Desarrollo y solución computacional de un modelo electrostático para celdas solares de nanoalambres de unión radial
dc.contributor.advisor | Morales-Acevedo, Arturo | |
dc.contributor.advisor | Bernal Correa, Roberto | |
dc.contributor.author | Joven Rodríguez, Christian David | |
dc.date.accessioned | 2023-02-09T13:10:02Z | |
dc.date.available | 2023-02-09T13:10:02Z | |
dc.date.issued | 2022 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | En este trabajo, se presenta el desarrollo un modelo electrostático general para heterouniones de nanoalambres de unión radial resolviendo la ecuación de Poisson en coordenadas cilíndricas. A diferencia de las homouniones y heterouniones unidimensionales planas, en este caso, las ecuaciones trascendentales deben resolverse numéricamente para determinar las dimensiones de las regiones de carga espacial, para este fin se usó el método de Newton Raphson. También se obtienen y grafican el campo eléctrico y la distribución de potencial en la heterounión radial para diferentes voltajes de polarización. Como ejemplos, se simularon las estructuras de nanoalambres de heterounión InP/Si y de homounión InP para ser estudiadas electrostáticamente. Este trabajo pretende ser la base para desarrollar un modelo más completo para celdas solares basadas en heterouniones de nanoalambres de unión radial bajo la luz solar. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this work, an electrostatic model for radial nanowire heterojunctions was developed by solving Poisson´s equation in cylindrical coordinates. In contrast to planar one-dimensional homo and heterojunctions, in this case, transcendental equations must be solved numerically to determine the radial space-charge dimensions, for this purpose the Newton Raphson method was used. The electric field and potential distribution in the radial heterojunction are also obtained and graphed for different polarization voltages. As examples, InP/Si heterojunction and InP homojunction nanowire structures was simulated and electrostatically studied. This work is intended to be the basis for developing a more complete model for radial nanowire heterojunction solar cells under sunlight. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.methods | Cuantitativa-Correlacional | spa |
dc.description.researcharea | Física de semiconductores y celdas solares | spa |
dc.format.extent | xiii, 57 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83394 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | M. Asif and T. Muneer, “Energy supply, its demand and security issues for developed and emerging economies,” Renew. Sustain. Energy Rev., vol. 11, no. 7, pp. 1388– 1413, Sep. 2007, doi: 10.1016/J.RSER.2005.12.004. | spa |
dc.relation.references | C. Chen et al., “Recent Advances in Solar Energy Full Spectrum Conversion and Utilization,” ES Energy Environ., 2021, doi: 10.30919/ESEE8C416. | spa |
dc.relation.references | A. Schinke-Nendza, F. von Loeper, P. Osinski, P. Schaumann, V. Schmidt, and C. Weber, “Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies,” Appl. Energy, vol. 304, p. 117599, Dec. 2021, doi: 10.1016/J.APENERGY.2021.117599. | spa |
dc.relation.references | Z. Li, H. H. Tan, C. Jagadish, and L. Fu, “III–V Semiconductor Single Nanowire Solar Cells: A Review,” Adv. Mater. Technol., vol. 3, no. 9, pp. 1–12, 2018. | spa |
dc.relation.references | A. Ghazy, M. Safdar, M. Lastusaari, H. Savin, and M. Karppinen, “Advances in upconversion enhanced solar cell performance,” Sol. Energy Mater. Sol. Cells, vol. 230, p. 111234, Sep. 2021, doi: 10.1016/J.SOLMAT.2021.111234. | spa |
dc.relation.references | E. C. Garnett, B. Ehrler, A. Polman, and E. Alarcon-Llado, “Photonics for Photovoltaics: Advances and Opportunities,” ACS Photonics, vol. 8, no. 1, pp. 61– 70, Jan. 2020, doi: 10.1021/ACSPHOTONICS.0C01045. | spa |
dc.relation.references | G. Otnes and M. T. Borgström, “Towards high efficiency nanowire solar cells,” Nano Today, vol. 12, pp. 31–45, 2017. | spa |
dc.relation.references | J. Zhang, "Solar PV Market Research and Industry Competition Report," IOP Conf. Series: Earth and Environmental Science, vol 632 p. 032047, 2021 doi:10.1088/1755-1315/632/3/032047 | spa |
dc.relation.references | K. T. VanSant, A. C. Tamboli, and E. L. Warren, “III-V-on-Si Tandem Solar Cells,” Joule, vol. 5, no. 3, pp. 514–518, Mar. 2021, doi: 10.1016/J.JOULE.2021.01.010. | spa |
dc.relation.references | Z. Fang et al., “Perovskite-based tandem solar cells,” Sci. Bull., vol. 66, no. 6, pp. 621–636, Mar. 2021, doi: 10.1016/J.SCIB.2020.11.006. | spa |
dc.relation.references | Q. Guo, C.-Y. Wang, T. Hayat, A. Alsaedi, J.-X. Yao, and Z.-A. Tan, “Recent advances in perovskite/organic integrated solar cells,” Rare Met. 2021 4010, vol. 40, no. 10, pp. 2763–2777, Feb. 2021, doi: 10.1007/S12598-020-01703-Y. | spa |
dc.relation.references | B. Pal, K. J. Sarkar, and P. Banerji, “Fabrication and studies on Si/InP core-shell nanowire based solar cell using etched Si nanowire arrays,” Sol. Energy Mater. Sol. Cells, vol. 204, p. 110217, Jan. 2020, doi: 10.1016/J.SOLMAT.2019.110217. | spa |
dc.relation.references | N. I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner, S. McNamee, and R. R. LaPierre, “Nanowires for energy: A review,” Appl. Phys. Rev., vol. 5, no. 4, 2018. | spa |
dc.relation.references | M. K. Sahoo and P. Kale, “Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review,” J. Mater., vol. 5, no. 1, pp. 34–48, Mar. 2019, doi: 10.1016/J.JMAT.2018.11.007. | spa |
dc.relation.references | K. Korzun, G. W. Castellanos, D. K. G. de Boer, J. G. Rivas, and J. E. M. Haverkort, “Nanowire Solar Cell Above the Radiative Limit,” Adv. Opt. Mater., vol. 9, no. 2, p. 2001636, Jan. 2021, doi: 10.1002/ADOM.202001636. | spa |
dc.relation.references | I. Aberg et al., “A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 185–190, Jan. 2016, doi: 10.1109/JPHOTOV.2015.2484967. | spa |
dc.relation.references | L. Hrachowina, Y. Zhang, A. Saxena, G. Siefer, E. Barrigon, and M. T. Borgstrom, “Development and Characterization of a bottom-up InP Nanowire Solar Cell with 16.7% Efficiency,” Conf. Rec. IEEE Photovolt. Spec. Conf., vol. 2020-June, pp. 1754–1756, Jun. 2020, doi: 10.1109/PVSC45281.2020.9300394. | spa |
dc.relation.references | K. Lee et al., “17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures,” Nanoscale, vol. 8, no. 30, pp. 14473–14479, Jul. 2016, doi: 10.1039/C6NR04611H. | spa |
dc.relation.references | O. V. Pylypova et al., “Electrical and optical properties of nanowires based solar cell withradial p-n junction,” Opto-electronics Rev., vol. 27, no. 2, pp. 143–148, 2019. | spa |
dc.relation.references | S. Misra, L. Yu, W. Chen, M. Foldyna, and P. R. i Cabarrocas, “A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells,” J. Phys. D. Appl. Phys., vol. 47, no. 39, p. 393001, Sep. 2014, doi: 10.1088/0022- 3727/47/39/393001. | spa |
dc.relation.references | E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” http://dx.doi.org/10.1146/annurev-matsci-062910-100434, vol. 41, pp. 269– 295, Jul. 2011, doi: 10.1146/ANNUREV-MATSCI-062910-100434. | spa |
dc.relation.references | B. Tian et al., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449, no. 7164, pp. 885–889, 2007. | spa |
dc.relation.references | A. A. Luna, R. B. Correa, J. M. Monsalve, and A. M. Acevedo, “Design of thin film solar cells based on a unified simple analytical model,” J. Appl. Res. Technol., vol. 15, no. 6, pp. 599–608, Jul. 2019, doi: 10.1016/J.JART.2017.08.002. | spa |
dc.relation.references | T. Ratz, J.-Y. Raty, G. Brammertz, B. Vermang, and N. D. Nguyen, “Opto-electronic properties and solar cell efficiency modelling of Cu2ZnXS4 (X = Sn, Ge, Si) kesterites,” J. Phys. Energy, vol. 3, no. 3, p. 035005, Jun. 2021, doi: 10.1088/2515- 7655/ABEFBE. | spa |
dc.relation.references | F. A. Abed and L. M. Ali, “Investigation the absorption efficiency of GaAs/InAs nanowire solar cells,” J. Lumin., vol. 237, p. 118171, Sep. 2021, doi: 10.1016/J.JLUMIN.2021.118171. | spa |
dc.relation.references | A. C. E. Chia and R. R. LaPierre, “Electrostatic model of radial pn junction nanowires,” J. Appl. Phys., vol. 114, no. 7, p. 074317, Aug. 2013, doi: 10.1063/1.4818958. | spa |
dc.relation.references | S. K. Agnihotri, D. P. Samajdar, D. V. Prashant, and Z. Arefinia, “Numerical analysis of InP based high efficiency radial junction nanowire solar cell,” Opt. Mater. (Amst)., vol. 119, p. 111365, Sep. 2021, doi: 10.1016/J.OPTMAT.2021.111365. | spa |
dc.relation.references | Ali NM, Allam NK, Haleem AMA, Rafat NH. Analytical modeling of the radial pn junction nanowire solar cells. J Appl Phys 2014. | spa |
dc.relation.references | Kayes BM, Atwatera HA, Lewis NS. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 2005. | spa |
dc.relation.references | Petrosyan S, Yesayan A, Nersesyan S. Theory of nanowire radial p-n-junction, World Academy of Science, Engineering and Technology; 2012. p. 1038–43. | spa |
dc.relation.references | Wang S, Yan X, Zhang X, Li J, Ren X. Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells. Nanoscale Res Lett 2015. | spa |
dc.relation.references | Yao M, Cong S, Arab S, Huang N, Povinelli ML, Cronin SB, et al. Tandem solar cells using GaAs nanowires on Si: design, fabrication, and observation of voltage addition. NanoLetters 2015. | spa |
dc.relation.references | Li M, Hu X, Ye Z, Ho K-M, Cao J, Miyawaki M. Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation. Opt Lett 2006:31. | spa |
dc.relation.references | Li Y, Li M, Fu P, Li R, Song D, Shen C, et al. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells. Sci Rep 2015;5:1–5. | spa |
dc.relation.references | Lundgren C, Lopez R, Redwing J, Melde K. FDTD modeling of solar energy absorption in silicon branched nanowires. Opt Express 2013:21. | spa |
dc.relation.references | Sturmberg BrCP, Dossou KB, Botten LC, Asatryan AA, Poulton CG, McPhedran RC, et al. Optimizing photovoltaic charge generation of nanowire arrays: a simple semianalytic approach. ACS Photon 2014. | spa |
dc.relation.references | C. de T.-M. Ibergraphi and undefined 2002, Energía solar fotovoltaica. | spa |
dc.relation.references | V. López Rodríguez, “Electromagnetismo I.,” p. 522, 2000. | spa |
dc.relation.references | N. Ida, “Engineering electromagnetics,” p. 1235, 2004, Accessed: May 22, 2022. | spa |
dc.relation.references | B. B. Laud, “Electromagnetics,” p. 335, 1987, | spa |
dc.relation.references | J. M. Díaz Moreno and F. Benítez Trujillo, “Introducción a los métodos numéricos para la resolución de ecuaciones,” p. 124, 1998. | spa |
dc.relation.references | J. Costa Vigil and U. Ricardo Palma, “APPLICATION OF NUMERICAL METHODS TO SOLVE NONLINEAR EQUATIONS FOR SEA WAVE MODELING Escuela Profesional de Ingeniería Electrónica.” | spa |
dc.relation.references | S. M. (Solomon M. Ryvkin and I. V. (I ︠U︡ riĭ V. Shmart ︠s ︡ev, “Physics of p-n junctions and semiconductor devices.,” p. 366, 1971, Accessed: May 22, 2022. | spa |
dc.relation.references | Habib, M.H. Semiconductor P-n Junction Space Charge Region Capacitance. Portland State University 1992. | spa |
dc.relation.references | N. Huang and M. L. Povinelli, “Design of Passivation Layers on Axial Junction GaAs Nanowire Solar Cells,” 2014, doi: 10.1109/JPHOTOV.2014.2351624. | spa |
dc.relation.references | Mark Lundstrom, "Heterostructure Fundamentals", School of Electrical and Computer Engineering-Purdue University 1995. | spa |
dc.relation.references | S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” Phys. Semicond. Devices, Oct. 2006, doi: 10.1002/0470068329. | spa |
dc.relation.references | M. Yamaguchi, C. Uemura, and A. Yamamoto, “Radiation damage in InP single crystals and solar cells,” J. Appl. Phys., vol. 55, no. 6, p. 1429, Jun. 1998, doi: 10.1063/1.333396. | spa |
dc.relation.references | V. Raj et al., “Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer,” J. Phys. D. Appl. Phys., vol. 51, no. 39, p. 395301, Aug. 2018, doi: 10.1088/1361-6463/AAD7E3 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.lemb | Sistemas de energía fotovoltaica | spa |
dc.subject.proposal | Heterouniones | spa |
dc.subject.proposal | Modelos electrostáticos | spa |
dc.subject.proposal | Celdas solares | spa |
dc.subject.proposal | Nanoalambres | spa |
dc.subject.proposal | Nanowire solar cells | eng |
dc.subject.proposal | Heterojunctions | eng |
dc.subject.proposal | Electrostatic models | eng |
dc.title | Desarrollo y solución computacional de un modelo electrostático para celdas solares de nanoalambres de unión radial | spa |
dc.title.translated | Development and computational solution of an electrostatic model for radial junction nanowire solar cells | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053863898.2022.pdf
- Tamaño:
- 1.48 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: