Desarrollo y solución computacional de un modelo electrostático para celdas solares de nanoalambres de unión radial

dc.contributor.advisorMorales-Acevedo, Arturo
dc.contributor.advisorBernal Correa, Roberto
dc.contributor.authorJoven Rodríguez, Christian David
dc.date.accessioned2023-02-09T13:10:02Z
dc.date.available2023-02-09T13:10:02Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractEn este trabajo, se presenta el desarrollo un modelo electrostático general para heterouniones de nanoalambres de unión radial resolviendo la ecuación de Poisson en coordenadas cilíndricas. A diferencia de las homouniones y heterouniones unidimensionales planas, en este caso, las ecuaciones trascendentales deben resolverse numéricamente para determinar las dimensiones de las regiones de carga espacial, para este fin se usó el método de Newton Raphson. También se obtienen y grafican el campo eléctrico y la distribución de potencial en la heterounión radial para diferentes voltajes de polarización. Como ejemplos, se simularon las estructuras de nanoalambres de heterounión InP/Si y de homounión InP para ser estudiadas electrostáticamente. Este trabajo pretende ser la base para desarrollar un modelo más completo para celdas solares basadas en heterouniones de nanoalambres de unión radial bajo la luz solar. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, an electrostatic model for radial nanowire heterojunctions was developed by solving Poisson´s equation in cylindrical coordinates. In contrast to planar one-dimensional homo and heterojunctions, in this case, transcendental equations must be solved numerically to determine the radial space-charge dimensions, for this purpose the Newton Raphson method was used. The electric field and potential distribution in the radial heterojunction are also obtained and graphed for different polarization voltages. As examples, InP/Si heterojunction and InP homojunction nanowire structures was simulated and electrostatically studied. This work is intended to be the basis for developing a more complete model for radial nanowire heterojunction solar cells under sunlight.eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.methodsCuantitativa-Correlacionalspa
dc.description.researchareaFísica de semiconductores y celdas solaresspa
dc.format.extentxiii, 57 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83394
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesM. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renew. Sustain. Energy Rev., vol. 11, no. 7, pp. 1388– 1413, Sep. 2007, doi: 10.1016/J.RSER.2005.12.004.spa
dc.relation.referencesC. Chen et al., “Recent Advances in Solar Energy Full Spectrum Conversion and Utilization,” ES Energy Environ., 2021, doi: 10.30919/ESEE8C416.spa
dc.relation.referencesA. Schinke-Nendza, F. von Loeper, P. Osinski, P. Schaumann, V. Schmidt, and C. Weber, “Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies,” Appl. Energy, vol. 304, p. 117599, Dec. 2021, doi: 10.1016/J.APENERGY.2021.117599.spa
dc.relation.referencesZ. Li, H. H. Tan, C. Jagadish, and L. Fu, “III–V Semiconductor Single Nanowire Solar Cells: A Review,” Adv. Mater. Technol., vol. 3, no. 9, pp. 1–12, 2018.spa
dc.relation.referencesA. Ghazy, M. Safdar, M. Lastusaari, H. Savin, and M. Karppinen, “Advances in upconversion enhanced solar cell performance,” Sol. Energy Mater. Sol. Cells, vol. 230, p. 111234, Sep. 2021, doi: 10.1016/J.SOLMAT.2021.111234.spa
dc.relation.referencesE. C. Garnett, B. Ehrler, A. Polman, and E. Alarcon-Llado, “Photonics for Photovoltaics: Advances and Opportunities,” ACS Photonics, vol. 8, no. 1, pp. 61– 70, Jan. 2020, doi: 10.1021/ACSPHOTONICS.0C01045.spa
dc.relation.referencesG. Otnes and M. T. Borgström, “Towards high efficiency nanowire solar cells,” Nano Today, vol. 12, pp. 31–45, 2017.spa
dc.relation.referencesJ. Zhang, "Solar PV Market Research and Industry Competition Report," IOP Conf. Series: Earth and Environmental Science, vol 632 p. 032047, 2021 doi:10.1088/1755-1315/632/3/032047spa
dc.relation.referencesK. T. VanSant, A. C. Tamboli, and E. L. Warren, “III-V-on-Si Tandem Solar Cells,” Joule, vol. 5, no. 3, pp. 514–518, Mar. 2021, doi: 10.1016/J.JOULE.2021.01.010.spa
dc.relation.referencesZ. Fang et al., “Perovskite-based tandem solar cells,” Sci. Bull., vol. 66, no. 6, pp. 621–636, Mar. 2021, doi: 10.1016/J.SCIB.2020.11.006.spa
dc.relation.referencesQ. Guo, C.-Y. Wang, T. Hayat, A. Alsaedi, J.-X. Yao, and Z.-A. Tan, “Recent advances in perovskite/organic integrated solar cells,” Rare Met. 2021 4010, vol. 40, no. 10, pp. 2763–2777, Feb. 2021, doi: 10.1007/S12598-020-01703-Y.spa
dc.relation.referencesB. Pal, K. J. Sarkar, and P. Banerji, “Fabrication and studies on Si/InP core-shell nanowire based solar cell using etched Si nanowire arrays,” Sol. Energy Mater. Sol. Cells, vol. 204, p. 110217, Jan. 2020, doi: 10.1016/J.SOLMAT.2019.110217.spa
dc.relation.referencesN. I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner, S. McNamee, and R. R. LaPierre, “Nanowires for energy: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018.spa
dc.relation.referencesM. K. Sahoo and P. Kale, “Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review,” J. Mater., vol. 5, no. 1, pp. 34–48, Mar. 2019, doi: 10.1016/J.JMAT.2018.11.007.spa
dc.relation.referencesK. Korzun, G. W. Castellanos, D. K. G. de Boer, J. G. Rivas, and J. E. M. Haverkort, “Nanowire Solar Cell Above the Radiative Limit,” Adv. Opt. Mater., vol. 9, no. 2, p. 2001636, Jan. 2021, doi: 10.1002/ADOM.202001636.spa
dc.relation.referencesI. Aberg et al., “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 185–190, Jan. 2016, doi: 10.1109/JPHOTOV.2015.2484967.spa
dc.relation.referencesL. Hrachowina, Y. Zhang, A. Saxena, G. Siefer, E. Barrigon, and M. T. Borgstrom, “Development and Characterization of a bottom-up InP Nanowire Solar Cell with 16.7% Efficiency,” Conf. Rec. IEEE Photovolt. Spec. Conf., vol. 2020-June, pp. 1754–1756, Jun. 2020, doi: 10.1109/PVSC45281.2020.9300394.spa
dc.relation.referencesK. Lee et al., “17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures,” Nanoscale, vol. 8, no. 30, pp. 14473–14479, Jul. 2016, doi: 10.1039/C6NR04611H.spa
dc.relation.referencesO. V. Pylypova et al., “Electrical and optical properties of nanowires based solar cell withradial p-n junction,” Opto-electronics Rev., vol. 27, no. 2, pp. 143–148, 2019.spa
dc.relation.referencesS. Misra, L. Yu, W. Chen, M. Foldyna, and P. R. i Cabarrocas, “A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells,” J. Phys. D. Appl. Phys., vol. 47, no. 39, p. 393001, Sep. 2014, doi: 10.1088/0022- 3727/47/39/393001.spa
dc.relation.referencesE. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” http://dx.doi.org/10.1146/annurev-matsci-062910-100434, vol. 41, pp. 269– 295, Jul. 2011, doi: 10.1146/ANNUREV-MATSCI-062910-100434.spa
dc.relation.referencesB. Tian et al., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449, no. 7164, pp. 885–889, 2007.spa
dc.relation.referencesA. A. Luna, R. B. Correa, J. M. Monsalve, and A. M. Acevedo, “Design of thin film solar cells based on a unified simple analytical model,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 599–608, Jul. 2019, doi: 10.1016/J.JART.2017.08.002.spa
dc.relation.referencesT. Ratz, J.-Y. Raty, G. Brammertz, B. Vermang, and N. D. Nguyen, “Opto-electronic properties and solar cell efficiency modelling of Cu2ZnXS4 (X = Sn, Ge, Si) kesterites,” J. Phys. Energy, vol. 3, no. 3, p. 035005, Jun. 2021, doi: 10.1088/2515- 7655/ABEFBE.spa
dc.relation.referencesF. A. Abed and L. M. Ali, “Investigation the absorption efficiency of GaAs/InAs nanowire solar cells,” J. Lumin., vol. 237, p. 118171, Sep. 2021, doi: 10.1016/J.JLUMIN.2021.118171.spa
dc.relation.referencesA. C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys., vol. 114, no. 7, p. 074317, Aug. 2013, doi: 10.1063/1.4818958.spa
dc.relation.referencesS. K. Agnihotri, D. P. Samajdar, D. V. Prashant, and Z. Arefinia, “Numerical analysis of InP based high efficiency radial junction nanowire solar cell,” Opt. Mater. (Amst)., vol. 119, p. 111365, Sep. 2021, doi: 10.1016/J.OPTMAT.2021.111365.spa
dc.relation.referencesAli NM, Allam NK, Haleem AMA, Rafat NH. Analytical modeling of the radial pn junction nanowire solar cells. J Appl Phys 2014.spa
dc.relation.referencesKayes BM, Atwatera HA, Lewis NS. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 2005.spa
dc.relation.referencesPetrosyan S, Yesayan A, Nersesyan S. Theory of nanowire radial p-n-junction, World Academy of Science, Engineering and Technology; 2012. p. 1038–43.spa
dc.relation.referencesWang S, Yan X, Zhang X, Li J, Ren X. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells. Nanoscale Res Lett 2015.spa
dc.relation.referencesYao M, Cong S, Arab S, Huang N, Povinelli ML, Cronin SB, et al. Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition. NanoLetters 2015.spa
dc.relation.referencesLi M, Hu X, Ye Z, Ho K-M, Cao J, Miyawaki M. Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation. Opt Lett 2006:31.spa
dc.relation.referencesLi Y, Li M, Fu P, Li R, Song D, Shen C, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells. Sci Rep 2015;5:1–5.spa
dc.relation.referencesLundgren C, Lopez R, Redwing J, Melde K. FDTD modeling of solar energy absorption in silicon branched nanowires. Opt Express 2013:21.spa
dc.relation.referencesSturmberg BrCP, Dossou KB, Botten LC, Asatryan AA, Poulton CG, McPhedran RC, et al. Optimizing photovoltaic charge generation of nanowire arrays: a simple semianalytic approach. ACS Photon 2014.spa
dc.relation.referencesC. de T.-M. Ibergraphi and undefined 2002, Energía solar fotovoltaica.spa
dc.relation.referencesV. López Rodríguez, “Electromagnetismo I.,” p. 522, 2000.spa
dc.relation.referencesN. Ida, “Engineering electromagnetics,” p. 1235, 2004, Accessed: May 22, 2022.spa
dc.relation.referencesB. B. Laud, “Electromagnetics,” p. 335, 1987,spa
dc.relation.referencesJ. M. Díaz Moreno and F. Benítez Trujillo, “Introducción a los métodos numéricos para la resolución de ecuaciones,” p. 124, 1998.spa
dc.relation.referencesJ. Costa Vigil and U. Ricardo Palma, “APPLICATION OF NUMERICAL METHODS TO SOLVE NONLINEAR EQUATIONS FOR SEA WAVE MODELING Escuela Profesional de Ingeniería Electrónica.”spa
dc.relation.referencesS. M. (Solomon M. Ryvkin and I. V. (I ︠U︡ riĭ V. Shmart ︠s ︡ev, “Physics of p-n junctions and semiconductor devices.,” p. 366, 1971, Accessed: May 22, 2022.spa
dc.relation.referencesHabib, M.H. Semiconductor P-n Junction Space Charge Region Capacitance. Portland State University 1992.spa
dc.relation.referencesN. Huang and M. L. Povinelli, “Design of Passivation Layers on Axial Junction GaAs Nanowire Solar Cells,” 2014, doi: 10.1109/JPHOTOV.2014.2351624.spa
dc.relation.referencesMark Lundstrom, "Heterostructure Fundamentals", School of Electrical and Computer Engineering-Purdue University 1995.spa
dc.relation.referencesS. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” Phys. Semicond. Devices, Oct. 2006, doi: 10.1002/0470068329.spa
dc.relation.referencesM. Yamaguchi, C. Uemura, and A. Yamamoto, “Radiation damage in InP single crystals and solar cells,” J. Appl. Phys., vol. 55, no. 6, p. 1429, Jun. 1998, doi: 10.1063/1.333396.spa
dc.relation.referencesV. Raj et al., “Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer,” J. Phys. D. Appl. Phys., vol. 51, no. 39, p. 395301, Aug. 2018, doi: 10.1088/1361-6463/AAD7E3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembSistemas de energía fotovoltaicaspa
dc.subject.proposalHeterounionesspa
dc.subject.proposalModelos electrostáticosspa
dc.subject.proposalCeldas solaresspa
dc.subject.proposalNanoalambresspa
dc.subject.proposalNanowire solar cellseng
dc.subject.proposalHeterojunctionseng
dc.subject.proposalElectrostatic modelseng
dc.titleDesarrollo y solución computacional de un modelo electrostático para celdas solares de nanoalambres de unión radialspa
dc.title.translatedDevelopment and computational solution of an electrostatic model for radial junction nanowire solar cellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053863898.2022.pdf
Tamaño:
1.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: