Evaluación del uso potencial de agregado siderúrgico estabilizado con aditivo a base de zeolitas en infraestructura vial
dc.contributor.advisor | Murillo Feo, Carol Andrea | spa |
dc.contributor.advisor | Pedraza Peña, Álvaro Fabián | spa |
dc.contributor.author | Penagos Muñoz, Jonathan Sneyder | spa |
dc.contributor.researchgroup | Geotechnical Engineering Knowledge and Innovation Genki | spa |
dc.date.accessioned | 2023-06-05T20:59:01Z | |
dc.date.available | 2023-06-05T20:59:01Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, fotografías, gráficas, tablas | spa |
dc.description.abstract | Este estudio permitió caracterizar un material como agregado siderúrgico denominado Escoria Conformada de Siderúrgica Diaco (ECSD) compuesta por escorias de horno de arco eléctrico (EAF) y horno de cuchara (LF). Se evaluó la posibilidad de estabilización del material con diferentes porcentajes de cemento y aditivo a base de zeolitas para ser utilizado como material de construcción en capas de estructuras de pavimento. En una primera etapa, se caracterizó la ECSD como agregado de acuerdo con normativa nacional e internacional para material granulares. En general, la ECSD cumplió con los estándares establecidos por las especificaciones INVIAS y referencias internacionales. En una segunda etapa, se presenta la formulación y análisis de comportamiento mecánico de tres mezclas compuestas por la ECSD, cemento hidráulico y aditivo a base de zeolitas. Las mezclas fueron compuestas por 0%, 2% y 6% de cemento en masa. La relación entre aditivo y cemento fue de 1/100. Según la especificación para mezclas ligadas hidráulicamente (NF-14227), las mezclas se clasificaron como C4/5 y C5/6 de acuerdo con la resistencia en compresión y como tipo T2 y T4 de acuerdo con resistencia en tracción (RT) y módulo (EC), además, presentaron un comportamiento cercano al concreto de acuerdo con la resistencia a la fractura (K1C). Adicionalmente, las mezclas evaluadas presentaron valores apropiados de módulo resiliente entre 8892MPa y 34953MPa. En una etapa final, se realizó la modelación de estructuras de pavimento semirrígidas mediante la metodología mecanicista de diseño de pavimentos incorporando las mezclas formuladas. Las estructuras obtenidas presentaron espesores factibles constructiva y económicamente (entre 27 cm y 55 cm) sobre 5 clases de tráfico y 4 tipos de subrasante. (Texto tomado de la fuente). | spa |
dc.description.abstract | This research allowed characterizing a material as a steel aggregate called Conformed Diaco Steel Slag (ECSD) composed of Electric Arc Furnace slag (EAF) and Ladle Furnace (LF) slag. The possibility of stabilizing the material with different percentages of cement and zeolite-based additive to be used as construction material in pavement structure layers was evaluated. In a first stage, the ECSD was characterized as aggregate in accordance with national and international regulations. In general, the ECSD complied with the standards established by INVIAS specifications and international references for granular materials. In a second stage, the formulation and analysis of the mechanical behavior of three mixtures composed of ECSD, hydraulic cement and zeolite-based additive is presented. The mixes were composed of 0%, 2% and 6% cement by mass. The ratio of additive to cement was 1/100. According with Hydraulically bound mixtures specification (NF-14227), the mixes were classified as C4/5 and C5/6 according to compressive strength and as type T2 and T4 according to tensile strength (RT) and modulus (EC), in addition, they presented a behavior close to concrete according to fracture toughness (K1C). Additionally, the evaluated mixtures presented appropriate values of resilient modulus between 8892 MPa and 34953 MPa. In a final stage, semi-rigid pavement structures were modeled using the mechanistic pavement design methodology incorporating the formulated mixtures. The structures obtained showed constructive and economically feasible thicknesses (between 27 cm and 55 cm) evaluating 5 traffic classes and 4 types of subgrades. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.notes | Incluye anexos | spa |
dc.description.researcharea | Relaciones constitutivas de suelos, rocas y materiales afines | spa |
dc.format.extent | xxii, 138 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83974 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Ahmadi Chenarboni, H., Hamid Lajevardi, S., MolaAbasi, H., & Zeighami, E. (2021). The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Construction and Building Materials, 272, 121630. https://doi.org/10.1016/j.conbuildmat.2020.121630 | spa |
dc.relation.references | Akeroyd, F., & Hicks, B. (1988). Foamed bitumen road recycling. Highways, 56(1933) | spa |
dc.relation.references | Amaral, L. (1999). Hormigones con escoria de horno eléctrico como áridos: Propiedades, durabilidad y comportamiento ambiental. Universidad Politécnica de Cataluña | spa |
dc.relation.references | Angelone, S., Garibay, M., & Cauhapé, M. (2006). Permeabilidad de suelos. Universidad Nacional de Rosario | spa |
dc.relation.references | Aquino, E. (2012). Aplicación de escoria de siderúrgica como agregado en las mezclas de concreto para pavimento rígido. Universidad de San Carlos de Guatemala | spa |
dc.relation.references | ARGOS. (2021). Ficha técnica cemeneto estructural MAX. 8, 6 | spa |
dc.relation.references | ASTM D6836-02. (2008). Standard Test Methods For Determination Of The Soil Water Chararcteristic Curve For Desorption Using A Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, And/Or Centrifuge | spa |
dc.relation.references | Aydın, M., Karacasu, M., & Kaya, S. (2019). Investigation of the effect of zeolite addition on the properties of asphalt concrete. Construction and Building Materials, 214, 166-172. doi: 10.1016/j.conbuildmat.2019.04.177 | spa |
dc.relation.references | Baalamurugan, J., Ganesh Kumar, V., Chandrasekaran, S., Balasundar, S., Venkatraman, B., Padmapriya, R., & Bupesh Raja, V. K. (2021). Recycling of steel slag aggregates for the development of high density concrete: Alternative & environment-friendly radiation shielding composite. Composites | spa |
dc.relation.references | Bao, S., Wang, X., Zhang, Q., Guo, X., Wang, W., & Li, L. (2020). Characterization of zeolite-based materials for sustainable road construction. Construction and Building Materials, 232, 117245. doi: 10.1016/j.conbuildmat.2019.117245 | spa |
dc.relation.references | Brockenbrough, R. (2009). Highway engineering handbook (3rd ed.). McGraw-Hill | spa |
dc.relation.references | Carret, J.-C., Pedraza, A., Di Benedetto, H., & Sauzeat, C. (2018). Comparison of the 3-dim linear viscoelastic behavior of asphalt mixes determined with tension-compression and dynamic tests. Construction and Building Materials, 174, 529–536. https://doi.org/10.1016/j.conbuildmat.2018.04.156 | spa |
dc.relation.references | Carrillo, A., & García, E. (2009). Uso de las escorias de acería de horno eléctrico en obras viales | spa |
dc.relation.references | Cerema. (2016). Diagnostic et conception des renforcements de chaussées | spa |
dc.relation.references | CFTE, C. F. por les T. R. (2003). Retraitement en place à froid des anciennes chaussés, guide technique (SETRA, Le Service d’Etudes Techniques des Routes et Autoroutes) | spa |
dc.relation.references | Chen, Z., Wu, S., Yue, X., Zeng, W., Yi, M., & Wan, J. (2015). Effect of hydration and silicone resin on Basic Oxygen Furnace slag and its asphalt mixture. Journal of leaner production, 112 | spa |
dc.relation.references | Comité colombiano de productores de acero - ANDI. (2019). Informe del sector siderúrgico | spa |
dc.relation.references | Correa, N., & Murillo, C. (2018). Detection of landslides with SAR polarymetry: Case study of south-eastern Colombia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII. https://doi.org/10.5194 | spa |
dc.relation.references | Das, P., Upaghyay, S., Dubey, S., & Singh, K. K. (2021). Waste to wealth: Recovery of value-added products from steel slag. Journal of Environmental Chemical Engineering | spa |
dc.relation.references | EN 12390-5. (2000). Ensayos de hormigón endurecido. Parte 5: Resistencia a flexión de probetas. | spa |
dc.relation.references | EN 12697-5. (2018). Determination of the maximum density | spa |
dc.relation.references | EN 13286-41. (2003). Mezclas de áridos sin ligante y con conglomerante hidráulico. Parte 41: Método de ensayo para la determinación de la resistencia a la compresión de las mezclas de áridos con concglomerante hidráulico | spa |
dc.relation.references | Eyo, E. U., Ng’ambi, S., & Abbey, S. J. (2020). Incorporation of a nanotechnology-based additive in cementitious products for clay stabilisation. Journal of Rock Mechanics and Geotechnical Engineering, 12(5), 1056–1069. https://doi.org/10.1016/j.jrmge.2019.12.018 | spa |
dc.relation.references | Faleschini, F., Brunelli, K., Zanini, M., Dabalà, M., & Pellegrino, C. (2016). Electric arc furnace slag as coarse recycled aggregate for concrete production. J. Sustain. Metall, 2. https://doi.org/10.1007/s40831-015-0029-1 | spa |
dc.relation.references | Feng, C., Dou, Y., & Li, D. (2011). Steel slag used as admixture in composite cement. J. Nanjing Tech University. | spa |
dc.relation.references | Gerdau Diaco. (2017). Proceso de Corte y Doble. Manejo de acero en obra. https://docplayer.es/66383233-Agenda-reglamento-sismo-resistente-gerdau-diaco-proceso-de-corte-y-doble-manejo-de-acero-en-obra.html | spa |
dc.relation.references | IDU, I. de D. U., & Universidad de los Andes. (s.f). MANUAL DEL DISEÑO DE PAVIMENTOS PARA BOGOTÁ D.C | spa |
dc.relation.references | INVIAS. (2013). Manual de Normas de Ensayo de Materiales para Carreteras. | spa |
dc.relation.references | INVIAS. (2022). Especificaciones Generales para Construcción de Carreteras. | spa |
dc.relation.references | INVÍAS, (Instituto Nacional de Vías. (2021). Estado de la Red Vial. https://www.invias.gov.co/index.php/informacion-institucional/2-principal/57-estado-de-la-red-vial | spa |
dc.relation.references | Jerez, L., Gómez, O., & Murillo, C. (2018). Stabilization of Colombian lateritic soil with a hydrophobic compound (organosilane). International Journal of Pavement Research and Technology, 11, 639–646. | spa |
dc.relation.references | Jourdain, X., Horsin Molirano, H., & Soleilhet, F. (2018). Essais destructifs sur éprouvettes en béton et acier d’armature. École normale supérieure Paris-Saclay. | spa |
dc.relation.references | KNT Group. (s.f). Types and Structure of Synthetic Zeolites (Molecular sieves). https://www.kntgroup.ru/en/about_zeolites/types_and_structure | spa |
dc.relation.references | Latorre, A., Murillo, C., & Cruz, J. (2019). Comportamiento volumétrico de un suelo no saturado derivado de cenizas volcánicas del departamento del Cauca, Colombia. Geotechnical Engineering in the XXI Century: Lessons learned and future challenges. https://doi.org/10.3233/STAL190105 | spa |
dc.relation.references | LCPC, L. C. des P. et C. (2003). Guide technique “ Réalisation des remblais et des couches de formes”. | spa |
dc.relation.references | LCPC, L. C. des P. et C., & SETRA, L. S. d’Etudes T. des R. et A. (2000). Traitement des sols à la chaux et/ou aux liants hydrauliques, guide technique (LCPC). Ministère de l’Equipement, des Transports, et du Logement. | spa |
dc.relation.references | Liu, J., Yu, B., & Wang, Q. (2020). Application of steel slag in cement treated aggregate base course. https://sci-hub.se/https://doi.org/10.1016/j.jclepro.2020.121733 | spa |
dc.relation.references | Lv, Y., Wu, S., Cui, P., Lui, Q., Li, Y., Xu, H., & Zhao, Y. (2021). Environmental and feasible analysis of recycling steel slag as aggregate treated by silicone resin. Construction and Building Materials. | spa |
dc.relation.references | Maghool, F., Arulrajah, A., Du, Y.-J., Horpibulsuk, S., & Chinkulkijniwat, A. (2017). Environmental impacts of utilizing waste steel slag aggregates as recycled road constrution materials. J. Clean Tech Environ Policy2. https://doi.org/10.1007/s10098-016-1289-6 | spa |
dc.relation.references | Morcote, C. (2019). Evaluación del desempeño mecánico de mezclas asfálticas con escorias de acero. Universidad Nacional de Colombia. | spa |
dc.relation.references | Mordor Intelligence. (2021). Mercado de Zeolitas, Participación, tamaño y crecimiento de la industria. https://www.mordorintelligence.com/es/industry-reports/zeolites-market | spa |
dc.relation.references | Munsell Soil Color Company. (1950). Munsell soil color chart. Macbeth Division of Kollmorgen Corporation. | spa |
dc.relation.references | NF 14227-1. (2013). Hydraulically bound mixtures—Specification—Part 1: Cement bound granular mixtures. | spa |
dc.relation.references | NF 16907-2. (2018). Terrassement—Partie 2: Classification des matériaux. | spa |
dc.relation.references | NF 17892-11. (2019). Geotechnical investigation and testing—Laboratory testing of soil—Part 11: Permeability tests | spa |
dc.relation.references | NF EN 13286-47. (2004). Mélanges traités et mélanges non traités aux liants hydrauliques | spa |
dc.relation.references | NF P 98-114-1. (1992). Méthodologie d´étude en laboratoire des matériaux traités aux liants hydrauliques—Partie 1: Graves traitées aux liants hydrauliques. | spa |
dc.relation.references | NSC. (2017). An introduction to steelmaking. Newsteelconstruction.Com. https://www.newsteelconstruction.com/wp/an-introduction-to-steelmaking | spa |
dc.relation.references | Ochoa, R. (2019). ESTUDIO DEL COMPORTAMIENTO DE CONCRETO ASFÁLTICO CON RESIDUOS SIDERÚRGICOS COMO AGREGADOS. Congreso Latinoamericano de Ingeniería, 1–12. | spa |
dc.relation.references | Ordoñez, K. S., & Parra, V. J. (2017). Infraestructura de transporte vial: Un factor de atraso para la competitividad de Colombia en la Alianza del Pacífico. Universidad de la Salle | spa |
dc.relation.references | Ortega, V. (1999). Utilización de escoria siderúrgica para construir caminos y estabilizar suelos. Universidad de Burgos. | spa |
dc.relation.references | Parra, L. M., & Sánchez, D. P. (2010). Análisis de la valorización de escorias negras como material agregado para concreto en el marco de la gestión ambiental de la siderúrgica Diaco. Municipio de Tuta Boyacá (Universidad de la Salle). Universidad de la Salle, Art. Universidad de la Salle | spa |
dc.relation.references | Pasetto, M., & Baldo, N. (2010). Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Universidad de Padua. | spa |
dc.relation.references | Pasetto, M., & Baldo, N. (2013). Cement bound mixtures with metallurgical slags for road constructions: Mix design and mechanical characterization. Journal Polish Mineral Engineering Society. | spa |
dc.relation.references | Payne, D. (2017). Estabilización de la subrasante de carreteras empleando escorias de acería. Universidad de Holguín, Cuba | spa |
dc.relation.references | Pedraza, Á. (2014). Impacto de contaminantes en la evolución de la estructura y propiedades de suelos excavados. Universidad Nacional de Colombia. | spa |
dc.relation.references | Pedraza, Á. (2018). Propriétés thermomécaniques d´enrobés multi-recyclés. Université de Lyon | spa |
dc.relation.references | Pedraza, A., Benedetto, H. D., Sauzéat, C., & Pouget, S. (2022). Properties at Low Temperatures of Asphalt Mixes Containing High Content of Multi-recycled RAP. Journal of Testing and Evaluation, 50(2), 939–950. https://doi.org/10.1520/JTE20210209 | spa |
dc.relation.references | Pedraza, A., Di Benedetto, H., Sauzéat, C., & Pouget, S. (2019). 3D Linear viscoelastic behaviour of bituminous mixtures containing high content of multi-recycled RAP. Road Materials and Pavement Design, 20(7), 1709–1721. https://doi.org/10.1080/14680629.2019.1594054 | spa |
dc.relation.references | Pedraza, Á., Selmi, M., Mesticou, Z., Dubujet, P., Kacem, M., & Murillo, C. (2014). Characterization of excavated soil by TBM and treated with surfactant. XIV Congresos Colombiano de geotecnia & IV congreso suramericano de ingenieros jóvenes geotecnicos, Bogotá D.C. | spa |
dc.relation.references | Pedraza, Á., Selmi, M., Mesticou, Z., Dubujet, P., Kacem, M., & Murillo, C. (2015). Temporal analysis of side effects produced by foam agents in the soil excavated with Earth Pressure Balance (EPB). 15th PACSMG | spa |
dc.relation.references | Pereira, A., Franco, J., Barbosa, L., Dias, H., Varela, T., Lopes, J., Gonçalves, L., & Fiorotti, R. (2021). Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Construction and Building Materials. | spa |
dc.relation.references | Pouget, S., Marsac, P., Pedraza, A., Sauzeat, C., Di Benedetto, H., Gaudefroy, V., Boulangé, L., Pévère, A., & Mouillet, V. (2021). Advanced characterisation of multi-recycled warm asphalt pavement (MRWAP) with high content of recycled asphalt pavement. Road Materials and Pavement Design. https://www.tandfonline.com/doi/full/10.1080/14680629.2021.2018352 | spa |
dc.relation.references | Qin, Y., Zhang, K., Wu, X., Ling, Q., Hu, J., Li, X., & Liu, H. (2021). Effect of oily sludge treatment with molten blast furnace slag on the mineral phase reconstruction of water-quenched slag properties. Materials, 14(7285). https://doi.org/10.3390/ma14237285 | spa |
dc.relation.references | Rasheed, A., & Fawad, I. (2016). Modeling and simulation of graphene based polymer nanocomposites: Advances in the last decade. Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, UK | spa |
dc.relation.references | Renard, F. (2002). Cours d’Hydrogéologie. Master Professionnel-DESS | spa |
dc.relation.references | Reyes, O., & Camacho, J. (2003). Efecto del desperdicio de una siderúrgica en bases y subbases granulares. Revista Ciencia e Ingeniería Neogranadina, 25–29 | spa |
dc.relation.references | Sánchez, H. (2016). Estado del arte sobre las escorias negras de horno de arco eléctrico y sus aplicaciones en pavimentos. L´espirit Ingéniux, 63–72 | spa |
dc.relation.references | Serna, A. (2012). Selección de tecnologías apropiadas para el aprovechamiento de la escoria de la escoria en el sector siderúrgico. Universidad Tecnológica de Pereira. | spa |
dc.relation.references | SETRA, L. S. d’Etudes T. des R. et A., & LCPC, L. C. des P. et C. (1998). Catalogue des structures types de chaussées neuves | spa |
dc.relation.references | Song, Q., Guo, M.-Z., Wang, L., & Ling, T.-C. (2021). Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resource, Conservation & Recycling. | spa |
dc.relation.references | Toffolo, R., Moro, T., Santos, D., Costa, L., Mendes, J., & Peixoto, R. (2021). Roller-compacted concrete pavements produced entirely with steelmaking slag aggregates. Aci Material Journal | spa |
dc.relation.references | U.S. Geological Survey. (s.f). Zeolites Statistics and Information. National Minerals Information Center | U.S. Geological Survey. https://www.usgs.gov/centers/national-minerals-information-center/zeolites-statistics-and-information | spa |
dc.relation.references | Valenzuela, M., Toledo, P., Hermosilla, M., & Saffirio, A. (2007). Análisis geomecánico de escorias de acería. Posibilidades de uso en obras viales. Universidad de Concepción. | spa |
dc.relation.references | Van Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 898-898 | spa |
dc.relation.references | Wang, G., Wang, Y., & Gao, Z. (2010). Use of steel slag as a granular material: Volume expansion prediction and usability criteria. Journal of Hazardous Materials. | spa |
dc.relation.references | WEF, W. E. F. (2019). The Global Competitiveness Report 2019 (https://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019) | spa |
dc.relation.references | World Steel Association. (2022). Total production of crude steel. Worldsteel.Org. https://worldsteel.org/steel-by-topic/statistics/annual-production-steel-data/P1_crude_steel_total_pub/CHN/IND | spa |
dc.relation.references | Wu, P. (2015). Cement Stabilized Materials with Use of RoadCem Additive [PhD]. Delft University of Technology | spa |
dc.relation.references | Wu, S., Xue, Y., Ye, Q., & Chen, Y. (2007). Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures. Building and Environment, 42(7), 2580–2585. https://doi.org/10.1016/j.buildenv.2006.06.008 | spa |
dc.relation.references | Xiao, B., Wen, Z., Miao, S., & Gao, Q. (2021). Utilization of steel slag for cemented tailings backfill: Hydration, strenght, pore structure, and cost analysis. Case Studies in Construction Materials | spa |
dc.relation.references | Xue, Y., Wu, S., Hou, H., & Zha, J. (2006). Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture. J. Hazard Mater. | spa |
dc.relation.references | Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An Overview of Utilization of Steel Slag. Procedia Environmental Sciences, 16, 791–801. https://doi.org/10.1016/j.proenv.2012.10.108 | spa |
dc.relation.references | Yildirim, I., & Prezzi, M. (2009). Use of steel slag in subgrade application. Purdue University | spa |
dc.relation.references | Zaragoza, V. (2001). Utilización de las escorias de los hornos de arco eléctrico y de cuchara como materiales de construcción. Unidad Docente Metalúrgia “Antillana de Acero”, La Habana: Facultad Ingeniería Mecánica. Instituto Superior Politécnico “José Antonio Echevarría” | spa |
dc.relation.references | Zhu, H., Ma, M., He, X., Zheng, Z., Su, Y., Yang, J., & Zhao, H. (2021). Effect of wet-grinding steel slag on the properties of Portland cement: An activated method and rheology analysis. Construction and Building Materials | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera | spa |
dc.subject.proposal | Agregado siderúrgico | spa |
dc.subject.proposal | Escoria de horno de arco eléctrico | spa |
dc.subject.proposal | Escoria de horno de cuchara | spa |
dc.subject.proposal | Zeolitas | spa |
dc.subject.proposal | Cemento | spa |
dc.subject.proposal | Pavimentos | spa |
dc.subject.proposal | Steel aggregate | eng |
dc.subject.proposal | Electric arc furnace slag | eng |
dc.subject.proposal | Ladle furnace slag | eng |
dc.subject.proposal | Zeolites | eng |
dc.subject.proposal | Cement | eng |
dc.subject.proposal | Pavement | eng |
dc.subject.unesco | Materiales de construcción | spa |
dc.subject.unesco | Building materials | eng |
dc.subject.unesco | Metalurgia | spa |
dc.subject.unesco | Metallurgy | eng |
dc.subject.unesco | Mineral de hierro | spa |
dc.subject.unesco | Iron ores | eng |
dc.title | Evaluación del uso potencial de agregado siderúrgico estabilizado con aditivo a base de zeolitas en infraestructura vial | spa |
dc.title.translated | Evaluation of the potential use of steel aggregate stabilized with zeolite-based additive in road infrastructure. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1023964460.2023.pdf
- Tamaño:
- 12.24 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: