S. Sampath, “On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminates—Part II: Low-Velocity Thermal Spray Coatings,” Journal of Thermal Spray Technology, vol. 27, no. 3, pp. 308–318, Feb. 2018, doi: 10.1007/S11666-018-0690-6/METRICS. | |
| dc.relation.references | L. Zhang, X. J. Liao, S. L. Zhang, X. T. Luo, and C. J. Li, “Effect of Powder Particle Size and Spray Parameters on the Ni/Al Reaction During Plasma Spraying of Ni-Al Composite Powders,” Journal of Thermal Spray Technology, vol. 30, no. 1–2, pp. 181–195, Jan. 2021, doi: 10.1007/S11666-020-01150-2/FIGURES/15. | |
| dc.relation.references | P. Senapati, H. Sutar, R. Murmu, and S. Gupta, “Slurry Erosion Behaviour of HVOF-Sprayed NiAl Composite Coating,” Lecture Notes in Mechanical Engineering, pp. 623–629, 2023, doi: 10.1007/978-981-16-9057-0_68. | |
| dc.relation.references | J. A. Gan and C. C. Berndt, “Review on the oxidation of metallic thermal sprayed coatings: A case study with reference to rare-earth permanent magnetic coatings,” Journal of Thermal Spray Technology, vol. 22, no. 7, pp. 1069–1091, Oct. 2013, doi: 10.1007/S11666-013-9955-2/METRICS. | |
| dc.relation.references | M. R. Mrdak, “STUDY OF THE APPLICATION OF PLASMA SPRAYED COATINGS ON THE SECTIONS OF THE ASTAZOU III B TURBO - JET ENGINE,” Vojnotehnicki glasnik/Military Technical Courier, vol. 64, no. 1, pp. 1–25, 2016, doi: 10.5937/vojtehg64-8933. | |
| dc.relation.references | A. G. GONZALEZ H Ingeniero Metalúrgico, F. VARGAS GALVIS Ingeniero Metalúrgico, P. Asistente, and M. Esperanza López, “Influencia de la rugosidad en la micrudureza y en la resistencia al desgaste de recubrimientos aplicados mediante proyeción térmica,” Scientia et Technica, vol. 1, no. 36, Jul. 2007, Accessed: Apr. 11, 2025. [Online]. Available: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/4891 | |
| dc.relation.references | O. Sarikaya, “Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process,” Surf Coat Technol, vol. 190, no. 2–3, pp. 388–393, Jan. 2005, doi: 10.1016/J.SURFCOAT.2004.02.007. | |
| dc.relation.references | D. A. López Quiros, “Efecto del acabado superficial sobre la resistencia adhesivo-cohesiva de recubrimientos aplicados por aspersión térmica por plasma sobre acero inoxidable (In spanish),” Nov. 2017, Accessed: Apr. 11, 2025. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/63882 | |
| dc.relation.references | G. W. Stachowiak and A. W. Batchelor, “Engineering Tribology: Fourth Edition,” Engineering Tribology: Fourth Edition, pp. 1–852, 2013, doi: 10.1016/C2011-0-07515-4. | |
| dc.relation.references | G. W. Stachowiak and A. W. Batchelor, “Engineering Tribology: Fourth Edition,” Engineering Tribology: Fourth Edition, pp. 1–852, 2013, doi: 10.1016/C2011-0-07515-4. | |
| dc.relation.references | J. Day, X. Huang, and N. L. Richards, “Examination of a grit-blasting process for thermal spraying using statistical methods,” Journal of Thermal Spray Technology, vol. 14, no. 4, pp. 471–479, Dec. 2005, doi: 10.1361/105996305X76469/METRICS. | |
| dc.relation.references | P. Cavaliere, “Cold-Spray Coatings: Recent Trends and Future perspectives,” Cold-Spray Coatings: Recent Trends and Future perspectives, pp. 1–570, Nov. 2017, doi: 10.1007/978-3-319-67183-3/COVER. | |
| dc.relation.references | R. Kromer, J. Cormier, and S. Costil, “Role of Powder Granulometry and Substrate Topography in Adhesion Strength of Thermal Spray Coatings,” Journal of Thermal Spray Technology, vol. 25, no. 5, pp. 933–945, Jun. 2016, doi: 10.1007/S11666-016-0411-Y/METRICS. | |
| dc.relation.references | M. Vardelle, P. Fauchais, A. Vardelle, K. I. Li, B. Dussoubs, and N. J. Themelis, “Controlling particle injection in plasma spraying,” Journal of Thermal Spray Technology, vol. 10, no. 2, pp. 267–284, 2001, doi: 10.1361/105996301770349367/METRICS. | |
| dc.relation.references | M. Fukumoto, “Relationship Between Particle’s Splat Pattern and Coating Adhesive Strength of HVOF Sprayed Cu-Alloy,” J. Jpn. Them. Spray Soc., vol. 32, no. 2, pp. 149–156, Feb. 1995, doi: 10.2497/JJSPM.59.67. | |
| dc.relation.references | J. García López, “Clasificación de partículas de alúmina en recubrimientos APS mediante SEM : vista superiores y secciones (In spanish),” Sep. 15, 2018. Accessed: Jul. 27, 2025. [Online]. Available: http://hdl.handle.net/10317/7373 | |
| dc.relation.references | L. Bianchi, A. C. Leger, M. Vardelle, A. Vardelle, and P. Fauchais, “Splat formation and cooling of plasma-sprayed zirconia,” Thin Solid Films, vol. 305, no. 1–2, pp. 35–47, Aug. 1997, doi: 10.1016/S0040-6090(97)80005-3. | |
| dc.relation.references | F. Gao, B. Eng, and M. A. S. Materials, “Plasma spray and pack cementation process optimization and oxidation behaviour of novel multilayered coatings,” 2013, doi: 10.22215/ETD/2013-09604. | |
| dc.relation.references | F. M. Hurtado, A. G. Hernández, M. E. L. Gómez, and H. Ageorges, “Estudio de la estructura y las propiedades mecánicas en un recubrimiento de circona estabilizada con 8% en mol de itria elaborado por proyección térmica por plasma a partir de suspensiones,” Revista Materia, vol. 21, no. 1, pp. 49–60, Jan. 2016, doi: 10.1590/S1517-707620160001.0005. | |
| dc.relation.references | R. E. . Dinnebier, Andreas. Leineweber, and J. S. O. . Evans, “Rietveld refinement : practical powder diffraction pattern analysis using TOPAS,” p. 331, 2019. | |
| dc.relation.references | T. A. Para, S. K. Sarkar, T. A. Para, and S. K. Sarkar, “Challenges in Rietveld Refinement and Structure Visualization in Ceramics,” Advanced Ceramic Materials, Feb. 2021, doi: 10.5772/INTECHOPEN.96065. | |
| dc.relation.references | Y. Ozaki, Y. Suzuki, T. Hawai, K. Saito, M. Onishi, and K. Ono, “Automated crystal structure analysis based on blackbox optimisation,” npj Computational Materials 2020 6:1, vol. 6, no. 1, pp. 1–7, Jun. 2020, doi: 10.1038/s41524-020-0330-9. | |
| dc.relation.references | S. Speakman, “Ver artículo.” Accessed: Apr. 11, 2025. [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=es&user=GGfJlPIAAAAJ&cstart=20&pagesize=80&citation_for_view=GGfJlPIAAAAJ:iH-uZ7U-co4C | |
| dc.relation.references | “PPT - Fundamentals of Rietveld Refinement I. XRD Pattern Simulation PowerPoint Presentation - ID:807323.” Accessed: Jul. 27, 2025. [Online]. Available: https://www.slideserve.com/sasson/fundamentals-of-rietveld-refinement-i-xrd-pattern-simulation?utm_source=slideserve&utm_medium=website&utm_campaign=auto+related+load | |
| dc.relation.references | F. Chouit, H. Benzerouk, A. Boussaha, A. Loucif, and A. Drici, “Microstructural Characterization of Plasma Sprayed Ni-5wt.%Al Coatings Using Rietveld Refinement,” JOM, vol. 76, no. 5, pp. 2209–2214, May 2024, doi: 10.1007/S11837-024-06495-5/TABLES/4. | |
| dc.relation.references | Ş. Yilmaz, “An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3–13 wt.% TiO2 with bond coat on pure titanium substrate,” Ceram Int, vol. 35, no. 5, pp. 2017–2022, Jul. 2009, doi: 10.1016/J.CERAMINT.2008.11.017. | |
| dc.relation.references | C. R. C. Lima and J. M. Guilemany, “Adhesion improvements of Thermal Barrier Coatings with HVOF thermally sprayed bond coats,” Surf Coat Technol, vol. 201, no. 8, pp. 4694–4701, Jan. 2007, doi: 10.1016/J.SURFCOAT.2006.10.005. | |
| dc.relation.references | L. E. Gil and M. H. Staia, “Effects of HVOF Parameters on Adhesion and Microstructure of Thermal Sprayed NiWCrBSi Coatings,” Surface Engineering, vol. 18, no. 4, pp. 309–315, 2002, doi: 10.1179/026708401225005377. | |
| dc.relation.references | H. Weiss, “Adhesion of advanced overlay coatings: mechanisms and quantitative assessment,” Surf Coat Technol, vol. 71, no. 2, pp. 201–207, Mar. 1995, doi: 10.1016/0257-8972(94)01022-B. | |
| dc.relation.references | Abhinav, H. K. Kustagi, and A. R. Shankar, “Adhesion Strength of Plasma Sprayed Coatings—A Review,” Smart Innovation, Systems and Technologies, vol. 169, pp. 77–83, 2020, doi: 10.1007/978-981-15-1616-0_8. | |
| dc.relation.references | V. V. Sobolev, J. M. Guilemany, and J. Nutting, “High velocity oxy-fuel spraying: Theory, Structure-Property Relationships and Applications,” no. SPEC. ISS., pp. 557–560, 2004, Accessed: Mar. 18, 2025. [Online]. Available: https://books.google.com/books/about/High_Velocity_Oxy_fuel_Spraying.html?hl=fr&id=Q492QgAACAAJ | |
| dc.relation.references | S. Shinde and S. Sampath, “A Critical Analysis of the Tensile Adhesion Test for Thermally Sprayed Coatings,” Journal of Thermal Spray Technology, vol. 31, no. 8, pp. 2247–2279, Dec. 2022, doi: 10.1007/S11666-022-01468-Z/FIGURES/20. | |
| dc.relation.references | J. Svantesson and J. Wigren, “A Study of Ni-5wt.% Al coatings produced from different feedstock powder,” Journal of Thermal Spray Technology, vol. 1, no. 1, pp. 65–70, Mar. 1992, doi: 10.1007/BF02657019/METRICS. | |
| dc.relation.references | S. Shinde and S. Sampath, “A Critical Analysis of the Tensile Adhesion Test for Thermally Sprayed Coatings,” Journal of Thermal Spray Technology, vol. 31, no. 8, pp. 2247–2279, Dec. 2022, doi: 10.1007/S11666-022-01468-Z/FIGURES/20. | |
| dc.relation.references | X. Luo, G. M. Smith, and S. Sampath, “On the Interplay Between Adhesion Strength and Tensile Properties of Thermal Spray Coated Laminates—Part I: High Velocity Thermal Spray Coatings,” Journal of Thermal Spray Technology, vol. 27, no. 3, pp. 296–307, Feb. 2018, doi: 10.1007/S11666-018-0695-1/FIGURES/9. | |
| dc.relation.references | M. M. Javadi, H. Edris, and M. Salehi, “Plasma Sprayed NiAl Intermetallic Coating Produced with Mechanically Alloyed Powder,” J Mater Sci Technol, vol. 27, no. 9, pp. 816–820, Sep. 2011, doi: 10.1016/S1005-0302(11)60148-5. | |
| dc.relation.references | F. Chouit, H. Benzerouk, A. Boussaha, A. Loucif, and A. Drici, “Microstructural Characterization of Plasma Sprayed Ni-5wt.%Al Coatings Using Rietveld Refinement,” JOM, vol. 76, no. 5, pp. 2209–2214, May 2024, doi: 10.1007/S11837-024-06495-5/METRICS. | |
| dc.relation.references | N. Purushotham, K. Santhy, P. Suresh Babu, G. Sivakumar, and B. Rajasekaran, “In Situ High-Temperature X-ray Diffraction Study on Atmospheric Plasma and Detonation Sprayed Ni-5 wt.%Al Coatings,” Journal of Thermal Spray Technology, vol. 32, no. 7, pp. 2091–2103, Oct. 2023, doi: 10.1007/S11666-023-01627-W/METRICS | |
| dc.relation.references | S. Saladi, J. V. Menghani, and S. Prakash, “Characterization and Evaluation of Cyclic Hot Corrosion Resistance of Detonation-Gun Sprayed Ni-5Al Coatings on Inconel-718,” Journal of Thermal Spray Technology, vol. 24, no. 5, pp. 778–788, Jun. 2015, doi: 10.1007/S11666-015-0235-1/METRICS. | |
| dc.relation.references | C. Pierlot, L. Pawlowski, M. Bigan, and P. Chagnon, “Design of experiments in thermal spraying: A review,” Surf Coat Technol, vol. 202, no. 18, pp. 4483–4490, Jun. 2008, doi: 10.1016/J.SURFCOAT.2008.04.031. | |
| dc.relation.references | A. R. Nicoll, H. Gruner, R. Prince, and G. Wuest, “Thermal Spray Coatings for High Temperature Protection,” Surface Engineering, vol. 1, no. 1, pp. 59–71, 1985, doi: 10.1179/SUR.1985.1.1.59. | |
| dc.relation.references | R. B. Heimann, “Plasma-Spray Coating: Principles and Applications,” Plasma-Spray Coating: Principles and Applications, pp. 1–339, Dec. 2007, doi: 10.1002/9783527614851. | |
| dc.relation.references | P. Ctibor and M. Hrabovský, “Plasma sprayed TiO2: The influence of power of an electric supply on particle parameters in the flight and character of sprayed coating,” J Eur Ceram Soc, vol. 30, no. 15, pp. 3131–3136, Nov. 2010, doi: 10.1016/J.JEURCERAMSOC.2010.05.029. | |
| dc.relation.references | R. A. Abbas, S. A. Ajeel, M. A. Ali Bash, and M. J. Kadhim, “Effect of plasma spray distance on the features and hardness reliability of YSZ thermal barrier coating,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 2553–2560. doi: 10.1016/j.matpr.2020.12.578. | |
| dc.relation.references | T. S. Sidhu, S. Prakash, and R. D. Agrawal, “Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications,” Materials Science, vol. 41, no. 6, pp. 805–823, Nov. 2005, doi: 10.1007/S11003-006-0047-Z/METRICS. | |
| dc.relation.references | V. K. Champagne, The cold spray materials deposition process: Fundamentals and applications. Elsevier Ltd, 2007. doi: 10.1533/9781845693787. | |
| dc.relation.references | M. Mrdak, B. Medjo, D. Veljić, M. Arsić, and M. Rakin, “The influence of powder feed rate on mechanical properties of atmospheric plasma spray (APS) Al-12Si coating,” Reviews on Advanced Materials Science, vol. 58, no. 1, pp. 75–81, Jan. 2019, doi: 10.1515/RAMS-2019-0007/MACHINEREADABLECITATION/RIS. | |
| dc.relation.references | A. Fernández Roiz, J. A. Moreno, G. Jorde Cerezo, and J. Solano, “Analysis of the Relationship between APS Thermal Spray Parameters of Ni5Al Particles and Coating Characteristics,” Coatings 2023, Vol. 13, Page 1564, vol. 13, no. 9, p. 1564, Sep. 2023, doi: 10.3390/COATINGS13091564. | |
| dc.relation.references | J. Villafuerte, “Modern Cold Spray: Materials, Process, and Applications,” Modern Cold Spray: Materials, Process, and Applications, pp. 1–429, Aug. 2015, doi: 10.1007/978-3-319-16772-5/COVER. | |
| dc.relation.references | A. Nouri and A. Sola, “Powder morphology in thermal spraying,” J Adv Manuf Process, vol. 1, no. 3, Jul. 2019, doi: 10.1002/AMP2.10020. | |
| dc.relation.references | H. Samadi, “A Thick Multilayer Thermal Barrier Coating: Design, Deposition, and Internal Stresses,” 2010. Accessed: Apr. 12, 2025. [Online]. Available: http://hdl.handle.net/1807/19086 | |
| dc.relation.references | F. Venturi and T. Hussain, “Radial Injection in Suspension High Velocity Oxy-Fuel (S-HVOF) Thermal Spray of Graphene Nanoplatelets for Tribology,” Journal of Thermal Spray Technology, vol. 29, no. 1–2, pp. 255–269, Jan. 2020, doi: 10.1007/S11666-019-00957-Y/FIGURES/10. | |
| dc.relation.references | S. Saladi, P. V. Ramana, and P. B. Tailor, “Evaluation of Microstructural Features of HVOF Sprayed Ni–20Al Coatings,” Transactions of the Indian Institute of Metals, vol. 71, no. 10, pp. 2387–2394, Oct. 2018, doi: 10.1007/S12666-018-1369-X/METRICS. | |
| dc.relation.references | O. Culha, E. Celik, N. F. Ak Azem, I. Birlik, M. Toparli, and A. Turk, “Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate,” J Mater Process Technol, vol. 204, no. 1–3, pp. 221–230, Aug. 2008, doi: 10.1016/J.JMATPROTEC.2007.11.036. | |
| dc.relation.references | E. Sadeghimeresht, N. Markocsan, and P. Nylén, “Microstructure Effect of Intermediate Coat Layer on Corrosion Behavior of HVAF-Sprayed Bi-Layer Coatings,” Journal of Thermal Spray Technology, vol. 26, no. 1–2, pp. 243–253, Jan. 2017, doi: 10.1007/S11666-016-0484-7/METRICS. | |
| dc.relation.references | R. A. Mahesh, R. Jayaganthan, and S. Prakash, “Microstructural characterization and hardness evaluation of HVOF sprayed Ni–5Al coatings on Ni- and Fe-based superalloys,” J Mater Process Technol, vol. 209, no. 7, pp. 3501–3510, Apr. 2009, doi: 10.1016/J.JMATPROTEC.2008.08.009. | |
| dc.relation.references | J. A. Hearley, J. A. Little, and A. J. Sturgeon, “The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings,” Surf Coat Technol, vol. 123, no. 2–3, pp. 210–218, Jan. 2000, doi: 10.1016/S0257-8972(99)00511-3. | |
| dc.relation.references | M. H. Enayati, F. Karimzadeh, M. Tavoosi, B. Movahedi, and A. Tahvilian, “Nanocrystalline NiAl coating prepared by HVOF thermal spraying,” Journal of Thermal Spray Technology, vol. 20, no. 3, pp. 440–446, Mar. 2011, doi: 10.1007/S11666-010-9588-7/METRICS. | |
| dc.relation.references | P. Senapati, H. Sutar, R. Murmu, and S. Gupta, “Slurry Erosion Behaviour of HVOF-Sprayed NiAl Composite Coating,” Lecture Notes in Mechanical Engineering, pp. 623–629, 2023, doi: 10.1007/978-981-16-9057-0_68. | |
| dc.relation.references | “Guide for Preparation of Metallographic Specimens,” Jun. 2017, doi: 10.1520/E0003-11R17. | |
| dc.relation.references | “Practice for Microetching Metals and Alloys,” Jun. 2015, doi: 10.1520/E0407-07R15E01. | |
| dc.relation.references | “DSE-0061.5-SinplexProTM Series Guns,” 2015. | |
| dc.relation.references | “SinplexPro.” Accessed: Oct. 18, 2025. [Online]. Available: https://mymetco.oerlikon.com/es-lt/product/sinplexpro | |
| dc.relation.references | D. C. Montgomery, “Design and Analysis of Experiments, 9th Edition, Wiley,” Wiley, pp. 1–682, 2017, Accessed: Apr. 10, 2025. [Online]. Available: https://www.wiley.com/en-us/Design+and+Analysis+of+Experiments%2C+10th+Edition-p-9781119492443 | |
| dc.relation.references | L. Jiang et al., “An investigation of plasma sprayed nickel-based and pure aluminum coatings on austenitic stainless steel AISI 304,” IOP Conf Ser Mater Sci Eng, vol. 1172, no. 1, p. 012025, Aug. 2021, doi: 10.1088/1757-899X/1172/1/012025. | |
| dc.relation.references | M. Bellippady et al., “Performance of Atmospheric Plasma-Sprayed Thermal Barrier Coatings on Additively Manufactured Super Alloy Substrates,” Coatings 2024, Vol. 14, Page 626, vol. 14, no. 5, p. 626, May 2024, doi: 10.3390/COATINGS14050626. | |
| dc.relation.references | A. T. S. Society and A. P. Committee, “Accepted Practice for Metallographic Preparation of Thermal Spray Coating Samples,” Thermal Spray Technology, pp. 30–54, May 2022, doi: 10.31399/ASM.TB.TSTAP.T56040030. | |
| dc.relation.references | Z. ~ C. Huang, “Preparation of metallography samples by vacuum impregnation of resin”. | |
| dc.relation.references | “Metal Finishing Services | Maryland | American Metaseal Corporation of Maryland.” Accessed: Apr. 14, 2025. [Online]. Available: https://www.metaseal.com/metal-finishing-services | |
| dc.relation.references | “Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings,” Sep. 2021, doi: 10.1520/E2109-01R21. | |
| dc.relation.references | D. J. Greving, J. R. Shadley, and E. F. Rybicki, “Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens,” Journal of Thermal Spray Technology, vol. 3, no. 4, pp. 371–378, Dec. 1994, doi: 10.1007/BF02658982/METRICS. | |
| dc.relation.references | “Test Method for Microindentation Hardness of Materials,” Oct. 2022, doi: 10.1520/E0384-22. | |
| dc.relation.references | A. García-Escorial and M. Lieblich, “Microstructural characterisation of Ni75Al25 and Ni31.5Al68.5 powder particles produced by gas atomisation,” J Alloys Compd, vol. 586, no. SUPPL. 1, pp. S489–S493, Feb. 2014, doi: 10.1016/J.JALLCOM.2012.10.138. | |
| dc.relation.references | “Order Coating Materials Online at myMetco | Oerlikon Metco.” Accessed: Jul. 02, 2025. [Online]. Available: https://mymetco.oerlikon.com/es-es/product/metco480ns | |
| dc.relation.references | R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren, and X. H. Li, “TBC bond coat–top coat interface roughness: Influence on fatigue life and modelling aspects,” Surf Coat Technol, vol. 236, pp. 230–238, Dec. 2013, doi: 10.1016/J.SURFCOAT.2013.09.051. | |
| dc.relation.references | R. Starosta, “Properties of Thermal Spraying Ni-Al Alloy Coatings,” Advances in Materials Sciences, vol. 9, no. 1, Jul. 2009, doi: 10.2478/V10077-009-0004-2. | |
| dc.relation.references | M. H. Staia et al., “Effect of substrate roughness induced by grit blasting upon adhesion of WC-17% Co thermal sprayed coatings,” Thin Solid Films, vol. 377–378, pp. 657–664, Dec. 2000, doi: 10.1016/S0040-6090(00)01447-4. | |
| dc.relation.references | A. Nusair Khan, J. Lu, and H. Liao, “Effect of residual stresses on air plasma sprayed thermal barrier coatings,” Surf Coat Technol, vol. 168, no. 2–3, pp. 291–299, May 2003, doi: 10.1016/S0257-8972(03)00207-X. | |
| dc.relation.references | L. Zhang, D. Wang, X. J. Liao, R. Chen, X. T. Luo, and C. J. Li, “Study on the oxidation resistance mechanism of self-healable NiAl coating deposited by atmospheric plasma spraying,” npj Materials Degradation 2023 7:1, vol. 7, no. 1, pp. 1–11, Aug. 2023, doi: 10.1038/s41529-023-00383-0. | |
| dc.relation.references | R. A. Mahesh, R. Jayaganthan, and S. Prakash, “Oxidation behavior of HVOF sprayed Ni–5Al coatings deposited on Ni- and Fe-based superalloys under cyclic condition,” Materials Science and Engineering: A, vol. 475, no. 1–2, pp. 327–335, Feb. 2008, doi: 10.1016/J.MSEA.2007.04.108. | |
| dc.relation.references | N. Purushotham, K. Santhy, P. Suresh Babu, G. Sivakumar, and B. Rajasekaran, “In Situ High-Temperature X-ray Diffraction Study on Atmospheric Plasma and Detonation Sprayed Ni-5 wt.%Al Coatings,” Journal of Thermal Spray Technology, vol. 32, no. 7, pp. 2091–2103, Oct. 2023, doi: 10.1007/S11666-023-01627-W/METRICS. | |
| dc.relation.references | “Order Metco 480NS Thermal Spray Powder Online at myMetco.” Accessed: Apr. 11, 2025. [Online]. Available: https://mymetco.oerlikon.com/en-us/product/metco480ns | |
| dc.relation.references | D. Jaramillo Raquejo, “Desarrollo de un protocolo para la aplicación del método de Rietveld y del estándar interno en la caracterización de materiales cerámicos con contenido de amorfos,” 2015, Universidad EAFIT. Accessed: Apr. 13, 2025. [Online]. Available: http://hdl.handle.net/10784/8531 | |
| dc.relation.references | “HIGHSCORE AND HIGHSCORE PLUS QUICK START GUIDE,” 2020, Accessed: Nov. 14, 2025. [Online]. Available: www.malvernpanalytical.com | |
| dc.relation.references | “Crystallography Open Database.” Accessed: Nov. 08, 2025. [Online]. Available: https://www.crystallography.net/cod/ | |
| dc.relation.references | “Lecture Notes For Rietveld Method: (Advanced Physical Tools and Techniques: PHYS5002) | PDF | X Ray Crystallography | Neutron.” Accessed: Nov. 07, 2025. [Online]. Available: https://www.scribd.com/document/613504706/20200429005350e32e1a56d0-1 | |
| dc.relation.references | B. H. Toby, “R factors in Rietveld analysis: How good is good enough?,” Powder Diffr, vol. 21, no. 1, pp. 67–70, Mar. 2006, doi: 10.1154/1.2179804. | |
| dc.relation.references | V. Abhijith Vijay, K. Santhy, G. Sivakumar, and B. Rajasekaran, “Thermal expansion and microstructure evolution of atmospheric plasma sprayed NiCrAlY bond coat using in-situ high temperature X-ray diffraction,” Surf Coat Technol, vol. 452, p. 129132, Jan. 2023, doi: 10.1016/J.SURFCOAT.2022.129132. | |
| dc.relation.references | J. Santa, “Adherencia y resistencia al desgaste erosivo de recubrimientos por aspersión térmica (In spanish).” Accessed: Apr. 13, 2025. [Online]. Available: https://scholar.google.com.co/citations?view_op=view_citation&hl=en&user=uepwK3wAAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=uepwK3wAAAAJ:r0BpntZqJG4C | |
| dc.relation.references | L. Tobón, C. Barrios, D. Zambrano, and A. Toro, “ANÁLISIS MORFOLÓGICO DE LA POROSIDAD DE UN SISTEMA DE BARRERA TÉRMICA SOMETIDO A CARGAS TÉRMICAS CONSTANTES,” Revista Colombiana de Materiales, no. 5, pp. 35–41, May 2014, doi: 10.17533/UDEA.RCM.19413. | |
| dc.relation.references | M. Alotaibi, “Modeling and Evaluating the Thermal Conductivity of Porous Thermal Barrier Coatings at Elevated Temperatures for Industrial Applications,” Aug. 2019, doi: 10.20381/RUOR-23765. | |
| dc.relation.references | “Order 1" Nickel Round Bar 625 Online, Diameter: 1".” Accessed: Nov. 08, 2025. [Online]. Available: https://www.onlinemetals.com/en/buy/nickel/1-nickel-round-bar-625/pid/mp-00041875 | |
| dc.relation.references | “ALODUR® Grades For Technical Ceramics | PDF | Aluminium Oxide | Refractory.” Accessed: Nov. 08, 2025. [Online]. Available: https://www.scribd.com/document/830047777/ALODUR-grades-for-Technical-Ceramics? | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 670 - Manufactura | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | |
| dc.subject.lemb | Fatiga de materiales | |
| dc.subject.lemb | Procesamiento digital de imagenes | |
| dc.subject.lemb | Oxidación | |
| dc.subject.proposal | Aspersión térmica | spa |
| dc.subject.proposal | Recubrimientos Ni5Wt%Al, | spa |
| dc.subject.proposal | Tratamiento digital de imágenes | spa |
| dc.subject.proposal | Fatiga térmica | spa |
| dc.subject.proposal | Microestructura | spa |
| dc.subject.proposal | Resistencia adhesivo-cohesiva | spa |
| dc.subject.proposal | Thermal spraying | eng |
| dc.subject.proposal | Ni5wt%Al coatings | eng |
| dc.subject.proposal | Digital image processing | eng |
| dc.subject.proposal | Thermal fatigue | eng |
| dc.subject.proposal | Microstructure | eng |
| dc.subject.proposal | Adhesive-cohesive strength | eng |
| dc.title | Effect of spraying parameters on the microstructure of a nickel aluminide coating applied by Atmospheric Plasma Spray on a nickel-base alloy substrate | eng |
| dc.title.translated | Efecto de los parámetros de proyección sobre la microestructura de un recubrimiento de aluminuro de níquel aplicado mediante APS (Atmospheric Plasma Spray) sobre sustrato de aleación de base níquel | spa |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ingeniería - Materiales y Procesos.pdf
- Tamaño:
- 12.66 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

