Adsorción del contaminante emergente cafeína en medio acuoso empleando una arcilla modificada

dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorCarrero, Javier Ignacio
dc.contributor.authorQuintero Jaramillo, Javier Andres
dc.contributor.orcidQuintero Jaramillo, Javier Andres (0000-0002-8879-6095)spa
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicosspa
dc.contributor.researchgroupGrupo de Fisicoquímica Computacionalspa
dc.date.accessioned2024-07-19T13:36:35Z
dc.date.available2024-07-19T13:36:35Z
dc.date.issued2024-06-13
dc.descriptionfotografías, graficas, tablaseng
dc.description.abstractEn la presente investigación se estudió de adsorción de cafeína sobre una bentonita modificada mediante tratamiento térmico. La materia prima del adsorbente fue una arcilla tipo bentonita, proveniente de un depósito ubicado en Armero-Guayabal (Tolima), zona que se caracteriza por la presencia de rocas arcillosas de origen volcánico, con influencia del volcán Nevado del Ruiz. La arcilla purificada se sometió a tratamiento térmico a 200, 300, 400 y 500 °C, obteniéndose diferentes adsorbentes. A cada uno de los materiales obtenidos y a arcilla purificada secada a 60 °C, se les realizó caracterización química, estructural, textural empleando diferentes técnicas de análisis (FRX, DRX, adsorción de N2 a 77 K), con el fin de identificar cambios asociados al tratamiento térmico y su efecto en el proceso de adsorción. A partir de ensayos iniciales de adsorción con cada uno de los adsorbentes obtenidos mediante el tratamiento térmico a las diferentes temperaturas, se estableció la influencia del tiempo de contacto, pH inicial y velocidad de agitación sobre la adsorción de cafeína y se seleccionó el adsorbente tratado térmicamente a 400 °C (denominado Bent-Na-400) como el de mejor desempeño. Posteriormente, se planteó un diseño experimental basado en la metodología de superficie de respuesta, donde se analizaron los efectos de la dosis de adsorbente y concentración inicial de cafeína sobre la remoción de este compuesto empleando Bent-Na-400 como material adsorbente. Los datos experimentales de remoción de cafeína se ajustaron a un modelo cuadrático, el cual describió adecuadamente las relaciones entre las variables experimentales y la función de respuesta. El diseño experimental también permitió obtener los parámetros óptimos para la remoción de cafeína, los cuales fueron el insumo para definir los intervalos para la realización de ensayos tendientes a estudiar el equilibrio, cinética y procesos difusionales en la adsorción de cafeína sobre Bent-Na 400. Los resultados de los ensayos de equilibrio de adsorción fueron ajustados a diferentes modelos de isotermas de adsorción, obteniéndose que el que mejor ajuste fue a los modelos de Toth, Redlich-Peterson y Langmuir con coeficientes de determinación mayores a 0,9851. La capacidad máxima de adsorción a 25 °C determinada con el modelo de Langmuir fue de 80,33 mg/g. También se encontró que los modelos cinéticos de mejor ajuste fueron los de Elovich y pseudo segundo orden, lo que sugiere que los sitios activos del adsorbente son heterogéneos y que el proceso de adsorción está controlado por la transferencia de masa externa. Considerando los resultados de la caracterización fisicoquímica del material BentNa-400, se estableció que el tratamiento térmico a 400 °C favoreció la formación de grupos silanol e hidróxido de aluminio en el adsorbente y que estos grupos pueden interactuar con la molécula de cafeína en la superficie del adsorbente mediante puentes de hidrógeno. Seguidamente se aplicaron modelos difusionales a los datos obtenidos en los ensayos cinéticos y se encontró un buen ajuste a los modelos de difusión en la película líquida (DPL) y difusión intrapartícula (DIP). Este análisis permitió establecer que la velocidad global de adsorción de cafeína sobre bentonita modificada térmicamente a 400 °C, está controlada en los primeros dos minutos del proceso por la difusión en la película líquida, seguida de la difusión intrapartícula entre los 4 y 26 minutos de tiempo de contacto. El transporte externo de masa (difusión en la película líquida) y la difusión intrapartícula son responsables del 79,4 y 16,7% de la remoción promedio de cafeína sobre Bent-Na-400, aunque la difusión intrapartícula es mucho más lenta que la difusión en la película líquida. Por tanto, la difusión en la película liquida es la etapa limítate de la adsorción de cafeína sobre Bent-Na-400. Para finalizar, se realizó un análisis preliminar de costos para la adsorción de cafeína en solución acuosa (30 mg/L) usando Bent-Na-400 y un caudal de 8 L/s. Los costos unitarios estuvieron entre 41 y 43 USD/kg cafeína removida, considerando un escenario sin y con regeneración, respectivamente. Con base en el análisis de costos se puede inferir que la adsorción de cafeína sobre Bent-Na-400 es un sistema de tratamiento económico, y que el adsorbente de origen natural es favorable desde el punto de vista ambiental (Texto tomado de la fuente)spa
dc.description.abstractThe present investigation studied caffeine adsorption on bentonite modified by heat treatment. The raw material of the adsorbent was a bentonite-type clay, coming from a deposit located in Armero-Guayabal (Tolima), an area characterized by the presence of clay rocks of volcanic origin, with the influence of the Nevado del Ruiz volcano. The purified clay was subjected to heat treatment at 200, 300, 400, and 500 °C to obtain different adsorbents. Chemical, structural, and textural characterization was carried out on each material obtained and on the purified clay dried at 60 °C using different analysis techniques (XRF, XRD, N2 adsorption at 77 K) to identify associated changes to thermal treatment and its effect on the adsorption process. From initial adsorption tests with each of the adsorbents obtained through thermal treatment at different temperatures, the influence of contact time, initial pH, and stirring speed on caffeine adsorption was established, and the thermally treated adsorbent at 400 °C (named Bent-Na-400) was selected as the one with the best performance. Subsequently, an experimental design was proposed based on the response surface methodology, where the effects of the adsorbent dose and initial concentration of caffeine on the removal of this compound were analyzed using Na-Bent-400 as adsorbent material. The experimental caffeine removal data were fitted to a quadratic model, which adequately described the relationships between the experimental variables and the response function. The experimental design also allowed the optimal parameters for removing caffeine to be obtained, which were the input to define the intervals for carrying out tests to study the equilibrium, kinetics, and diffusional processes in caffeine adsorption on Bent-Na-400. The results of the adsorption equilibrium tests were adjusted to different adsorption isotherm models, obtaining the best fit to the Toth, Redlich Peterson, and Langmuir models with determination coefficients greater than 0.9851. The maximum adsorption capacity at 25 °C determined with the Langmuir model was 80.33 mg/g. It was also found that the bestfitting kinetic models were those of Elovich and pseudo-second-order, which suggests that the active sites of the adsorbent are heterogeneous and that the adsorption process is controlled by external mass transfer. Considering the results of the physicochemical characterization of the Na-Bent- 400 material, it was established that the thermal treatment at 400 °C favored silanol and aluminol groups forming in the adsorbent and that these groups can interact with the caffeine molecule on the surface of the adsorbent through hydrogen bonds. Diffusional models were then applied to data obtained in the kinetic tests, and a good fit for the diffusion in the liquid film (DLF) and intraparticle diffusion (IPD) models was found. This analysis allowed us to establish that the global adsorption rate of caffeine on thermally modified bentonite at 400 °C is controlled in the first two minutes of the process by diffusion in the liquid film, followed by intraparticle diffusion between 4 and 26 minutes of contact time. External mass transport (diffusion in the liquid film) and intraparticle diffusion are responsible for 79.4% and 16.7% of the average caffeine removal on Na-Bent-400, respectively. However, intraparticle diffusion is much slower than diffusion in the liquid film. Therefore, diffusion in the liquid film is the limiting step of caffeine adsorption on Na-Bent400. Finally, a preliminary cost analysis was carried out for caffeine adsorption in an aqueous solution (30 mg/L) using Na-Bent-400 and a flow rate of 8 L/s. Unit costs were between 41 and 43 USD/kg removed caffeine, considering a scenario without and with regeneration. Based on the cost analysis, it can be inferred that the adsorption of caffeine on Na-Bent-400 is an economical treatment system and that the adsorbent of natural origin is favorable from the environmental point of vieweng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaGestión del Recurso Hídricospa
dc.description.sponsorshipEl Departamento Administrativo de Ciencia, Tecnología e Innovación fue la entidad encargada de promover las políticas públicas para fomentar la ciencia, la tecnología y la innovación en Colombia desde 1968 hasta 2019. Ahora es conocido como Minciencias.spa
dc.format.extentix, 239 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86571
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia -Sede Manizalesspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesUddin, M., (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J., 308, p: 438-462.spa
dc.relation.referencesShushu, L.; Yong, M., (2014). Urbanization, economic development and environmental change. Sustainability, 6(8), p: 5143-5161.spa
dc.relation.referencesSharma, A.; Gupta, A.K.; Ganguly, R., (2018). Impact of open dumping of municipal solid waste on soil properties in mountainous region. J. Rock. Mech. Geot. Eng., 10(4), p: 725-739.spa
dc.relation.referencesUnited States Environmental Protection Agency. EPA, (2008). Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products. Disponible en: https://www.epa.gov/wqc/contaminants-emerging-concern-including-pharmaceuticals-and-personal-care-products.spa
dc.relation.referencesUnesco. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura, (2015). Contaminantes emergentes en la reutilización de aguas residuales en los países en desarrollo. Suecia. p: 1-4. Disponible en: https://unesdoc.unesco.org/ark:/48223/pf0000235241_spa.spa
dc.relation.referencesGarcía, C.; Gortáres, P.; Drogui, P., (2011). Contaminantes emergentes: Efectos y tratamientos de remoción. Quím. Viva., 10(2), p: 96-105.spa
dc.relation.referencesLapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S., (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut., 163, p: 287-303.spa
dc.relation.referencesTaheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y., (2018). Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag., 10, p: 122-126.spa
dc.relation.referencesNaidu, R.; Jit, J.; Kennedy, B.; Arias, V., (2016). Emerging contaminant uncertainties and policy: The chicken or the egg conundrum. Chemosphere., 154, p: 385-390.spa
dc.relation.referencesStuart, M.; Lapworth, D.; Crane, E.; Hart, A., (2012). Review of risk from potential emerging contaminants in UK groundwater. Sci. Total. Environ., 416, p: 1-21.spa
dc.relation.referencesSantos M, J., (2006). Análisis y distribución de principios activos farmacológicos en los procesos convencionales de depuración de aguas residuales urbanas. Tesis Doctotal. España: Universidad de Sevilla. Departamento de Química Analítica.spa
dc.relation.referencesMiranda, F.S.; Kenneth, B., (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci. Total. Environ., 409(18), p: 3409-3417.spa
dc.relation.referencesPhilip, J.M.; Aravind, U.K.; Aravindakumar, C.T., (2018). Emerging contaminants in Indian environmental matrices – A review. Chemosphere, 190, p: 307-326.spa
dc.relation.referencesDe Bustamante, I.; Cabrera, M.C.; Candela, L.; Lillo, J.; Palacios, M.P., (2010). La reutilización de aguas regeneradas en España: Ejemplos de aplicación en el marco del proyecto Consolider-Tragua. Aqua-LAC 2(1), p: 1-17.spa
dc.relation.referencesGogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M., (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev., 6, p: 169-180.spa
dc.relation.referencesHuang, Y.H.; Dsikowitzky, L.; Yang, F.; Schwarzbauer, J., (2020). Emerging contaminants in municipal wastewaters and their relevance for the surface water contamination in the tropical coastal city Haikou, China. Estuar. Coast. Shelf. Sci., 235, p: 106611.spa
dc.relation.referencesGonzález Alonso, S.; Merino, L.M.; Esteban, S.; López de Alda, M.; Barceló, D.; Durán, J.J.; López Martínez, J.; Acena, J.; Pérez, S.; Mastroianni, N., (2017). Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic peninsula region. Environ. Pollut., 229, p: 241-254.spa
dc.relation.referencesPostigo, C.; Barceló, D., (2015). Synthetic organic compounds and their transformation products in groundwater: Occurrence, fate and mitigation. Sci. Total. Environ., 503, p: 32-47.spa
dc.relation.referencesBuerge, I.J.; Kahle, M.; Buser, H.R.; Müller, M.D.; Poiger, T., (2008). Nicotine derivatives in wastewater and surface waters: Application as chemical markers for domestic wastewater. Environ. Sci. Technol., 42(17), p: 6354-6360.spa
dc.relation.referencesPardo Lozano, R.; Alvarez García, Y.; Barral Tafalla, D.; Farré Albaladejo, M., (2007). Cafeína: Un nutriente, un fármaco, o una droga de abuso. Adicciones, 19(3), p: 225-238.spa
dc.relation.referencesJiménez, C., (2011). Contaminantes orgánicos emergentes en el ambiente: Productos farmacéuticos. Rev. Lasallista. Investig., 8(2), p: 143-153.spa
dc.relation.referencesOrganización Internacional del Café, (2022). Anuario. Año cafetero 2021/2022. Londres, Reino Unido. Disponible en: https://icocoffee.org/.spa
dc.relation.referencesRigueto, C.; Nazari, M.; De Souza, C.; Cadore, J.; Brião, V.; Piccin, J., (2020). Alternative techniques for caffeine removal from wastewater: An overview of opportunities and challenges. J. Water. Process. Eng., 35, p: 101231.spa
dc.relation.referencesLin, T.; Yu, S.; Chen, W., (2016). Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere, 152, p: 1-9.spa
dc.relation.referencesMena, E.; Rey, A.; Beltrán, F.J., (2018). TiO2 photocatalytic oxidation of a mixture of emerging contaminants: a kinetic study independent of radiation absorption based on the direct-indirect model. Int. J. Chem. Eng., 339, p: 369-380.spa
dc.relation.referencesThomas, P.M.; Foster, G.D., (2005). Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environ. Toxicol. Chem., 24(1), p: 25-30.spa
dc.relation.referencesLi, L.; Gong, L.; Wang, Y.X.; Liu, Q.; Zhang, J.; Mu, Y.; Yu, H.Q., (2016). Removal of halogenated emerging contaminants from water by nitrogen-doped graphene decorated with palladium nanoparticles: Experimental investigation and theoretical analysis. Water. Res., 98, p: 235-241.spa
dc.relation.referencesSotelo, J.; Rodríguez, A.; Álvarez, S.; García, J., (2012). Removal of caffeine and diclofenac on activated carbon in fixed bed column. Chem. Eng. Res. Des., 90(7), p: 967-974.spa
dc.relation.referencesZhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H., (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay. Sci., 123, p: 239-258.spa
dc.relation.referencesValladares Cisneros, M.G.; Valerio Cárdenas, C.; de la Cruz Burelo, P.; Melgoza Alemán, R.M., (2017). Adsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residuales. Rev. Ing. Univ. Medellín., 16(31), p: 55-73.spa
dc.relation.referencesDordio, A.; Miranda, S.; Ramalho, J.P.; Carvalho, A.P., (2017). Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J. Hazard. Mater., 323, p: 575-583.spa
dc.relation.referencesHurtado, C.; Trapp, S.; Bayona, J.M., (2016). Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system. Chemosphere., 156, p: 236-244.spa
dc.relation.referencesMarcal, L.; de Faria, E.H.; Nassar, E.J.; Trujillano, R.; Martin, N.; Vicente, M.A.; Rives, V.; Gil, A.; Korili, S.A.; Ciuffi, K.J., (2015). Organically modified saponites: SAXS study of swelling and application in caffeine removal. ACS. Appl. Mater. Interfaces., 7(20), p: 10853-10862.spa
dc.relation.referencesCabrera, W.A.; Román, F.R.; Hernández, A.J., (2015). Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic–organic pillared clay fixed beds. J. Hazard. Mater., 282, p: 174-182.spa
dc.relation.referencesOkada, T.; Oguchi, J.; Yamamoto, K.; Shiono, T.; Fujita, M.; Liyama, T., (2015). Organoclays in water cause expansion that facilitates caffeine adsorption. Langmuir., 31(1), p: 180-187.spa
dc.relation.referencesAnastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A., (2020). Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A review. J. Environ. Manage., 261, p: 110236.spa
dc.relation.referencesDepartamento Nacional de Planeación, (2015). Objetivos de Desarrollo Sostenible (ODS). Agenda de Desarrollo Post-2015 de la Organización de las Naciones Unidas. Disponible en: http://www.un.org/sustainabledevelopment/es/summit/.spa
dc.relation.referencesLaguna, O.H.; Molina, C.M.; Moreno, S.; Molina, R., (2008). Naturaleza mineralógica de esmectitas provenientes de la formación Honda (noreste del Tolima Colombia). Boletín de Ciencias de la Tierra, 23, p: 55-68.spa
dc.relation.referencesIsmadji, S.; Soetaredjo, F.E.; Ayucitra, A., (2015). Clay materials for environmental remediation. Vol 25. Springer International Publishing. Berlin (Alemania), p: 124.spa
dc.relation.referencesDíaz Blancas, V.; Ocampo Pérez, R.; Leyva Ramos, R.; Alonso Dávila, P.A.; Moral Rodríguez, A.I., (2018). 3D modeling of the overall adsorption rate of metronidazole on granular activated carbon at low and high concentrations in aqueous solution. Chem. Eng. J., 349, p: 82-91.spa
dc.relation.referencesSegovia Sandoval, S.J.; Ocampo Pérez, R.; Berber Mendoza, M.S.; Leyva Ramos, R.; Jacobo Azuara, A.; Medellín Castillo, N.A., (2018). Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II). J. Water. Process. Eng., 25, p: 45-53.spa
dc.relation.referencesKhan, T.A.; Khan, E.A.; Shahjahan, (2016). Adsorptive uptake of basic dyes from aqueous solution by novel brown linseed deoiled cake activated carbon: Equilibrium isotherms and dynamics. J. Environ. Chem. Eng., 4(3), p: 3084-3095.spa
dc.relation.referencesFlores Cano, J.V.; Sánchez Polo, M.; Messoud, J.; Velo Gala, I.; Ocampo Pérez, R.; Rivera Utrilla, J., (2016). Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells. J. Environ. Manage., 169, p: 116-125.spa
dc.relation.referencesMoral-Rodríguez, A.I.; Leyva-Ramos, R.; Ocampo-Pérez, R.; Mendoza-Barron, J.; Serratos-Alvarez, I.N.; Salazar-Rabago, J.J., (2016). Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: Equilibrium and intraparticle diffusion mechanisms. Adsorption, 22(1), p: 89-103.spa
dc.relation.referencesBautista-Toledo, M.I.; Rivera-Utrilla, J.; Ocampo-Pérez, R.; Carrasco-Marín, F.; Sánchez-Polo, M., (2014). Cooperative adsorption of bisphenol-A and chromium (III) ions from water on activated carbons prepared from olive-mill waste. Carbon, 73, p: 338-350.spa
dc.relation.referencesDafouz, R.; Valcárcel Rivera, Y., (2016). Cafeína como contaminante ambiental. Rev. Mex. Fitopatol., 34(2), p: 131-141.spa
dc.relation.referencesUnited States Environmental Protection Agency. EPA, (2007). ECOTOX User Guide. Minesota (USA). Disponible en: https://cfpub.epa.gov/ecotox/.spa
dc.relation.referencesGeissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van der Ploeg, M.; Van de Zee, S.; Ritsema, C.J., (2015). Emerging pollutants in the environment: A challenge for water resource management. J. Soil. Water. Conserv., 3(1), p: 57-65.spa
dc.relation.referencesMinisterio de la Protección Social; Ministerio de Ambiente Vivienda y Desarrollo Territorial, (2007). Resolución 2115. Por medio de la cual se señalan características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano. Colombia. p: 1-23. Disponible en: http://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislacin_del_agua/Resolucin_2115.pdf.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible, (2015). Resolución 631. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. Colombia. p: 1-73. Disponible en: https://docs.supersalud.gov.co/PortalWeb/Juridica/OtraNormativa/R_MADS_0631_2015.pdf.spa
dc.relation.referencesDe la Cruz, N., (2015). Estudio de la eliminación de contaminantes emergentes en aguas mediante procesos de oxidación avanzados. Tesis Doctoral. España: Universidad de Barcelona. Departamento de Ingeniería de Química.spa
dc.relation.referencesLeon, G.R., (2018). Estudio de la adsorción de irgasán y cafeina utilizando residuos lignocelusócicos modificados con óxido de titanio. Tesis de Pregrado. Ecuador: Escuela Politécnica Nacional. Facultad de Ingeniería Civil y Ambiental.spa
dc.relation.referencesWorld Health Organization, (2012). Pharmaceuticals in drinking-water. in Public Health and Eviroment. Geneva (Suiza). Disponible en: https://www.who.int/water_sanitation_health/publications/2011/pharmaceuticals_20110601.pdf.spa
dc.relation.referencesHeberer, T., (2002). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol., 266(3-4), p: 175-189.spa
dc.relation.referencesBuerge, I.J.; Poiger, T.; Muller, M.; Buser, H.R., (2003). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ. Sci. Technol., 37(4), p: 691-700.spa
dc.relation.referencesPetrović, M.; Gonzalez, S.; Barceló, D., (2003). Analysis and removal of emerging contaminants in wastewater and drinking water. Trend. Anal. Chem., 22(10), p: 685-696.spa
dc.relation.referencesRivera Utrilla, J.; Sánchez Polo, M.; Ocampo Pérez, R., (2017). Removal of antibiotics from water by adsorption/biosorption on adsorbents from different raw materials. In: Adsorption processes for water treatment and purification. Springer International Publishing. Granada (España), p: 139-204.spa
dc.relation.referencesSchriks, M.; Heringa, M.B.; Van der Kooi, M.M.; De Voogt, P.; Van Wezel, A.P., (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water. Res., 44(2), p: 461-476.spa
dc.relation.referencesEuropean Commission, (2015). First Watch List for emerging water pollutants. Bruselas (Bélgica). Disponible en: https://ec.europa.eu/jrc/en/news/first-watch-list-emerging-water-pollutants.spa
dc.relation.referencesNaidu, R.; Arias Espana, V.A.; Liu, Y.; Jit, J., (2016). Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 154, p: 350-357.spa
dc.relation.referencesDaughton, C.G., (2004). PPCPs in the environment: Future research - beginning with the always in mind. In: Pharmaceuticals in the environment: Sources, fate, effects and risks. Vol 2nd. United States Environmental Protection Agency. USA, p: 463-495.spa
dc.relation.referencesLi, Y.; Zhu, G.; Ng, W.J.; Tan, S.K., (2014). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total. Environ., 468-469, p: 908-932.spa
dc.relation.referencesYan, W.; Zhang, J.; Jing, C., (2013). Adsorption of enrofloxacin on montmorillonite: Two-dimensional correlation ATR/FTIR spectroscopy study. J. Colloid. Interf. Sci., 390(1), p: 196-203.spa
dc.relation.referencesQiang, Z.; Adams, C., (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water. Res., 38(12), p: 2874-2890.spa
dc.relation.referencesMatamoros, V.; Uggetti, E.; García, J.; Bayona, J.M., (2016). Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. J. Hazard. Mater., 301, p: 197-205.spa
dc.relation.referencesLiu, S.H.; Tang, W.T.; Yang, Y.H., (2018). Adsorption of nicotine in aqueous solution by a defective graphene oxide. Sci. Total. Environ., 643, p: 507-515.spa
dc.relation.referencesÁlvarez, S.; Rodríguez, A.; Ovejero, G.; Gómez, J.M.; García, J., (2016). Removal of caffeine from pharmaceutical wastewater by adsorption: Influence of NOM, textural and chemical properties of the adsorbent. Environ. Technol., 37(13), p: 1618-1630.spa
dc.relation.referencesBatt, A.L.; Bruce, I.B.; Aga, D.S., (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environ. Pollut., 142(2), p: 295-302.spa
dc.relation.referencesBruton, T.; Alboloushi, A.; De La Garza, B.; Kim, B.O.; Halden, R.U., (2010). Fate of caffeine in the environment and ecotoxicological considerations. In: Contaminants of emerging concern in the environment: Ecological and human health considerations. American Chemical Society. Washington, DC, USA, p: 257-273.spa
dc.relation.referencesYargeau, V.; Lopata, A.; Metcalfe, C., (2007). Pharmaceuticals in the Yamaska River, Quebec, Canada. Water. Qual. Res. J. Can., 42(4), p: 231-239.spa
dc.relation.referencesOliver, M.; Kudłak, B.; Wieczerzak, M.; Reis, S.; Lima, S.A.C.; Segundo, M.A.; Miró, M., (2020). Ecotoxicological equilibria of triclosan in Microtox, XenoScreen YES/YAS, CacO2, HEPG2 and liposomal systems are affected by the occurrence of other pharmaceutical and personal care emerging contaminants. Sci. Total. Environ., 719, p: 137358.spa
dc.relation.referencesArcher, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M., (2017). The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, p: 437-446.spa
dc.relation.referencesAdams, C.; Wang, Y.; Loftin, K.; Meyer, M., (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng., 128(3), p: 253-260.spa
dc.relation.referencesBhattarai, R. P., (2016). Emerging trace contaminants: Prevalence and treatment options. Texas (USA). Disponible en: http://sections.weat.org/sanantonio/files/09%20-%20Summer%20Seminar%202016%20-%20Raj%20Bhattarai%20-%20Emerging%20Trace%20Contaminants.pdf.spa
dc.relation.referencesTran, N.H.; Reinhard, M.; Yew Hoong Gin, K., (2017). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water. Res., 133, p: 182-207.spa
dc.relation.referencesÁvila, C.; Bayona, J.M.; Martín, I.; Salas, J.J.; García, J., (2015). Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse. Ecol. Eng., 80, p: 108-116.spa
dc.relation.referencesÁvila, C.; Nivala, J.; Olsson, L.; Kassa, K.; Headley, T.; Mueller, R.A.; Bayona, J.M.; García, J., (2014). Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Sci. Total. Environ., 494, p: 211-217.spa
dc.relation.referencesZhang, Y.; Lv, T.; Carvalho, P.N.; Zhang, L.; Arias, C.A.; Chen, Z.; Brix, H., (2017). Ibuprofen and iohexol removal in saturated constructed wetland mesocosms. Ecol. Eng., 98, p: 394-402.spa
dc.relation.referencesÁvila, C.; Reyes, C.; Bayona, J.M.; García, J., (2013). Emerging organic contaminant removal depending on primary treatment and operational strategy in horizontal subsurface flow constructed wetlands: influence of redox. Water. Res., 47(1), p: 315-325.spa
dc.relation.referencesPapaevangelou, V.A.; Gikas, G.D.; Tsihrintzis, V.A.; Antonopoulou, M.; Konstantinou, I.K., (2016). Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands. Chem. Eng. J., 294, p: 146-156.spa
dc.relation.referencesRodriguez-Mozaz, S.; Ricart, M.; Köck-Schulmeyer, M.; Guasch, H.; Bonnineau, C.; Proia, L.; de Alda, M.L.; Sabater, S.; Barceló, D., (2015). Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration–reverse osmosis (MF–RO) pilot plant. J. Hazard. Mater., 282, p: 165-173.spa
dc.relation.referencesAcero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F., (2012). Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Int. J. Chem. Eng., 210, p: 1-8.spa
dc.relation.referencesPalacio, D.A.; Leiton, L.M.; Urbano, B.F.; Rivas, B.L., (2020). Tetracycline removal by polyelectrolyte copolymers in conjunction with ultrafiltration membranes through liquid-phase polymer-based retention. Environ. Res., 182, p: 109014.spa
dc.relation.referencesPandey, S., (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq., 241, p: 1091-1113.spa
dc.relation.referencesBonilla, A.; Mendoza, D.I.; Dotto, G.L.; Duran, C.J., (2019). Adsorption in water treatment. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. España.spa
dc.relation.referencesBhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M., (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J., 219, p: 499-511.spa
dc.relation.referencesQuesada Rodríguez, J.M., (2017). Evaluación de la metodología de tratamiento por adsorción con piedra pómez para un contaminante orgánico emergente en aguas residuales. Tesis de Pregrado en Ingeniería Ambiental. Cartago (Costa Rica): Instituto Tecnológico de Costa Rica.spa
dc.relation.referencesÁlvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J., (2014). La adsorción como alternativa de tratamiento de contaminantes emergentes en aguas. Fac. Ciencias Químicas, 1, p: 1-7.spa
dc.relation.referencesJiang, J.-Q.; Ashekuzzaman, S., (2012). Development of novel inorganic adsorbent for water treatment. Curr. Opin. Chem. Eng., 1(2), p: 191-199.spa
dc.relation.referencesAhmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W., (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total. Environ., 532, p: 112-126.spa
dc.relation.referencesCarmalin, S.A.; Lima, E.C., (2018). Removal of emerging contaminants from the environment by adsorption. Ecotox. Environ. Safe., 150, p: 1-17.spa
dc.relation.referencesTran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.-T.; Masindi, V.; Woo, S.H., (2020). Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J. Hazard. Mater., 394, p: 1-12.spa
dc.relation.referencesPark, Y.; Sun, Z.; Ayoko, G.A.; Frost, R.L., (2014). Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water. Chemosphere, 107, p: 249-256.spa
dc.relation.referencesHernández-Abreu, A.B.; Álvarez-Torrellas, S.; Águeda, V.I.; Larriba, M.; Delgado, J.A.; Calvo, P.A.; García, J., (2020). Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process. J. Environ. Manage., 266, p: 1-10.spa
dc.relation.referencesWu, X.; Liu, P.; Huang, H.; Gao, S., (2020). Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations. Sci. Total. Environ., 717, p: 137033.spa
dc.relation.referencesJiang, N.; Shang, R.; Heijman, S.G.J.; Rietveld, L.C., (2020). Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms. Sep. Purif. Technol, 235, p: 116152.spa
dc.relation.referencesSharipova, A.A.; Aidarova, S.B.; Bekturganova, N.Y.; Tleuova, A.; Kerimkulova, M.; Yessimova, O.; Kairaliyeva, T.; Lygina, O.; Lyubchik, S.; Miller, R., (2017). Triclosan adsorption from model system by mineral sorbent diatomite. Colloid. Surfa. A, 532, p: 97-101.spa
dc.relation.referencesByrne, C.; Subramanian, G.; Pillai, S.C., (2017). Recent advances in photocatalysis for environmental applications. J. Environ. Eng. Chem. Eng., 6(3), p: 3531-3555.spa
dc.relation.referencesJanet, M.; Garzón, G.; Gil, M.J.; Soto, M.; Usma, J.I.; Gutiérrez, O., (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Rev. P+L, 7(2), p: 52-73.spa
dc.relation.referencesCampos Pozuelo, Elena.; Zarzo, Domingo, (2016). Experiencias de eliminación de contaminantes emergentes en diferentes entornos: Oxidación avanzada frente a tecnologías de bajo coste. XII Jornadas técnicas de saneamiento y depuración. Murcia (España). Disponible en: http://www.esamur.com/public/file/EcamposExperienciasdeeliminacindeCE.pdf.spa
dc.relation.referencesEverett, D.H., (2001). Appendix II Definitions, terminology and symbols in colloid and surface chemistry. In: Manual of symbols and terminology for physicochemical quantities and units. Vol 51. International Union of Pure and Applied Chemistry. p: 1-78.spa
dc.relation.referencesGeankoplis, C.J., (1998). Procesos de separación líquido-líquido y sólido fluido. In: Procesos de transporte y operaciones unitarias. Tercera ed., Continental SA. México.spa
dc.relation.referencesTreybal, R.E.; García Rodríguez, A., (1988). Operaciones de transferencia de masa. 2nd ed. Mc Graw Hill. Madrid (España).spa
dc.relation.referencesGarcía, N., (2014). Una nueva generación de carbones activados de altas prestaciones para aplicaciones medioambientales. Tesis de Doctorado de Ciencia y Tecnología de Materiales. España: Universidad de Oviedo.spa
dc.relation.referencesTan, K.L.; Hameed, B.H., (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan. Inst. Chem. E., 74, p: 25-48.spa
dc.relation.referencesAcero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F., (2017). Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration. Sep. Purif. Technol, 181, p: 123-131.spa
dc.relation.referencesNgulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A., (2017). An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J Environ Manage, 191, p: 35-57.spa
dc.relation.referencesPark, Y.; Sun, Z.; Ayoko, G.A.; Frost, R.L., (2014). Bisphenol A sorption by organo-montmorillonite: implications for the removal of organic contaminants from water. Chemosphere, 107, p: 249-256.spa
dc.relation.referencesDordio, A.V.; Miranda, S.; Prates Ramalho, J.P.; Carvalho, A.J.P., (2017). Mechanisms of removal of three widespread pharmaceuticals by two clay materials. J Hazard Mater, 323(Pt A), p: 575-583.spa
dc.relation.referencesInagaki, M.; Tascón, J.M.D., (2006). Chapter 2. Pore formation and control in carbon materials. In: Activated carbon surfaces in environmental remediation. Vol 7. New York, USA, p: 49-105.spa
dc.relation.referencesAkhtar, J.; Amin, N.A.S.; Shahzad, K., (2016). A review on removal of pharmaceuticals from water by adsorption. Desalin. Water. Treat., 57(27), p: 12842-12860.spa
dc.relation.referencesLladó, J., (2016). Adsorption of organic and emerging pollutants on carbon materials in aqueous media: Environmental implications. Doctoral thesis programme in Natural Resources and Environment. España: Universidat Politécnica de Catalunya.spa
dc.relation.referencesCaballero, F.M., (2015). Desarrollo de interfaces gráficas de usuario para descripción del proceso de adsorción de proteínas por lotes o en columna empacada como herramientas educativas. Tesis de pregrado en Ingeniería de Bioprocesos. San Luis de Potosí (México): Universidad Autónoma de San Luis de Potosí.spa
dc.relation.referencesTejeda Mansir, A.; Búsani, I.; Rentería, M.E.; Montesinos, R.M., (2002). Adsorción de proteínas por afinidad en procesos por lotes: Modelación, estimación de parámetros y simulación. Rev. Soc. Quím., 46, p: 43-48.spa
dc.relation.referencesSalleh, M.; Mahmoud, D.; Karim, W.; Idris, A., (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280(1-3), p: 1-13.spa
dc.relation.referencesMezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A., (2012). Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manage., 102, p: 148-164.spa
dc.relation.referencesSaratale, R.G.; Saratale, G.D.; Chang, J.; Govindwar, S., (2011). Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan. Inst. Chem. Eng., 42(1), p: 138-157.spa
dc.relation.referencesDotto, G.L.; Sharma, S.K.; Pinto, L.A., (2015). Biosorption of organic syes: Research opportunities and challenges. In: Green chemistry for dyes removal from waste water: Research trends and applications. 1st ed., Scrivener Publishing LLC. New Jersey, USA, p: 295-329.spa
dc.relation.referencesAmaringo Villa, F.A.; Hormaza Anaguano, A., (2013). Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes. RIAA, 4(2), p: 27-36.spa
dc.relation.referencesGuechi, E.-K.; Hamdaoui, O., (2016). Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: Equilibrium modelling, kinetic, and thermodynamic studies. Desalin. Water. Treat., 57(22), p: 10270-10285.spa
dc.relation.referencesDotto, G.; Lima, E.; Pinto, L., (2012). Biosorption of food dyes onto Spirulina platensis nanoparticles: Equilibrium isotherm and thermodynamic analysis. Bioresource. Technol., 103(1), p: 123-130.spa
dc.relation.referencesÇelekli, A.; Birecikligil, S.S.; Geyik, F.; Bozkurt, H., (2012). Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model. Bioresource. Technol., 103(1), p: 64-70.spa
dc.relation.referencesChowdhury, S.; Chakraborty, S.; Saha, P., (2011). Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloid. Surf. B., 84(2), p: 520-527.spa
dc.relation.referencesHu, Y.; Guo, T.; Ye, X.; Li, Q.; Guo, M.; Liu, H.; Wu, Z., (2013). Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J., 228, p: 392-397.spa
dc.relation.referencesHiemstra, T.; Van Riemsdijk, W., (1999). Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (Hydr)oxides. J. Colloid. Interf. Sci., 210(1), p: 182-193.spa
dc.relation.referencesBradl, H.B., (2004). Adsorption of heavy metal ions on soils and soils constituents. J. Colloid. Interf. Sci., 277(1), p: 1-18.spa
dc.relation.referencesAytas, S.; Yurtlu, M.; Donat, R., (2009). Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J. Hazard. Mater., 172(2-3), p: 667-674.spa
dc.relation.referencesZawani, Z.; Abdullah, L.C.; Thomas, S., (2009). Equilibrium, kinetics and thermodynamic studies: adsorption of black azo 5 on the palm kernel shell activated carbon (PKS-AC). Eur. J. Sci., 37, p: 67-76.spa
dc.relation.referencesJia, D.A.; Zhou, D.M.; Wang, Y.J.; Zhu, H.W.; Chen, J.L., (2008). Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics. Geoderma, 146(1-2), p: 224-230.spa
dc.relation.referencesZhang, Z.; O’Hara, I.M.; Kent, G.A.; Doherty, W.O., (2013). Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crop. Prod., 42, p: 41-49.spa
dc.relation.referencesCrini, G.; Badot, P.-M., (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci., 33(4), p: 399-447.spa
dc.relation.referencesPiccin, J.S.; Dotto, G.L.; Vieira, M.L.; Pinto, L.A., (2011). Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. J. Chem. Eng. Data., 56(10), p: 3759-3765.spa
dc.relation.referencesSingh, V.; Soni, A.; Singh, R., (2016). Process optimization studies of malachite green dye adsorption onto eucalyptus (Eucalyptus globulus) wood biochar using response surface methodology. Orient. J. Chem., 32(5), p: 2621-2631.spa
dc.relation.referencesDotto, G.; Esquerdo, V.; Vieira, M.; Pinto, L., (2012). Optimization and kinetic analysis of food dyes biosorption by Spirulina platensis. Colloid. Surf. B., 91, p: 234-241.spa
dc.relation.referencesDotto, G.L.; Pinto, L.A.A., (2011). Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohyd. Polym., 84(1), p: 231-238.spa
dc.relation.referencesKannan, N.; Sundaram, M.M., (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study. Dyes. Pigm., 51(1), p: 25-40.spa
dc.relation.referencesBulut, Y.; Aydın, H., (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1-3), p: 259-267.spa
dc.relation.referencesEren, Z.; Acar, F.N., (2006). Adsorption of reactive black 5 from an aqueous solution: Equilibrium and kinetic studies. Desalination, 194(1-3), p: 1-10.spa
dc.relation.referencesRuthven, D.M., (1984). Principles of adsorption and adsorption processes. Vol 1st. John Wiley & Sons. New York, USA, p: 427.spa
dc.relation.referencesLi, P.; Xiu, G.; Rodrigues, A.E., (2003). Modeling separation of proteins by inert core adsorbent in a batch adsorber. Chem. Eng. Sci., 58(15), p: 3361-3371.spa
dc.relation.referencesDotto, G.; Pinto, L., (2011). Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. J. Hazard. Mater., 187(1-3), p: 164-170.spa
dc.relation.referencesSposito, G.; Skipper, N.T.; Sutton, R.; Park, S.; Soper, A.K.; Greathouse, J.A., (1999). Surface geochemistry of the clay minerals. P. Natl. Acad. Sci. USA., 96, p: 3358-3364.spa
dc.relation.referencesBergaya, F.; Lagaly, G., (2006). Chapter 1. General introduction: Clays, clay minerals, and clay science. In: Developments in clay science. Vol 1. Elsevier. Oxford, UK, p: 1-18.spa
dc.relation.referencesPadilla, E.; Medellín, N.; Robledo, A., (2020). Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II). J. Environ. Chem. Eng., 8(4), p: 103850.spa
dc.relation.referencesMartínez S, S.Y., (2017). Evaluación sobre el uso de arcillas para la adsorción de colorantes utilizados en la industria textil. Tesis de Doctorado en Ingeniería. La PLata (Argentina): Universidad Nacional de la Plata.spa
dc.relation.referencesGrim, R.E., (2006). Chapter 2. Structure and composition of the clay minerals and their physical and chemical properties. In: Applied clay mineralogy. Vol 2sn. McGraw-Hill Book Company. Georgia, USA, p: 7-31.spa
dc.relation.referencesHe, H.; Ma, L.; Zhu, J.; Frost, R.L.; Theng, B.K.; Bergaya, F., (2014). Synthesis of organoclays: A critical review and some unresolved issues. Appl. Clay. Sci., 100, p: 22-28.spa
dc.relation.referencesGiese, R.F.; Van Oss, C.J., (2002). Colloid and surface properties of clays and related minerals. Vol 1st. CRC Press. New York, USA, p: 285.spa
dc.relation.referencesMacias-Quiroga, I.F.; Giraldo-Gómez, G.I.; Sanabria-González, N.R., (2018). Characterization of colombian clay and its potential use as adsorbent. Sci. World. J., p: 5969178.spa
dc.relation.referencesGamoudi, S.; Srasra, E., (2019). Adsorption of organic dyes by HDPy+ -modified clay: Effect of molecular structure on the adsorption. J. Mol. Struct., 1193, p: 522-531.spa
dc.relation.referencesNieto, S.; Toro, N.; Robles, P.; Gálvez, E.; Gallegos, S.; Jeldres, R., (2022). Flocculation of clay-based tailings: Differences of kaolin and sodium montmorillonite in salt medium. J. Materials., 15(3), p: 1156.spa
dc.relation.referencesGupta, V., (2009). Application of low-cost adsorbents for dye removal–a review. J. Environ. Manage., 90(8), p: 2313-2342.spa
dc.relation.referencesYamamoto, K.; Shiono, T.; Matsui, Y.; Yoneda, M., (2016). Changes the structure and caffeine adsorption property of calcined montmorillonite. Int. J. Geomate., 11(24), p: 2301-2306.spa
dc.relation.referencesPradas, E.G.; Sánchez, M.V.; Cruz, F.C.; Viciana, M.S.; Pérez, M.F., (1994). Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Tech. Biotechnol., 59(3), p: 289-295.spa
dc.relation.referencesYamamoto, K.; Shiono, T.; Matsui, Y.; Yoneda, M., (2019). Interaction of caffeine with montmorillonite. Part. Sci. Technol., 37(3), p: 1-8.spa
dc.relation.referencesShiono, T.; Yamamoto, K.; Yotsumoto, Y.; Yoshida, A., (2017). Caffeine adsorption of montmorillonite in coffee extracts. J. Biosci. Biotechnol. Biochem., 81(8), p: 1591-1597.spa
dc.relation.referencesLenzi, G.G.; Fuziki, M.E.K.; Fidelis, M.Z.; Fávaro, Y.B.; Ribeiro, M.A.; Chaves, E.S.; Lenzi, E.K., (2020). Caffeine adsorption onto bentonite clay in suspension and immobilized. Braz. Arch. Biol. Technol, 63.spa
dc.relation.referencesRafati, L.; Ehrampoush, M.H.; Rafati, A.A.; Mokhtari, M.; Mahvi, A.H., (2016). Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J. Mol. Liq., 224, p: 832-841.spa
dc.relation.referencesErdem, B.; Özcan, A.S.; Özcan, A., (2010). Preparation of HDTMA-bentonite: Characterization studies and its adsorption behavior toward dibenzofuran. Surf. Interface. Anal., 42, p: 1351-1356.spa
dc.relation.referencesAzarkan, S.; Peña, A.; Draoui, K.; Sainz-Díaz, C.I., (2016). Adsorption of two fungicides on natural clays of Morocco. Appl. Clay. Sci., 123, p: 37-46.spa
dc.relation.referencesRodríguez-Liébana, J.A.; López-Galindo, A.; de Cisneros, C.J.; Gálvez, A.; Rozalén, M.; Sánchez-Espejo, R.; Caballero, E.; Peña, A., (2016). Adsorption/desorption of fungicides in natural clays from Southeastern Spain. Appl. Clay. Sci., 132, p: 402-411.spa
dc.relation.referencesPutra, E.K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S., (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water. Res., 43(9), p: 2419-2430.spa
dc.relation.referencesGenç, N.; Dogan, E.C., (2015). Adsorption kinetics of the antibiotic ciprofloxacin on bentonite, activated carbon, zeolite, and pumice. Desalin. Water. Treat., 53(3), p: 785-793.spa
dc.relation.referencesGenç, N.; Can Dogan, E.; Yurtsever, M., (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water. Sci. Technol., 68(4), p: 848-855.spa
dc.relation.referencesAl-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N., (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage., 69(3), p: 229-238.spa
dc.relation.referencesGardinali, P.R.; Zhao, X., (2002). Trace determination of caffeine in surface water samples by liquid chromatography–atmospheric pressure chemical ionization–mass spectrometry (LC–APCI–MS). Environ. Int., 28(6), p: 521-528.spa
dc.relation.referencesCalle A, S., (2011). Determinación analítica de la cafeína en diferentes productos comerciales. Tesis de pregrado en Ingeniería Técnica Industrial especialidad Química. Barcelona (España): Universidad Politécnica de Catalunya.spa
dc.relation.referencesTavagnacco, L.; Di Fonzo, S.; D’Amico, F.; Masciovecchio, C.; Brady, J.; Cesàro, A., (2016). Stacking of purines in water: The role of dipolar interactions in caffeine. J. Phys. Chem. A., 18(19), p: 13478-13486.spa
dc.relation.referencesHeckman, M.A.; Weil, J.; Gonzalez De Mejia, E., (2010). Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food. Sci., 75(3), p: 77-87.spa
dc.relation.referencesHijosa, M.; Reyes, C.; Domínguez, C.; Bécares, E.; Bayona, J.M., (2016). Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots. Chemosphere, 145, p: 508-517.spa
dc.relation.referencesDe Oliveira, M.; Atalla, A.A.; Frihling, B.E.F.; Cavalheri, P.S.; Migliolo, L.; Filho, F.J.C.M., (2019). Ibuprofen and caffeine removal in vertical flow and free-floating macrophyte constructed wetlands with Heliconia rostrata and Eichornia crassipes. Chem. Eng. J., 373, p: 458-467.spa
dc.relation.referencesLicona, K.P.; Geaquinto, L.R.; Nicolini, J.V.; Figueiredo, N.G.; Chiapetta, S.C.; Habert, A.C.; Yokoyama, L., (2018). Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. J. Water Process. Eng., 25, p: 195-204.spa
dc.relation.referencesGarcia, J.; Iborra, M.I.; Massella, M.; Carbonell, C.; Alcaina, M.I., (2017). Removal of pharmaceutically active compounds using low-pressure membrane processes. Desalin. Water. Treat., 69, p: 252-260.spa
dc.relation.referencesSrisuphan, W.; Bracken, M.B., (1986). Caffeine consumption during pregnancy and association with late spontaneous abortion. Am. J. Obstet. Gynecol., 154(1), p: 14-20.spa
dc.relation.referencesRiva, F.; Castiglioni, S.; Fattore, E.; Manenti, A.; Davoli, E.; Zuccato, E., (2018). Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int. J. Hyg. Envir. Heal., 221(3), p: 451-457.spa
dc.relation.referencesVadillo Pérez, I.; Lledó Candela, L.; Jiménez Gavilán, P.; Urresti Estala, Begoña.; Corada Fernández, Carmen., (2016). Estudio de contaminantes emergentes en ecuíferos detríticos de la cuenca hidrográfica del río Guadalhorce (Málaga). Málaga (España). Disponible en: http://hdl.handle.net/10630/12577.spa
dc.relation.referencesInternational Coffee Organization., (2015). Contenido de la cafeína. Londres (Inglaterra). Disponible en: http://www.ico.org/ES/caffeine_c.asp.spa
dc.relation.referencesBarreda Abascal, R.; Molina, L.; Haro Valencia, R.; Alford, C.; Verster, J.C., (2012). Actualización sobre los efectos de la cafeína y su perfil de seguridad en alimentos y bebidas. Rev. Med. Hosp. Gen. Mex., 75(1), p: 60-67.spa
dc.relation.referencesHernández, F.; Calısto-Ulloa, N.; Gómez-Fuentes, C.; Gómez, M.; Ferrer, J.; González-Rocha, G.; Bello-Toledo, H.; Botero-Coy, A.M.; Boıx, C.; Ibáñez, M.; Montory, M., (2019). Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J. Hazard. Mater., 363, p: 447-456.spa
dc.relation.referencesTernes, T.; Bonerz, M.; Schmidt, T., (2001). Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogf. A., 938, p: 175-185.spa
dc.relation.referencesWeigel, S.; Kuhlmann, J.; Hühnerfuss, H., (2002). Drugs and personal care products as ubiquitous pollutants: Occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Sci. Total. Environ., 295(1-3), p: 131-141.spa
dc.relation.referencesHernandez H, E., (2013). Análisis de contaminantes emergentes de tipo farmacéutico (acetaminofeno, cafeína, dexketoprofeno, diclofenaco sódico, fenilefrina e ibuprofeno) en el agua del río Las Vacas (Municipio de Guatemala) y río Villalobos (Municipio de Amatitlán). Tesis de Pregrado en Química. Ciudad de Guatemala (Guatemala): Universidad de San Carlos de Guatemala.spa
dc.relation.referencesReinoso, J.; Serrano, C.; Delgado, S.; Orellana, D., (2017). Contaminantes emergentes y su impacto en la salud. Rev. Fac. Cienc. Med., 35(2), p: 55-59.spa
dc.relation.referencesCastiglioni, S.; Davoli, E.; Riva, F.; Palmiotto, M.; Camporini, P.; Manenti, A.; Zuccato, E., (2018). Data on occurrence and fate of emerging contaminants in a urbanised area. Data. Br., 17, p: 533-543.spa
dc.relation.referencesWeigel, S.; Berger, U.; Jensen, E.; Kallenborn, R.; Thoresen, H.; Hühnerfuss, H., (2004). Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere, 56(6), p: 583-592.spa
dc.relation.referencesPollack, K.; Balazs, K.; Ogunseitan, O., (2009). Proteomic assessment of caffeine effects on coral symbionts. Environ. Sci. Technol., 43(6), p: 2085-2091.spa
dc.relation.referencesWang, J.; Gardinali, P.R., (2012). Analysis of selected pharmaceuticals in fish and the fresh water bodies directly affected by reclaimed water using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 404(9), p: 2711-2720.spa
dc.relation.referencesFraker, S.L.; Smith, G.R., (2004). Direct and interactive effects of ecologically relevant concentrations of organic wastewater contaminants on Rana pipiens tadpoles. Environ. Toxicol. Chem., 19(3), p: 250-256.spa
dc.relation.referencesChen, Y.H.; Huang, Y.H.; Wen, C.C.; Wang, Y.H.; Chen, W.L.; Chen, L.C.; Tsay, H.J., (2008). Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. Neurotoxicol. Teratol., 30(5), p: 440-447.spa
dc.relation.referencesBotero Coy, A.M.; Martínez Pachón, D.; Boix, C.; Rincón, R.J.; Castillo, N.; Arias-Marín, L.; Manrique Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F., (2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci. Total. Environ., 642, p: 842-853.spa
dc.relation.referencesFoo, K.Y.; Hameed, B.H., (2010). Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 156(1), p: 2-10.spa
dc.relation.referencesLimousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M., (2007). Sorption isotherms: A review on physical bases, modeling and measurement. J. Appl. Geochem., 22(2), p: 249-275.spa
dc.relation.referencesBañón J, H., (2017). Diseño de un sistema de adsorción en carbón activado para la eliminación de cromo hexavalente en disolución acuosa. Tesis de pregrado en Ingeniería Química. España: Universidad Politécnica de Valencia.spa
dc.relation.referencesMoreno, A.R., (2013). Estudio de diferentes bioadsorbentes como posibles retenedores de fosfatos en aguas. Tesis de Maestría en Ciencias- Química. Colombia: Universidad Nacional de Colombia. Sede Bogotá.spa
dc.relation.referencesLiu, Y.; Liu, Y.J., (2008). Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol., 61(3), p: 229-242.spa
dc.relation.referencesFreundlich, H., (1906). Over the adsorption in solution. J. Phys. Chem, 57(385471), p: 1100-1107.spa
dc.relation.referencesGimbert, F.; Morin-Crini, N.; Renault, F.; Badot, P.M.; Crini, G., (2008). Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis. J. Hazard. Mater., 157(1), p: 34-46.spa
dc.relation.referencesAl-Ghouti, M.A.; Da'ana, D.A., (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 393, p: 122383.spa
dc.relation.referencesLangmuir, I., (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc., 38(11), p: 2221-2295.spa
dc.relation.referencesRedlich, O.; Peterson, D.L., (1959). A useful adsorption isotherm. J. Phys. Chem., 63(6), p: 1024-1024.spa
dc.relation.referencesTóth, J., (1981). A uniform interpretation of gas/solid adsorption. J. Colloid. Interf. Sci., 79(1), p: 85-95.spa
dc.relation.referencesOcampo Perez, R.; Leyva Ramos, R.; Alonso Davila, P.; Rivera Utrilla, J.; Sanchez Polo, M., (2010). Modeling adsorption rate of pyridine onto granular activated carbon. Chem. Eng. J., 165, p: 133–141.spa
dc.relation.referencesOcampo Perez, R.; Aguilar Madera, C.G.; Díaz Blancas, V., (2017). 3D modeling of overall adsorption rate of acetaminophen on activated carbon pellets. Chem. Eng. J., 321, p: 510-520.spa
dc.relation.referencesElemen, S.; Akçakoca, E.; Yapar, S., (2012). Modeling the adsorption of textile dye on organoclay using an artificial neural network. Dyes. Pigm., 95(1), p: 102-111.spa
dc.relation.referencesGupta, S.S.; Bhattacharyya, K.G., (2011). Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid. Interfac., 162(1-2), p: 39-58.spa
dc.relation.referencesMoral, A.; Carrales Alvarado, D.; Levya Ramos, R.; Ocampo Pérez, R., (2015). Equilibrio y cinética de adsorción de compuestos farmacéuticos sobre carbón activado granular en solución acuosa. J. Gec., 36, p: 6-10.spa
dc.relation.referencesRamos, J., (2010). Estudio del proceso de biosorción de colorantes sobre borra (cuncho) de café. Tesis de Maestría en Ciencias-Química. Colombia: Universidad Nacional de Colombia. Sede Bogotá.spa
dc.relation.referencesPrieto García, J.O.; Rodríguez Suárez, E.; Mollineda Trujillo, A., (2016). Estudio de los mecanismos cinéticos y difusivos en la adsorción de Cu(II) en ceniza de bagazo de caña de azúcar. Centro Azúcar, 43(4), p: 36-41.spa
dc.relation.referencesLeyva Ramos, R.; Geankoplis, C., (1994). Diffusion in liquid‐filled pores of activated carbon. I. Pore volume diffusion. Can. J. Chem. Eng., 72(2), p: 262-271.spa
dc.relation.referencesLeyva Ramos, R.; Ocampo Perez, R.; Mendoza Barron, J., (2012). External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth. Chem. Eng. J., 183, p: 141-151.spa
dc.relation.referencesHo, Y.S.; McKay, G., (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process. Saf. Environ. Prot., 76(2), p: 183-191.spa
dc.relation.referencesOcampo P, R., (2010). Modelado de las cinéticas de adsorción y aplicación de procesos de oxidación avanzada para la eliminación de contaminantes orgánicos en solución acuosa. Tesis de Doctorado en Ciencias en Ingeniería Química. México: Universidad Autónoma de San Luis de Potosí.spa
dc.relation.referencesYu, L.-l.; Jiang, L.-n.; Wang, S.-y.; Sun, M.-m.; Li, D.-q.; Du, G.-m., (2018). Pectin microgel particles as high adsorption rate material for methylene blue: Performance, equilibrium, kinetic, mechanism and regeneration studies. Int. J. Biol. Macromol., 112, p: 383-389.spa
dc.relation.referencesSternberg, T.H.; Bierman, S.M., (1963). Unique syndromes involving the skin induced by drugs, food additives, and environmental contaminants. Arch. Dermatol., 88(6), p: 779-788.spa
dc.relation.referencesRichardson, S.D., (2001). Emerging contaminants: The need for elegant analytical chemistry solutions for the new environmental pollutants of concern. Abstr. Pap. Am. Chem. S., 41(2), p: 598.spa
dc.relation.referencesDalrymple, O.K.; Yeh, D.H.; Trotz, M.A., (2007). Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. Chem. Technol. Biot., 82(2), p: 121-134.spa
dc.relation.referencesZhang, H.; Huang, C.H., (2007). Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66(8), p: 1502-1512.spa
dc.relation.referencesLoos, R.; Hanke, G.; Eisenreich, S.J., (2003). Multi-component analysis of polar water pollutants using sequential solid-phase extraction followed by LC-ESI-MS. J. Environ. Monitor., 5(3), p: 384-394.spa
dc.relation.referencesVanderford, B.J.; Pearson, R.A.; Rexing, D.J.; Snyder, S.A., (2003). Analysis of endocrine disruptors, pharmaceuticals, and personal care products in water using liquid chromatography/candem mass spectrometry. Anal. Chem., 75(22), p: 6265-6274.spa
dc.relation.referencesGlassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D., (2005). Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination. J. Envir. Sci. Tech., 39(14), p: 5157-5169.spa
dc.relation.referencesBenitez, J.; Acero, J.L.; Real, F.L.; Teva, F., (2011). Assessing the contribution of coagulation/UF, PAC/UF, and UF/GAC combined processes to the elimination of emerging cont aminants. Fresen. Environ. Bull., 20(12), p: 3173-3179.spa
dc.relation.referencesCunha, M.R.; Lima, E.C.; Cimirro, N.F.; Thue, P.S.; Dias, S.L.; Gelesky, M.A.; Dotto, G.L.; dos Reis, G.S.; Pavan, F.A., (2018). Conversion of Eragrostis plana Nees leaves to activated carbon by microwave-assisted pyrolysis for the removal of organic emerging contaminants from aqueous solutions. J. Environ. Sci. Pollut. Res., 25(23), p: 23315-23327.spa
dc.relation.referencesHuang, Z.; Gong, B.; Huang, C.-P.; Pan, S.Y.; Wu, P.; Dang, Z.; Chiang, P.C., (2019). Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol. J. Environ. Manage., 231, p: 121-128.spa
dc.relation.referencesÁlvarez, S.; García, R.; Escalona, N.; Sepúlveda, C.; Sotelo, J.L.; García, J., (2015). Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Int. J. Chem. Eng., 279, p: 788-798.spa
dc.relation.referencesLessa, E.F.; Nunes, M.L.; Fajardo, A.R., (2018). Chitosan/waste coffee-grounds composite: an efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. J. Carbohydr. Polym., 189, p: 257-266.spa
dc.relation.referencesYang, G.; Tang, P., (2016). Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process. J. Water Sci. Technol., 73(9), p: 2268-2274.spa
dc.relation.referencesYang, G.C.; Tang, P.L.; Yen, C.H., (2017). Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process. J. Water. Sci. Technol., 75(8), p: 1882-1888.spa
dc.relation.referencesXiong, J.-Q.; Kurade, M.B.; Jeon, B.-H., (2018). Can microalgae remove pharmaceutical contaminants from water? Trends. Biotechnol., 36(1), p: 30-44.spa
dc.relation.referencesDelhiraja, K.; Vellingiri, K.; Boukhvalov, D.W.; Philip, L., (2019). Development of highly water stable graphene oxide based composites for the removal of pharmaceuticals and personal care products. Ind. Eng. Chem. Res., 58(8), p: 2899-2913.spa
dc.relation.referencesSotelo, J.L.; Ovejero, G.; Rodríguez, A.; Álvarez, S.; García, J., (2013). Study of natural clay adsorbent sepiolite for the removal of caffeine from aqueous solutions: Batch and fixed-bed column operation. Water. Air. Soil. Pollut., 224(3), p: 1466.spa
dc.relation.referencesAlvarez, S.; Sotelo, J.; Ovejero, G.; Rodriguez, A.; Garcia, J., (2013). Low-cost adsorbent for emerging contaminant removal in fixed-bed columns. Chem. Eng. Trans., 32, p: 61-66.spa
dc.relation.referencesYamamoto, K.; Shiono, T.; Yoshimura, R.; Matsui, Y.; Yoneda, M., (2018). Influence of hydrophilicity on adsorption of caffeine onto montmorillonite. Adsorpt. Sci. Technol., 36(3-4), p: 967-981.spa
dc.relation.referencesCabrera, W.A.; Román, F.R.; Hernández, A.J., (2012). Transition metal modified and partially calcined inorganic–organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water. J. Colloid. Interf. Sci., 386(1), p: 381-391.spa
dc.relation.referencesOulton, T.D., (1896). The pore size-surface area distribution of a cracking catalyst. J. Phys. Chem., 1, p: 1296-1314.spa
dc.relation.referencesBrindley, G.; Sempels, R., (1977). Preparation and properties of some hydroxy-aluminium beidellites. Clay. Miner., 12(3), p: 229-237.spa
dc.relation.referencesMartín, J.; Orta, M.; Medina, S.; Santos, J.L.; Aparicio, I.; Alonso, E., (2018). Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ. Res., 164, p: 488-494.spa
dc.relation.referencesJung, K.W.; Lee, S.Y.; Choi, J.W.; Lee, Y.J., (2019). A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J., 369, p: 529-541.spa
dc.relation.referencesParus, A., (2018). Copper(II) ions’ removal from aqueous solution using green horse-chestnut shell as a low-cost adsorbent. Chem. Ecol., 34(1), p: 56-69.spa
dc.relation.referencesKahina, L.; Nasser, S.M., (2017). Adsorption of auramine-o using activated globe artichoke leaves: Kinetic and isotherm studies. Asian. J. Chem., 29(8), p: 1646-1650.spa
dc.relation.referencesYao, S.; Sun, S.; Wang, S.; Shi, Z., (2016). Adsorptive removal of lead ion from aqueous solution by activated carbon/iron oxide magnetic composite. Indian. J. Chem. Tech., 23(2), p: 146-152.spa
dc.relation.referencesAbbas, M.; Trari, M., (2015). Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process. Saf. Environ., 98, p: 424-436.spa
dc.relation.referencesXie, X.; Deng, R.; Pang, Y.; Bai, Y.; Zheng, W.; Zhou, Y., (2017). Adsorption of copper(II) by sulfur microparticles. Chem. Eng. J., 314, p: 434-442.spa
dc.relation.referencesDotto, G.L.; Ocampo-Pérez, R.; Moura, J.M.; Cadaval, T.R.S., Jr.; Pinto, L.A.A., (2016). Adsorption rate of Reactive Black 5 on chitosan based materials: Geometry and swelling effects. Adsorption, 22(7), p: 973-983.spa
dc.relation.referencesLeyva-Ramos, R.; Ocampo-Pérez, R.; Bautista-Toledo, I.; Rivera-Utrilla, J.; Medellín-Castillo, N.A.; Aguilar-Madera, C.A., (2020). The adsorption kinetics of sodium dodecylbenzenesulfonate on activated carbon. Branched-pore diffusional model revisited and comparison with other diffusional models. Chem. Eng. Commun., 207(5), p: 705-721.spa
dc.relation.referencesLeyva-Ramos, R.; Ocampo-Pérez, R.; Flores-Cano, J.V.; Padilla-Ortega, E., (2015). Comparison between diffusional and first-order kinetic model, and modeling the adsorption kinetics of pyridine onto granular activated carbon. Desalin. Water. Treat., 55(3), p: 637-646.spa
dc.relation.referencesOcampo-Pérez, R.; Leyva-Ramos, R.; Sanchez-Polo, M.; Rivera-Utrilla, J., (2013). Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption, 19(5), p: 945-957.spa
dc.relation.referencesLiu, Yu; Willett, Matthew; Kao, Chun; Khalil, Muhamad; Asyraaf, Bin; Said, Muhamad, (2020). Caffeine-adsorbing material, caffeine-adsorbing system, decaffeination system, and related methods of removing caffeine from solutions. USA. Disponible en: https://patents.google.com/patent/US10813375B2/en.spa
dc.relation.referencesLi, Z.; Su, G.; Zheng, Q.; Nguyen, T.S., (2020). A dual-porosity model for the study of chemical effects on the swelling behaviour of MX-80 bentonite. Acta. Geotech., 15(3), p: 635-653.spa
dc.relation.referencesGlobalTrade, (2020). Global bentonite market sliped back slightly to $4.3B. Disponible en: https://www.globaltrademag.com/tag/global-bentonite-production/.spa
dc.relation.referencesCamacho, J.; Celada, C., (2004). Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas. Ingeominas. Bogotá, Colombia.spa
dc.relation.referencesÁlvarez, A.; Moreno, S.; Molina, R.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A., (2012). Gold supported on pillared clays for CO oxidation reaction: Effect of the clay aggregate size. Appl. Clay. Sci., 69, p: 22-29.spa
dc.relation.referencesOliveira, M.; Da Silva, M.; Vieira, M., (2019). Equilibrium and kinetic studies of caffeine adsorption from aqueous solutions on thermally modified verde-lodo bentonite. Appl. Clay. Sci., 168, p: 366-373.spa
dc.relation.referencesAntonelli, R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A., (2020). Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration. J. Environ. Chem. Eng., 8(6), p: 104553.spa
dc.relation.referencesdo Nascimento, D.C.; da Silva, M.G.C.; Vieira, M.G.A., (2021). Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: A complete batch system evaluation. J. Mol. Liq., 337, p: 116442.spa
dc.relation.referencesBetancourt-Parra, S.; Domínguez-Ortiz, M.; Martínez-Tejada, M., (2020). Colombian clays binary mixtures: Physical changes due to thermal treatments. J. Dyna, 87(212), p: 73-79.spa
dc.relation.referencesSarikaya, Y.k.; Önal, M.s.e.; Baran, B.l.; Alemdaroğlu, T.l., (2000). The effect of thermal treatment on some of the physicochemical properties of a bentonite. J. Clay, Miner., 48(5), p: 557-562.spa
dc.relation.referencesEmmett, P.; Brunauer, S., (1934). The adsorption of nitrogen by iron synthetic ammonia catalysts. J. Am. Chem. Soc., 56(1), p: 35-41.spa
dc.relation.referencesDe Boer, J.; Linsen, B.; Osinga, T., (1965). Studies on pore systems in catalysts: VI. The universal t curve. J. Catal., 4(6), p: 643-648.spa
dc.relation.referencesHarkins, W.; Jura, G., (1944). Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J. Am. Chem. Soc., 66(8), p: 1366-1373.spa
dc.relation.referencesBalistrieri, L.; Murray, J.W., (1981). The surface chemistry of goethite (alpha FeOOH) in major ion seawater. Am. J. Sci., 281(6), p: 788-806.spa
dc.relation.referencesWang, S.; Dong, Y.; He, M.; Chen, L.; Yu, X., (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions. Appl. Clay. Sci., 43(2), p: 164-171.spa
dc.relation.referencesPinilla Cuenca, L.A.; Pinzón, J., (2001). Curvas de titulación potenciométrica ácido-base de una bentonita. Rev. Colomb. Quim., 30(2).spa
dc.relation.referencesSivrikaya, O.; Uzal, B.; Ozturk, Y., (2017). Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Appl. Clay. Sci., 135, p: 532-537.spa
dc.relation.referencesVieira, M.; Neto, A.A.; Gimenes, M.; da Silva, M., (2010). Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J. Hazard. Mater., 177(1-3), p: 362-371.spa
dc.relation.referencesRouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K.S., (2013). Adsorption by powders and porous solids: Principles, methodology and applications. 2nd ed. Academic Press. Amsterdam, The Netherlands, p: 467-527.spa
dc.relation.referencesJović-Jovičić, N.; Milutinovic-Nikolic, A.; Banković, P.; Dojčtnović, B.; Vasiljević, B.; Gržetić, I.; Jovanović, D., (2010). Synthesis, characterization and adsorptive properties οf organobentonites. Acta. Phys. Pol. A., 117, p: 849-854.spa
dc.relation.referencesNoyan, H.; Önal, M.; Sarikaya, Y., (2006). The effect of heating on the surface area, porosity and surface acidity of a bentonite. Clay. Miner., 54(3), p: 375-381.spa
dc.relation.referencesAndrini, L.; Toja, R.M.; Gauna, M.R.; Conconi, M.S.; Requejo, F.G.; Rendtorff, N., (2017). Extended and local structural characterization of a natural and 800 C fired Na-montmorillonite–Patagonian bentonite by XRD and Al/Si XANES. Appl. Clay. Sci., 137, p: 233-240.spa
dc.relation.referencesPatel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R.V.J., (2006). Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci., 29(2), p: 133-145.spa
dc.relation.referencesMorgan, D., (1995). Clay mineralogy: Spectroscopic and chemical determinative methods. Vol 30. Clay. Miner., London.spa
dc.relation.referencesFil, B.A.; Özmetin, C.; Korkmaz, M., (2014). Characterization and electrokinetic properties of montmorillonite. Bulg. Chem. Commun., 46(2), p: 258-263.spa
dc.relation.referencesOjeda-López, R.; Pérez-Hermosillo, I.J.; Esparza-Schulz, J.M.; Domínguez-Ortiz, A., (2014). Efecto de la temperatura de calcinación sobre la concentración de grupos silanoles en superficies de SiO2 (SBA–15). Av. en Quimica, 9(1), p: 21-28.spa
dc.relation.referencesÖnal, M.; Sarıkaya, Y., (2007). Thermal behavior of a bentonite. J. Therm. Anal. Calorim., 90(1), p: 167-172.spa
dc.relation.referencesDamonte, M.; Sánchez, R.; dos Santos Afonso, M., (2007). Some aspects of the glyphosate adsorption on montmorillonite and its calcined form. Appl. Clay. Sci., 36(1-3), p: 86-94.spa
dc.relation.referencesThommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S., (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure. Appl. Chem., 87(9-10), p: 1051-1069.spa
dc.relation.referencesDanková, Z.; Mockovčiaková, A.; Dolinská, S.; Briančin, J., (2012). Effect of thermal treatment on the bentonite properties. Arh. Tech. Sci, 7(1), p: 49-56.spa
dc.relation.referencesBaeyens, B.; Bradbury, M.H., (1997). A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I: Titration and sorption measurements. J. Contam. Hydrol., 27(3), p: 199-222.spa
dc.relation.referencesOkada, K.; Yamamoto, N.; Kameshima, Y.; Yasumori, A., (2003). Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. J. Colloid. Sci., 262(1), p: 179-193.spa
dc.relation.referencesFernández, M.; Alba, M.; Sánchez, T., (2013). Effects of thermal and mechanical treatments on montmorillonite homoionized with mono-and polyvalent cations: Insight into the surface and structural changes. Colloids Surf. A: Physicochem. Eng. Asp., 423, p: 1-10.spa
dc.relation.referencesGridi-Bennadji, F.; Lecomte-Nana, G.; Mayet, R.; Bonnet, J.-P.; Rossignol, S., (2015). Effect of organic modification on the thermal transformations of abentonite during sintering up to 1250° C. J. Mater. Sci., 38, p: 357-363.spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación, ICONTEC, (1995). Norma Técnica Colombiana NTC 3711. Reglas para el Redondeo de Valores Numéricos. Colombia. Disponible en: https://www.icontec.org/.spa
dc.relation.referencesPortinho, R.; Zanella, O.; Féris, L., (2017). Grape stalk application for caffeine removal through adsorption. J. Environ. Manage., 202, p: 178-187.spa
dc.relation.referencesGil, A.; Santamaría, L.; Korili, S., (2018). Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. J. Colloid. Sci., 22, p: 25-28.spa
dc.relation.referencesAnastopoulos, I.; Katsouromalli, A.; Pashalidis, I., (2020). Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions. J. Mol. Liq., 304, p: 112661.spa
dc.relation.referencesAhmad, L.O.; Le, H.M.; Akimoto, M.; Kaneki, Y.; Honda, M.; Suda, M.; Kunimoto, K.-K., (2013). Persimmon tannin gel: Formation by autoxidation and caffeine adsorption properties. J. Food. Sci. Technol., 19(4), p: 697-703.spa
dc.relation.referencesMartínez, V.; Meffe, R.; López, S.H.; De Bustamante, I., (2016). The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Sci. Total Environ., 559, p: 232-241.spa
dc.relation.referencesHerzog, M.H.; Francis, G.; Clarke, A., (2019). Understanding statistics and experimental design: How to not lie with statistics. Springer Nature. Switzerland.spa
dc.relation.referencesHerney, J.; Lampinen, M.; Vicente, M.; Costa, C.; Madeira, L., (2008). Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Ind. Eng. Chem. Res, 47(2), p: 284-294.spa
dc.relation.referencesAsfaram, A.; Ghaedi, M.; Agarwal, S.; Tyagi, I.; Gupta, V., (2015). Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: Optimization of parameters using response surface methodology with central composite design. J. RSC. Adv., 5(24), p: 18438-18450.spa
dc.relation.referencesDritsa, V.; Rigas, F.; Doulia, D.; Avramides, E.; Hatzianestis, I., (2009). Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Wat. Air. Soil. Pollut., 204(1), p: 19-27.spa
dc.relation.referencesHiew, B.; Lee, L.; Lai, K.; Gan, S.; Thangalazhy, S.; Pan, G.; Yang, T., (2019). Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: Response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. J. Environ. Res., 168, p: 241-253.spa
dc.relation.referencesRoudi, A.; Salem, S.; Abedini, M.; Maslahati, A.; Imran, M., (2021). Response surface methodology (RSM)-based prediction and optimization of the fenton process in landfill leachate decolorization. Processes, 9(12), p: 2284.spa
dc.relation.referencesMyers, R.; Montgomery, D.; Anderson-Cook, C., (2016). Response surface methodology: Process and product optimization using designed experiments. 4th ed. John Wiley & Sons. Nueva Jersey (USA), p: 700.spa
dc.relation.referencesLeili, M.; Shirmohammadi, N.; Godini, K.; Azarian, G.; Moussavi, R.; Peykhoshian, A., (2020). Application of central composite design (CCD) for optimization of cephalexin antibiotic removal using electro-oxidation process. J. Mol. Liq., 313, p: 113556.spa
dc.relation.referencesSharahi, F.; Shahbazi, A., (2017). Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb (II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology. Chemosphere, 189, p: 291-300.spa
dc.relation.referencesRamirez, J.; Costa, C.; Madeira, L., (2005). Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent. Catal. Today., 107-108, p: 68-76.spa
dc.relation.referencesTrautmann, H.; Weihs, C., (2006). On the distribution of the desirability index using Harrington’s desirability function. Metrika, 63, p: 207-213.spa
dc.relation.referencesWalpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K., (2012). Probabilidad y estadística para ingeniería y ciencias. 9th ed. Vol 162. Pearson Educación de México. México.spa
dc.relation.referencesLeal, M.; Martinez Hernandez, V.; Meffe, R.; Lillo, J.; de Bustamante, I., (2017). Clinoptilolite and palygorskite as sorbents of neutral emerging organic contaminants in treated wastewater: Sorption-desorption studies. Chemosphere, 175, p: 534-542.spa
dc.relation.referencesDiogo Januário, E.; Vidovix, T.; Ribeiro, A.; Duarte, E.; Bergamasco, R.; Salcedo Vieira, A., (2022). Evaluation of hydrochar from peach stones for caffeine removal from aqueous medium and treatment of a synthetic mixture. J. Environ. Technol., Oct 30, p: 1-14.spa
dc.relation.referencesKeerthanan, S.; Bhatnagar, A.; Mahatantila, K.; Jayasinghe, C.; Ok, Y.S.; Vithanage, M., (2020). Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ. Technol. Innov., 19, p: 100847.spa
dc.relation.referencesBachmann, S.A.L.; Calvete, T.; Féris, L.A., (2020). Caffeine removal from aqueous media by adsorption: An overview of adsorbents evolution and the kinetic, equilibrium and thermodynamic studies. Sci. Total. Environ., p: 144229.spa
dc.relation.referencesŠvorc, L.u., (2013). Determination of caffeine: A comprehensive review on electrochemical methods. Int. J. Electrochem. Sci., 8, p: 5755-5773.spa
dc.relation.referencesGarcía-Bórquez, A.; Salmón, M.; Labastida, E.; Aguilar-Sahagun, G.; Sanchez, H.; Gomez, V.; Vargas-Rodriguez, Y., (2008). Caracterización espectroscópica, química y morfológica y propiedades superficiales de una montmorillonita mexicana. Rev. mex. cienc. geol, 25(1), p: 135-144.spa
dc.relation.referencesSakuma, H.; Tamura, K.; Hashi, K.; Kamon, M., (2020). Caffeine adsorption on natural and synthetic smectite clays: Adsorption mechanism and effect of interlayer cation valence. J. Phys. Chem. C., 124(46), p: 25369-25381.spa
dc.relation.referencesSotelo, J.L.; Rodríguez, A.R.; Mateos, M.M.; Hernández, S.D.; Torrellas, S.A.; Rodríguez, J.G., (2012). Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Health B., 47(7), p: 640-652.spa
dc.relation.referencesKhan, A.R.; Ataullah, R.; Al-Haddad, A., (1997). Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid. Inter. Sci., 194(1), p: 154-165.spa
dc.relation.referencesPrasad, R.K.; Srivastava, S., (2009). Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies. J. Chem. Eng., 146(1), p: 90-97.spa
dc.relation.referencesToth, J., (1971). State equation of the solid-gas interface layers. Acta. Chem., 69, p: 311-328.spa
dc.relation.referencesVijayaraghavan, K.; Padmesh, T.; Palanivelu, K.; Velan, M., (2006). Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater., 133(1-3), p: 304-308.spa
dc.relation.referencesToth, J., (2002). Adsorption Theory Modeling and Analysis, ed. Marcel Dekker, I. CRC Press. New York (USA).spa
dc.relation.referencesQuintero J, J.A.; Carrero M, J.I.; Sanabria G, N.R., (2021). A review of caffeine adsorption studies onto various types of adsorbents. Sci. World. J., 2021, p: 9998924.spa
dc.relation.referencesRafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A., (2010). Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater., 177(1), p: 70-80.spa
dc.relation.referencesLuján, M.J.; Iborra, M.I.; Mendoza, J.A.; Alcaina, M.I., (2019). Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. J. Clean. Prod., 238, p: 117866.spa
dc.relation.referencesGalhetas, M.; Mestre, A.S.; Pinto, M.L.; Gulyurtlu, I.; Lopes, H.; Carvalho, A.P., (2014). Chars from gasification of coal and pine activated with K2CO3: Acetaminophen and caffeine adsorption from aqueous solutions. J. Colloid. Interface. Sci., 433, p: 94-103.spa
dc.relation.referencesMasson, S.; Vaulot, C.; Reinert, L.; Guittonneau, S.; Gadiou, R.; Duclaux, L., (2017). Thermodynamic study of seven micropollutants adsorption onto an activated carbon cloth: Van’t Hoff method, calorimetry, and COSMO-RS simulations. Environ. Sci. Pollut. Res., 24(11), p: 10005-10017.spa
dc.relation.referencesAkpotu, S.O.; Moodley, B., (2018). MCM-48 encapsulated with reduced graphene oxide/graphene oxide and as-synthesised MCM-48 application in remediation of pharmaceuticals from aqueous system. J. Mol. Liq., 261, p: 540-549.spa
dc.relation.referencesZhang, M.; Ma, G.; Zhang, L.; Chen, H.; Zhu, L.; Wang, C.; Liu, X., (2019). Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis. Analyst., 144(17), p: 5164-5171.spa
dc.relation.referencesAnastopoulos, I.; Pashalidis, I., (2019). Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J. Mol. Liq., 296, p: 112078.spa
dc.relation.referencesOliveira, M.; De Souza, V.; Da Silva, M.; Vieira, M., (2018). Fixed-bed adsorption of caffeine onto thermally modified verde-lodo bentonite. Ind. Eng. Chem. Res., 57(51), p: 17480-17487.spa
dc.relation.referencesCorrea, Y.; Giraldo, L.; Moreno, J., (2019). Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fique bagasse biochars. Data. Br., 25, p: 104-111.spa
dc.relation.referencesDanish, M.; Birnbach, J.; Ibrahim, M.; Hashim, R., (2020). Scavenging of caffeine from aqueous medium through optimized H3PO4-activated Acacia mangium wood activated carbon: Statistical data of optimization. Data. Br., 28, p: 105045.spa
dc.relation.referencesKlett, C.; Barry, A.; Balti, I.; Lelli, P.; Schoenstein, F.; Jouini, N., (2014). Nickel doped Zinc oxide as a potential sorbent for decolorization of specific dyes, methylorange and tartrazine by adsorption process. J. Environ. Chem. Eng., 2(2), p: 914-926.spa
dc.relation.referencesPinzón-Bedoya, M.; Vera Villamizar, L., (2009). Modelamiento de la cinética de bioadsorción de Cr (III) usando cáscara de naranja. Dyna, 76(160), p: 95-106.spa
dc.relation.referencesSetiabudi, H.; Jusoh, R.; Suhaimi, S.; Masrur, S., (2016). Adsorption of methylene blue onto oil palm (Elaeis guineensis) leaves: Process optimization, isotherm, kinetics and thermodynamic studies. J. Taiwan. Inst. Chem. Eng., 63, p: 363-370.spa
dc.relation.referencesFranca, A.; Oliveira, L.; Ferreira, M., (2009). Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249(1), p: 267-272.spa
dc.relation.referencesCheung, C.; Porter, J.; Mckay, G., (2001). Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. J. Water. Res., 35(3), p: 605-612.spa
dc.relation.referencesPérez-Marín, A.; Zapata, V.M.; Ortuno, J.; Aguilar, M.; Sáez, J.; Lloréns, M., (2007). Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater., 139(1), p: 122-131.spa
dc.relation.referencesMansouriieh, N.; Sohrabi, M.R.; Khosravi, M., (2016). Adsorption kinetics and thermodynamics of organophosphorus profenofos pesticide onto Fe/Ni bimetallic nanoparticles. Int. J Environ. Sci. Tech., 13(5), p: 1393-1404.spa
dc.relation.referencesTan, K.A.; Morad, N.; Teng, T.T.; Norli, I., (2015). Synthesis of magnetic nanocomposites (AMMC-Fe3O4) for cationic dye removal: Optimization, kinetic, isotherm, and thermodynamics analysis. J. Taiwan. Inst. Chem. Eng., 54, p: 96-108.spa
dc.relation.referencesAlkan, M.; Demirbaş, Ö.; Doğan, M., (2007). Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. J. Microporous. Mesoporous. Mater., 101(3), p: 388-396.spa
dc.relation.referencesDahri, M.K.; Kooh, M.R.R.; Lim, L.B.L., (2013). Removal of methyl violet 2B from aqueous solution using Casuarina Equisetifolia Needle. ISRN. Environ. Chem., 2013, p: 619819.spa
dc.relation.referencesAhmad, R.; Kumar, R., (2010). Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. J. Appl. Surf. Sci., 257(5), p: 1628-1633.spa
dc.relation.referencesHo, Y.S.; McKay, G., (1998). Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Safety and Environmental Protection, 76(2), p: 183-191.spa
dc.relation.referencesEl-Khaiary, M.I.; Malash, G.F., (2011). Common data analysis errors in batch adsorption studies. Hydrometallurgy., 105(3-4), p: 314-320.spa
dc.relation.referencesTran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P., (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water. Res., 120, p: 88-116.spa
dc.relation.referencesBeltrame, K.K.; Cazetta, A.L.; de Souza, P.S.; Spessato, L.; Silva, T.L.; Almeida, V.C., (2018). Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol. Environ. Saf., 147, p: 64-71.spa
dc.relation.referencesZhang, W.; Huo, C.; Hou, B.; Lin, C.; Yan, X.; Feng, J.; Yan, W., (2021). Secondary particle size determining sedimentation and adsorption kinetics of titanate-based materials for ammonia nitrogen and methylene blue removal. J. Mol. Liq., 343, p: 117026.spa
dc.relation.referencesShen, Z.; Ji, X.; Yao, S.; Zhang, H.; Xiong, L.; Li, H.; Chen, X.; Chen, X., (2023). Study on the adsorption behavior of chlorogenic acid from Eucommia ulmoides Oliver leaf extract by a self-synthesized resin. Ind. Crops. Prod., 197, p: 116585.spa
dc.relation.referencesQinQin; Li, M.; Lan, P.; Liao, Y.; Sun, S.; Liu, H., (2021). Novel CaCO3/chitin aerogel: Synthesis and adsorption performance toward Congo red in aqueous solutions. Int. J. Biol. Macromol., 181, p: 786-792.spa
dc.relation.referencesLi, W.; Zu, B.; Yang, Q.; An, J.; Li, J., (2022). Nanoplastic adsorption characteristics of bisphenol A: The roles of pH, metal ions, and suspended sediments. Mar. Pollut. Bull., 178, p: 113602.spa
dc.relation.referencesObayomi, K.S.; Yon Lau, S.; Akubuo-Casmir, D.; Diekola Yahya, M.; Auta, M.; Fazle Bari, A.S.M.; Elizabeth Oluwadiya, A.; Obayomi, O.V.; Mahmudur Rahman, M., (2022). Adsorption of endocrine disruptive congo red onto biosynthesized silver nanoparticles loaded on Hildegardia Barteri activated carbon. J. Mol. Liq., 352, p: 118735.spa
dc.relation.referencesZhang, P.; Li, Y.; Cao, Y.; Han, L., (2019). Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol., 285, p: 121348.spa
dc.relation.referencesGutiérrez-Mosquera, L.; Arias-Giraldo, S.; Ceballos-Peñaloza, A., (2018). Energy and productivity yield assessment of a traditional furnace for noncentrifugal brown sugar (Panela) production. Int. J. Chem. Eng., 2018, p: 6841975.spa
dc.relation.referencesBoon, C.; Padmesh, T., (2022). Aspen adsorption simulation on biosorption between water hyacinth (Eichhornia crassipes) and Pb (II) ions in packed bed column. IOP Conf. Ser.: Mater. Sci. Eng, 1257(1), p: 012049.spa
dc.relation.referencesDaza Pacheco, S.L., (2022). Diseño conceptual para el tratamiento de aguas coloreadas provenientes de la industria de alimentos utilizando el sistema peróxido activado con bicarbonato. Tesis de Maestría. Manizales (Colombia): Universidad Nacional de Colombia.spa
dc.relation.referencesMeramo-Hurtado, S.; Moreno-Sader, K.; González-Delgado, Á., (2020). Design, simulation, and environmental assessment of an adsorption-based treatment process for the removal of polycyclic aromatic hydrocarbons (PAHs) from seawater and sediments in North Colombia. J. Am. Chem. Soc., 5(21), p: 12126-12135.spa
dc.relation.referencesYasir, H.; Zein, S.; Holliday, M.; Jabbar, K.; Ahmed, U.; Jalil, A., (2023). Comparison of activated carbon and low-cost adsorbents for removal of 2, 4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology. Environ. Technol., 27, p: 1-19.spa
dc.relation.referencesZhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C., (2017). Sustainable options for the utilization of solid residues from wine production. J. Waste. Manag., 60, p: 173-183.spa
dc.relation.referencesWooley, R.; Putsche, V., (1996). Development of an ASPEN PLUS physical property database for biofuels components. National Renewable Energy Laboratory. Colorado, USA, p: 33.spa
dc.relation.referencesJaroenkhasemmeesuk, C.; Tippayawong, N.; Ingham, D.B.; Pourkashanian, M., (2020). Process modelling and simulation of fast pyrolysis plant of lignocellulosic biomass using improved chemical kinetics in Aspen Plus®. J. Chem. Eng. Trans., 78, p: 73-78.spa
dc.relation.referencesSerna-Loaiza, S.; Ortiz-Sánchez, M.; Pisarenko, Y.; Serafimov, L.; Cardona, C., (2019). Application of thermodynamic-topological analysis in the design of biorefineries: Development of a design strategy. J. Theor. Found. Chem. Eng., 53, p: 166-184.spa
dc.relation.referencesWilliams, O.; Eastwick, C.; Kingman, S.; Giddings, D.; Lormor, S.; Lester, E., (2015). Investigation into the applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) tests for several biomasses compared to Colombian La Loma coal. Fuel, 158, p: 379-387.spa
dc.relation.referencesParada, M.P.; Osseweijer, P.; Duque, J.A.P.; Products, (2017). Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. J. Ind. Crops. Prod., 106, p: 105-123.spa
dc.relation.referencesTowler, G.; Sinnott, R., (2013). Chemical engineering design: Principles, practice and economics of plant and process design. 1st ed. Butterworth-Heinemann. California, USA, p: 1263.spa
dc.relation.referencesCharles Maxwell, (2020). Plant cost index. Engineering, Financial Analysis, Project Management. USA. Disponible en: https://toweringskills.com/financial-analysis/cost-indices/#chemical-engineering-plant-cost-index-cepci.spa
dc.relation.referencesRueda-Duran, C.-A.; Ortiz-Sanchez, M.; Cardona-Alzate, C.; Biorefinery, (2022). Detailed economic assessment of polylactic acid production by using glucose platform: Sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials. J. Biomass. Convers. Biorefin., 12(10), p: 4419-4434.spa
dc.relation.referencesSolarte-Toro, J.; Rueda-Duran, C.; Ortiz-Sanchez, M.; Alzate, C.A., (2021). A comprehensive review on the economic assessment of biorefineries: The first step towards sustainable biomass conversion. J. Biomass. Convers. Biorefin., 15, p: 100776.spa
dc.relation.referencesSolarte-Toro, J.; Ortiz-Sanchez, M.; Restrepo-Serna, D.; Piñeres, P.; Cordero, A.; Alzate, C., (2021). Influence of products portfolio and process contextualization on the economic performance of small-and large-scale avocado biorefineries. J. Bioresour. Technol., 342, p: 126060.spa
dc.relation.referencesVargas, C.; Solarte-Toro, J.; Veloza, L.; Alzate, C.; Restrepo-Parra, E.; Higuita, J., (2021). Cocaine degradation using a rotating biological disc reactor: Techno-economic and environmental analysis using experimental data. J. Hazard. Mater., 404, p: 124219.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAdsorciónspa
dc.subject.proposalBentonitaspa
dc.subject.proposalCafeínaspa
dc.subject.proposalDifusiónspa
dc.subject.proposalMecanismospa
dc.subject.proposalTratamiento térmicospa
dc.subject.proposalAdsorptioneng
dc.subject.proposalBentoniteeng
dc.subject.proposalCaffeineeng
dc.subject.proposalDiffusioneng
dc.subject.proposalMechanismeng
dc.subject.proposalHeat treatmenteng
dc.titleAdsorción del contaminante emergente cafeína en medio acuoso empleando una arcilla modificadaspa
dc.title.translatedAdsorption of the emerging contaminant caffeine in aqueous medium using a modified clayeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
16071952_2024.pdf
Tamaño:
14.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: