Efecto del tratamiento con microondas sobre la enzima peroxidasa, los compuestos bioactivos y el color en tomate de árbol (Solanum betaceum Cav.) variedad roja

dc.contributor.advisorOrdoñez Santos, Luis Eduardo
dc.contributor.advisorMartínez Girón, Jader
dc.contributor.authorTigreros, Jaime Andres
dc.contributor.orcidhttp://orcid.org/0000-0002-6883-7064spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Agroindustriales (Gipa)spa
dc.date.accessioned2024-01-11T20:50:12Z
dc.date.available2024-01-11T20:50:12Z
dc.date.issued2023
dc.descriptionIlustraciones, tablasspa
dc.description.abstractEstablecer una relación apropiada entre la inactivación enzimática alcanzada mediante el proceso de escaldado y los impactos en nutrientes y las alteraciones en el color de los alimentos, resulta fundamental para preservar la calidad de los productos transformados. En el primer capítulo, el objetivo fue estudiar los efectos del escaldado a diferentes niveles de potencia de microondas (300, 600, 900 y 1200 W) por tiempos (15, 30, 45 y 60 segundos) sobre la inactivación de peroxidasa presente en este fruto. En comparación con el tratamiento control, el escaldado con microondas logró disminuir la actividad residual de peroxidasa por debajo del 10% en un tiempo de 45 segundos a una potencia de 900 W. Con esta información, en el segundo capítulo se evaluó el efecto de las condiciones de escaldado con microondas sobre los compuestos bioactivos, la actividad antioxidante y el color encontrando que el contenido de vitamina C, fenoles totales, carotenoides, actividad antioxidante, luminosidad, croma e índice de amarillamiento no mostraron diferencia significativa (p> 0,05) en comparación con el método convencional y el fresco. Por otro lado, vitaminas B1, B3, B5, B6, tonalidad y cambio de color, si presentaron diferencias significativas (p< 0,05). Basándose en estos hallazgos, es posible sugerir la utilización de energía de microondas como una alternativa al escaldado convencional, con el fin de inactivar la peroxidasa en un tiempo corto, conservar características nutricionales y de color en el tomate de árbol (Solanum betaceum Cav.) variedad roja. (Texto tomado de la fuente)spa
dc.description.abstractEstablishing an appropriate relationship between the enzymatic inactivation achieved through the blanching process and the impacts on nutrients and the alterations in the color of the food is essential to preserve the quality of the processed products. In the first chapter, the objective was to study the effects of blanching at different microwave power levels (300, 600, 900 and 1200 W) for times (15, 30, 45 and 60 seconds) on the inactivation of peroxidase present in this fruit. Compared with the control treatment, blanching with microwaves manages to reduce the residual activity of peroxidase below 10% in a time of 45 seconds at a power of 900 W. With this information, in the second chapter the effect of the microwave blanching conditions on bioactive compounds, antioxidant activity, and color, finding that the content of vitamin C, total phenols, carotenoids, antioxidant activity, lightness, chroma, and yellowing index did not show a significant difference (p> 0.05). compared to the conventional method and the fresh method. On the other hand, vitamins B1, B3, B5, B6, hue and color change did present significant differences (p< 0.05). Based on these findings, it is possible to suggest the use of microwave energy as an alternative option to conventional blanching, in order to inactivate peroxidase in a short time, preserving nutritional and color characteristics in this fruit.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Agroindustrialspa
dc.description.methodsLos frutos de tomate de árbol (Solanum betaceum Cav.) variedad roja, se obtuvieron de un mercado local de la ciudad de Palmira, Valle del Cauca, Colombia y fueron seleccionados teniendo en cuenta que estuvieran libres de daños mecánicos y microbiológicos y en estado de madurez de consumo, escogiendo solo los frutos en escala 5 y 6 acorde con la norma NTC 4105 (ICONTEC, 1997). El material colectado se llevó inmediatamente al laboratorio de Tecnología de frutas y hortalizas de la Universidad Nacional sede Palmira para su posterior análisis. Se realizó la metodología reportada por Ordoñez-Santos & Martínez-Girón (2019). Se lavaron los frutos con agua corriente, después se desinfectaron con hipoclorito de sodio a 100 ppm durante 10 min, se retiró el pedúnculo y el pericarpio, posteriormente se obtuvieron rodajas de 0.70 cm de espesor (altura) y 4.20 cm de diámetro, las cuales se sometieron a escaldado.spa
dc.description.researchareaAgroindustria de productos alimentariosspa
dc.format.extentxiv, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85235
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrialspa
dc.relation.referencesAgüero, M. V., Ansorena, M. R., Roura, S. I., & del Valle, C. E. (2008). Thermal inactivation of peroxidase during blanching of butternut squash. LWT - Food Science and Technology, 41(3), 401–407. https://doi.org/10.1016/j.lwt.2007.03.029spa
dc.relation.referencesAlwan, A. (2011). Global status report on noncommunicable diseases 2010. https://doi.org/https://www.who.int/about/licensing/copyright_form/en/index.htmlspa
dc.relation.referencesAtuonwu, J. C., & Tassou, S. A. (2018). Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering, 234, 1–15. https://doi.org/10.1016/j.jfoodeng.2018.04.009spa
dc.relation.referencesBadui, S. (2006). Química de los alimentos. (E. PEARSON, Ed.) (Cuarta). Naucalpan de Juárez: Mexico.spa
dc.relation.referencesBaker, P., & Friel, S. (2014). Processed foods and the nutrition transition: Evidence from Asia. Obesity Reviews, 15(7), 564–577. https://doi.org/10.1111/obr.12174spa
dc.relation.referencesBascaya, D., & Demirdoven, A. (2015). The effects of microwave blanching conditions on carrot slices: optimization and comparison. Journal of Food Processing and Preservation, 39(6), 2188–2196. https://doi.org/10.1111/jfpp.12463spa
dc.relation.referencesBehera, G., Rayaguru, K., & Nayak, P. K. (2017). Effect of Microwave Blanching on Slice Thickness and Quality Analysis of Star Fruit. Current Research in Nutrition and Food Science, 5(3).spa
dc.relation.referencesBloom, D. ., Cafiero, E. ., Jané-Llopis, E., Abrahams-Gessel, S., Bloom, L. ., Fathima, S., … Weinstein, C. (2011). The Global Economic Burden of Non-communicable Diseases. Geneva: World Economic Forum.spa
dc.relation.referencesBohs, L. (1995). Transfer of Cyphomandra (Solanaceae) and Its Species to Solanum. Source: Taxon (Vol. 44). https://doi.org/http://bohs.biology.utah.edu/PDFs/Lynn/Bohs-1995.pdfspa
dc.relation.referencesBonnechère, A., Hanot, V., Jolie, R., Hendrickx, M., Bragard, C., Bedoret, T., & Loco, J. Van. (2012). Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control, 25, 397–406. https://doi.org/10.1016/j.foodcont.2011.11.010spa
dc.relation.referencesChandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Research International, 52(1), 243–261. https://doi.org/10.1080/19443994.2015.1079258spa
dc.relation.referencesDatta, A. K., & Davidson, P. M. (2000). Microwave and Radio Frequency Processing. Journal of Food Science, 65, 32–41. https://doi.org/10.1111/j.1750-3841.2000.tb00616.xspa
dc.relation.referencesDe La Vega-Miranda, B., Santiesteban-López, N. A., López-Malo, A., & Sosa-Morales, M. E. (2012). Inactivation of Salmonella Typhimurium in fresh vegetables using water-assisted microwave heating. Food Control, 26(1), 19–22. https://doi.org/10.1016/j.foodcont.2012.01.002spa
dc.relation.referencesde los Santos, M. B., Jacobi, S. S., Miñarro, M. C. A., Balsalobre, J. A. P., Guillén, A. A., & Gorbe, M. I. F. (2020). Kinetic characterization, thermal and pH inactivation study of peroxidase and pectin methylesterase from tomato (Solanum betaceum). Food Science and Technology, 40(June), 273–279. https://doi.org/10.1590/fst.09419spa
dc.relation.referencesDorantes-Alvarez, L., Jaramillo-Flores, E., González, K., Martinez, R., & Parada, L. (2011). Blanching peppers using microwaves. Procedia Food Science, 1, 178–183. https://doi.org/10.1016/j.profoo.2011.09.028spa
dc.relation.referencesEspin, S., Gonzalez-Manzano, S., Taco, V., Poveda, C., Ayuda-Durán, B., Gonzalez-Paramas, A. M., & Santos-Buelga, C. (2016). Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chemistry, 194, 1073–1080. https://doi.org/10.1016/j.foodchem.2015.07.131spa
dc.relation.referencesFrancis, F. J. (1995). Quality as influenced by color. Food Quality and Preference, 6(3), 149–155. https://doi.org/10.1016/0950-3293(94)00026-Rspa
dc.relation.referencesFrazier, W., & Westhoff, D. (1993). Microbiología de los alimentos (4th ed.). Zaragoza: Acribia, S.A. https://doi.org/http://148.206.53.84/tesiuami/Libros/L33.pdfspa
dc.relation.referencesGarcía. (2008). Manual de manejo cosecha y poscosecha del tomate de árbol. Corpoica.spa
dc.relation.referencesGliszczyńska-Świgło, A., Ciska, E., Pawlak-Lemańska, K., Chmielewski, J., Borkowski, T., & Tyrakowska, B. (2006). Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants, 23(11), 1088–1098. https://doi.org/10.1080/02652030600887594spa
dc.relation.referencesGonçalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2010). Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. Journal of Food Engineering, 97(4), 574–581. https://doi.org/10.1016/j.jfoodeng.2009.12.005spa
dc.relation.referencesHadidi, M., Ibarz, A., Conde, J., & Pagan, J. (2019). Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food Chemistry, 276(October 2018), 591–598. https://doi.org/10.1016/j.foodchem.2018.10.049spa
dc.relation.referencesHuang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78(2), 687–692. https://doi.org/10.1016/j.jfoodeng.2005.11.007spa
dc.relation.referencesHuong, N. T. T., Thinh, P., Long, D. V., Long, H. B., Dat, U. T., Phat, D. T., Nhut, P. T., Phuc, T. B., & Nhi, T. T. Y. (2022). Effects of microwave and ultrasound treatment on vitamin C, polyphenols and antioxidant activity of mango (Mangifera Indica) during low temperature drying. Materials Today: Proceedings, 59, 781–786. https://doi.org/10.1016/j.matpr.2021.12.581spa
dc.relation.referencesHurtado, N. H., Morales, A. L., González-Miret, M. L., Escudero-Gilete, M. L., & Heredia, F. J. (2009). Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chemistry, 117(1), 88–93. https://doi.org/10.1016/j.foodchem.2009.03.081spa
dc.relation.referencesInstituto Colombiano Normas Técnicas (ICONTEC): NTC 4105: Frutas frescas. Tomate de árbol, Especificaciones. Bogotá (Colombia): 1997,15 p.spa
dc.relation.referencesIsmail, A., Marjan, Z. M., & Foong, C. W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 87(4), 581–586. https://doi.org/10.1016/j.foodchem.2004.01.010spa
dc.relation.referencesJabbar, S., Abid, M., Hu, B., Wu, T., Muhammad, M., Lei, S., … Zeng, X. (2014). Quality of carrot juice as in fl uenced by blanching and sonication treatments. LWT - Food Science and Technology, 55(1), 16–21. https://doi.org/10.1016/j.lwt.2013.09.007spa
dc.relation.referencesKutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2022). Impact of different microwave treatments on food texture. Journal of Texture Studies, 53(6), 709-736. https://doi.org/10.1111/jtxs.12635.spa
dc.relation.referencesLee, F. (1958). The Blanching Process. Advances in Food Research, 8(C), 63–109. https://doi.org/10.1016/S0065-2628(08)60018-Xspa
dc.relation.referencesLisiewska, Jacek, S., Skoczen-Stupska, & Kmiecik, W. (2009). Content of amino acids and the quality of protein in Brussels sprouts , both raw and prepared for consumption. Interna t Ional Jo Urna l o f Refrigeration, 32, 272–278. https://doi.org/10.1016/j.ijrefrig.2008.05.011spa
dc.relation.referencesLisiewska, & Kmiecik. (1996). Effects of level of nitrogen fertilizer, processing conditions and period of storage of frozen broccoli and cauliflower on vitamin C retention. Food Chemistry, 57(2), 267–270. https://doi.org/10.1016/0308-8146(95)00218-9spa
dc.relation.referencesMADR. (2018). Estadísticas del cultivo de tomate de árbol. Retrieved October 26, 2018, from http://www.agronet.gov.co/Documents/TOMATE DE ARBOL2016.pdfspa
dc.relation.referencesMADR, DNP, DANE, & ASOHOFRUCOL. (2004). I Censo nacional de 10 frutas agroindustriales y promisorias: resultados 2004. Retrieved October 25, 2018, from http://bibliotecadigital.agronet.gov.co/handle/11348/4459spa
dc.relation.referencesMarx, M., Stuparic, M., Schieber, A., & Carle, R. (2003). Effects of thermal processing on trans–cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chemistry, 83, 609–617. https://doi.org/doi:10.1016/S0308-8146(03)00255-3spa
dc.relation.referencesMukherjee, S., & Chattopadhyay, P. K. (2007). Whirling bed blanching of potato cubes and its effects on product quality. Journal of Food Engineering, 78(1), 52–60. https://doi.org/10.1016/j.jfoodeng.2005.09.001spa
dc.relation.referencesNakilcioglu-Taş, E., & Otleş, S. (2018). Degradation kinetics of bioactive compounds and antioxidant capacity of Brussels sprouts during microwave processing. International Journal of Food Properties, 20(3), S2798–S2809. https://doi.org/10.1080/10942912.2017.1375944spa
dc.relation.referencesOrdóñez, R. M., Vattuone, M. A., & Isla, M. I. (2005). Changes in carbohydrate content and related enzyme activity during Cyphomandra betacea (Cav.) Sendtn. fruit maturation. Postharvest Biology and Technology, 35(3), 293-301. https://doi.org/10.1016/j.postharvbio.2004.09.006spa
dc.relation.referencesOMS. (2016). Enfermedades No Transmisibles. Bogotá, Colombia. https://doi.org/http://www.who.int/nmh/countries/col_en.pdf?ua=1spa
dc.relation.referencesOszmiański, J., Wolniak, M., Wojdyło, A., & Wawer, I. (2008). Influence of apple purée preparation and storage on polyphenol contents and antioxidant activity. Food Chemistry. https://doi.org/10.1016/j.foodchem.2007.10.003spa
dc.relation.referencesPalma-Orozco, G., Sampedro, J. G., Ortiz-Moreno, A., & Nájera, H. (2012). In situ Inactivation of Polyphenol Oxidase in Mamey Fruit (Pouteria sapota) by Microwave Treatment. Journal of Food Science, 77(4), 359–365. https://doi.org/10.1111/j.1750-3841.2012.02632.xspa
dc.relation.referencesPhungamngoen, C., Chiewchan, N., & Devahastin, S. (2013). Effects of various pretreatments and drying methods on Salmonella resistance and physical properties of cabbage. Journal of Food Engineering, 115(2), 237–244. https://doi.org/10.1016/j.jfoodeng.2012.10.020spa
dc.relation.referencesRegier, M., Knoerzer, K., & Schubert, H. (2017). Introducing microwave-assisted processing of food. In M. Regier, K. Knoerzer, & H. Schubert (Eds.), The Microwave Processing of Foods (Second Edi, pp. 1–22). Elsevier. https://doi.org/10.1016/B978-0-08-100528-6.00001-2spa
dc.relation.referencesRoopa, R. A., Mantelingu, K., & Rangappa, K. S. (2016). Evaluation of peroxidase assay and effect of thermal blanching on sapota and fig fruits. Chemical Data Collections, 3–4, 46–57. https://doi.org/10.1016/j.cdc.2016.07.001spa
dc.relation.referencesRossi, M., Giussani, E., Morelli, R., Lo Scalzo, R., Nanic, R. C., & Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International, 36(9–10), 999–1005. https://doi.org/10.1016/j.foodres.2003.07.002spa
dc.relation.referencesSchubert, H., & Regier, M. (2005). Dielectric properties of foods. In J. Tang (Ed.), The microwave processing of foods (primera ed, pp. 22–38). Washington: Woodhead Publishing Limited.spa
dc.relation.referencesSeverini, C., Baiano, A., De Pilli, T., Carbone, B., & Derossi, A. (2005). Combined treatments of blanching and dehydration: study on potato cubes. Journal of Food Engineering, 68, 289–296. https://doi.org/10.1016/j.jfoodeng.2004.05.045spa
dc.relation.referencesStamatopoulos, K., Katsoyannos, E., Chatzilazarou, A., & Konteles, S. J. (2012). Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology. Food Chemistry, 133(2), 344–351. https://doi.org/10.1016/j.foodchem.2012.01.038spa
dc.relation.referencesTao, Y. M., Wang, S., Luo, H. L., & Yan, W. W. (2018). Peroxidase from jackfruit: Purification, characterization and thermal inactivation. International Journal of Biological Macromolecules, 114, 898–905. https://doi.org/10.1016/j.ijbiomac.2018.04.007spa
dc.relation.referencesTao, Y. M., Yao, L. Y., Qin, Q. Y., & Shen, W. (2013). Purification and characterization of polyphenol oxidase from jackfruit (Artocarpus heterophyllus) bulbs. Journal of Agricultural and Food Chemistry, 61(51), 12662–12669. https://doi.org/10.1021/jf403828espa
dc.relation.referencesThe High Level Panel of Experts on Food Security and Nutrition. (2017). Nutrition and food systems. Roma.spa
dc.relation.referencesTomadoni, B., Cassani, L., Viacava, G., Del, M., Moreira, R., & Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering, (November 2016), 1–8. https://doi.org/10.1111/jfpe.12533spa
dc.relation.referencesUddin, M. S., Hawlader, M. N. A., & Zhou, L. (2001). Drying Technology : An kinetics of ascorbic acid degradation in dried kiwifruits during storage. Drying Technology, 19(2)(2001), 437–446. https://doi.org/10.1081/DRT-100102916spa
dc.relation.referencesValdez, J. (2018). Rangos de conductividad eléctrica en semilla de tomate de árbol (Solanum betaceum Cav.) utilizando el equipo SAD 9000-S. Universidad Central del Ecuador.spa
dc.relation.referencesVerbeyst, L., Bogaerts, R., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2013). Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food and Bioprocess Technology, 6(4), 1015–1023. https://doi.org/10.1007/s11947-012-0784-yspa
dc.relation.referencesYadav, N., Saini, P., Kaur, D., Gupta, V. K., Kaundal, B., Kumar, R., & Mishra, P. (2023). Blanching Effect on Nutritionally Important Starch Fractions of Selected Processing Potato cultivars. Food Chemistry Advances, 100404. https://doi.org/10.1016/j.focha.2023.100404.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocRadiación electromagnética
dc.subject.agrovocElectromagnetic radiation
dc.subject.agrovocMicroondas
dc.subject.agrovocMicrowave radiation
dc.subject.agrovocCompuestos bioactivos
dc.subject.agrovocBioactive compounds
dc.subject.agrovocSolanum betaceum
dc.subject.agrovocColor de las frutas
dc.subject.agrovocFruit colour
dc.subject.ddc664 - Tecnología de alimentosspa
dc.subject.proposalPeroxidasaspa
dc.subject.proposalFitoquímicosspa
dc.subject.proposalTamarillospa
dc.subject.proposalDPPHspa
dc.subject.proposalVitamina Cspa
dc.subject.proposalVitaminas B
dc.subject.proposalPeroxidasespa
dc.subject.proposalPhytochemicalsspa
dc.subject.proposalTamarillospa
dc.subject.proposalDPPHspa
dc.subject.proposalVitamin Cspa
dc.subject.proposalVitamins Bspa
dc.titleEfecto del tratamiento con microondas sobre la enzima peroxidasa, los compuestos bioactivos y el color en tomate de árbol (Solanum betaceum Cav.) variedad rojaspa
dc.title.translatedEffect of microwave treatment on peroxidase enzyme, bioactive compounds and color in tamarillo (Solanum betaceum Cav.) red varietyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1113619047.2023.pdf
Tamaño:
871.05 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Agroindustrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: