Control MPC distribuido para el despacho óptimo de potencia activa y reactiva en microrredes

dc.contributor.advisorMojica Nava, Eduardo Alirio
dc.contributor.advisorRevelo Fuelagán, Javier
dc.contributor.authorErazo Caicedo, Edwin David
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UNspa
dc.date.accessioned2021-06-02T22:14:10Z
dc.date.available2021-06-02T22:14:10Z
dc.date.issued2021-06-02
dc.descriptiondiagramas, ilustraciones a color, tablasspa
dc.description.abstractEn esta investigación se resuelve el despacho óptimo de potencia activa y reactiva en microrredes AC, cuyo objetivo es la búsqueda de la mejor configuración de los elementos del sistema, para la minimización de su costo de operación y el aseguramiento de la calidad en el servicio de energía eléctrica. Generalmente las microrredes AC son desbalanceadas ya que contienen componentes no simétricos y, por otro lado, son sistemas con alta dependencia de las condiciones del ambiente, por lo que, a continuación se proponen controladores MPC distribuido y centralizado, online y en tiempo real, que afrontan la incertidumbre del ambiente y el desbalance del sistema. Con éste fin se plantea un modelo de estado estacionario, una técnica de flujo de potencia, un problema de optimización y su linealización, y dos controladores más basados en PSO y programación lineal, todos ellos con aportes significativos a la rama de investigación. La evaluación se realiza en sistemas de potencia estándar, bajo condiciones inspiradas en las redes eléctricas colombianas y en una simulación de 24 horas.spa
dc.description.abstractIn this research, active and reactive optimal power dispatch in AC microgrids is resolved, whose objective is to look for the best system elements configuration, in order to minimize its operation cost and ensure quality in power service. Generally, AC microgrids are unbalanced since they contain non-symmetrical components, and, on the other hand, they are systems that have a high dependence on environmental conditions, so then, online and real-time, distributed and centralized MPC controllers are proposed to face environmental uncertainty and system unbalance. For it, a steady state model, a power flow technique, an optimization problem and its linearization, and two more controllers based on PSO and linear programming have been developed, all of them with significant contributions to the research branch. The evaluation has been carried out in standardized power systems, under conditions inspired by the colombian power network in a 24 hours simulation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Automatización Industrialspa
dc.description.researchareaTeoría y aplicación de controlspa
dc.format.extent1 recurso en línea (167 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79601
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.references[1] XM S.A. E.S.P., “XM Portal BI información inteligente.” [Online]. Available:http://portalbissrs.xm.com.co/trpr/Paginas/Historicos/Historicos.aspxspa
dc.relation.references[2] IEEE PES AMPS DSAS Test Feeder Working Group, “IEEE PES Test Feeders,”2017. [Online]. Available: https://site.ieee.org/pes-testfeeders/resources/spa
dc.relation.references[3] O. de las naciones unidas, “Informe de la Comisión Mundial sobre el Medio Ambiente y el Desarrollo,” Tech.Rep., 1987. [Online]. Available: https://es.scribd.com/doc/105305734/ONU-Informe-Brundtland-Ago-1987-Informe-de-la-Comision-Mundial-sobre-Medio\-Ambiente-y-Desarrollospa
dc.relation.references[4] Programa de las Naciones Unidas para el Desarrollo, “Objetivos de DesarrolloSostenible, Colombia.” 2015. [Online]. Available: http://www.co.undp.org/content/dam/colombia/docs/ODM/undp-co-ODSColombiaVSWS-2016.pdfspa
dc.relation.references[5] Departamento Nacional de Planeación, “Bases del Plan Nacional de Desarrollo2018-2022,” 2018. [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Prensa/PND/BasesPlanNacionaldeDesarrollo2018-2022-ResumenEjecutivo.pdfspa
dc.relation.references[6] N. Hatziargyriou, Microgrids: architectures and control, N. Hatziargyriou, Ed. Athens,Greece: John Wiley & Sons, Ltd., 2014.spa
dc.relation.references[7] Fundación de la energía de la comunidad de Madrid, “Guía Básica de la GeneraciónDistribuida.” [Online]. Available: http://www.madrid.org/bvirtual/BVCM005776.pdfspa
dc.relation.references[8] Clean Energy Council, “Clean Energy Australia Report 2020,” 2020.[Online]. Available: https://assets.cleanenergycouncil.org.au/documents/resources/reports/clean-energy-australia/clean-energy-australia-report-2020.pdfspa
dc.relation.references[9] S. Carvajal and J. Marín, “Impacto de la generación distribuida en el sistema eléctricode potencia colombiano: un enfoque dinámico,” Tecnura, vol. 17, no. 33, pp. 77–89,2013.spa
dc.relation.references[10] J. G.-H. y. A. Saavedra-Montes, “Una metodología de diseño de microrredes para zonasno interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, 2017.spa
dc.relation.references[11] Comisión de regulación de energía y gas (CREG), “Resolución No. 030 (26 feb. 2018),” 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/{\$}FILE/Creg030-2018.pdfspa
dc.relation.references[12] Unidad de Planeación Minero Energética (UPME), “Integración de las energías renovables no convencionales en Colombia,” 2015. [Online]. Available: http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION ENERGIAS RENOVANLES WEB.pdfspa
dc.relation.references[13] Plan de Energización Rural del Departamento de Nariño, “Diagnóstico Energéticoy Social del Departamento de Nariño,” 2014. [Online]. Available: http://sipersn.udenar.edu.co:90/sipersn/docs/DocumentosAnalisisdeInformacion/Diagn%C3%B3stico%20Energ%C3%A9tico%20y%20Social%20del%20Departamento.pdf.spa
dc.relation.references[14] Subdirección De Energía Eléctrica – Grupo De Generación (UPME), “Informe Mensualde Variables de Generación y del Mercado Eléctrico Colombiano – Marzo 2018,” Unidadde Planeación Minero Energética, Tech. Rep., 2018.spa
dc.relation.references[15] Semana, “Curiosidades del gran apagón que amenaza con repetirse,” 2015. [Online]. Available: https://www.semana.com/nacion/articulo/asi-fue-el-racionamiento-de-energia-en-1992-en-el-gobierno-de-cesar-gaviria/448643-3/spa
dc.relation.references[16] Agencia de Noticias UN, “Microrred generaría energía a bajo costo en zonas no interconectadas,” Medellín, apr2017. [Online]. Available: https://agenciadenoticias.unal.edu.co/detalle/article/microrred-generaria-energia-a-bajo-costo-en-zonas-no-interconectadas.htmlspa
dc.relation.references[17] H. Angarita, A. J. Wickel, J. Sieber, J. Chavarro, J. A. Maldonado-Ocampo,G. A. Herrera-R., J. Delgado, and D. Purkey, “Basin-scale impacts of hydropowerdevelopment on the Mompós Depression wetlands, Colombia,” Hydrology andEarth System Sciences, vol. 22, no. 5, pp. 2839–2865, 2018. [Online]. Available:https://hess.copernicus.org/articles/22/2839/2018/spa
dc.relation.references[18] Semana, “¿Cuál es la magnitud real de la emergencia que vive Hidroituango?”may 2018. [Online]. Available: https://www.semana.com/nacion/multimedia/semana-en-vivo-cual-es-la-magnitud-real-de-la-emergencia-que-vive-hidroituango/567320/spa
dc.relation.references[19] Portafolio, “La planta de energía solar, Celsia Solar Yumbo, inició operaciones,” sep2017. [Online]. Available: https://www.celsia.com/es/granjas-solares/138 Bibliografíaspa
dc.relation.references[20] H. Bevrani, B. Fran¸cois, and T. Ise, Microgrid Dynamics and Control : A Solution forIntegration of Renewable Power. Somerset, UNITED STATES: John Wiley & Sons,Incorporated, 2017.spa
dc.relation.references[21] E. Mojica, B. Toro, E. Gaona, and C. Trujillo, Control de microrredes eléctricas inteligentes. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas, 2017.spa
dc.relation.references[22] D. Florian, J. W. Simpson-Porco, and F. Bullo, “Breaking the Hierarchy : Distributed Control & Economic Optimality in Microgrids,” IEEE transactions on Control ofNetwork Systems, vol. 5870, no. c, 2015.spa
dc.relation.references[23] J. Rocabert, A. Luna, and F. Blaabjerg, “Control of Power Converters in AC Microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734–4749,2012.spa
dc.relation.references[24] S. S. Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over SchedulingPeriod,” IEEE Systems Journal, vol. 9, no. 4, pp. 1440 – 1451, 2015.spa
dc.relation.references[25] L. Yang, T. Liu, and D. J. Hill, “Distributed MPC-based frequency control for multiarea power systems with energy storage,” Electric Power Systems Research, vol. 190,no. 106642, p. 7, 2020.spa
dc.relation.references[26] E. D. Anese, H. Zhu, and G. B. Giannakis, “Distributed Optimal Power Flow for SmartMicrogrids,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1464–1475, 2013.spa
dc.relation.references[27] K. Lee, Y. M. Park, and J. L. Ortiz, “A United Approach to Optimal Real and ReactivePower Dispatch,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-104,no. 5, pp. 1147–1153, 1985.spa
dc.relation.references[28] D. Shirmoharmnadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A Compensation-BasedPower Flow Methdd for Weakly Meshed Distribution and Transmission Networks,”IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 753–762, 1988.spa
dc.relation.references[29] F. Andrés, H. Ramírez, J. Hernandez, and E. R. Trujillo, “Optimal Power Flow inElectrical Microgrids,” Energy and Power Engineering, vol. 6, pp. 449–458, 2014.spa
dc.relation.references[30] Y. Levron, J. M. Guerrero, and Y. Beck, “Optimal Power Flow in Microgrids WithEnergy Storage,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3226–3234,2013.spa
dc.relation.references[31] W. C. Clarke, C. Manzie, and M. J. Brear, “An Economic MPC Approach to MicrogridControl,” in 2016 Australian Control Conference, Newcastle, 2016, pp. 276–281.spa
dc.relation.references[32] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control approach to microgridoperation optimization,” IEEE Transactions on Control Systems Technology, vol. 22,no. 5, pp. 1813–1827, 2014.spa
dc.relation.references[33] P. P. Vergara, J. C. López, M. J. Rider, and L. C. P. Silva, “Optimal Operation ofUnbalanced Three-Phase Islanded Droop-Based Microgrids,” IEEE Transactions onSmart Grid, vol. 10, no. 1, pp. 928–940, 2020.spa
dc.relation.references[34] M. A. Nasr, A. Rabiee, and I. Kamwa, “MPC and robustness optimisation-based EMSfor microgrids with high penetration of intermittent renewable energy,” IET Generation, Transmission Distribution, vol. 14, no. 22, pp. 5239–5248, 2020.spa
dc.relation.references[35] Y. Du, W. Pei, N. Chen, X. Ge, and H. Xiao, “Real-time microgrid economic dispatchbased on model predictive control strategy,” Journal of Modern Power Systems andClean Energy, 2017.spa
dc.relation.references[36] J. J. Grainger and W. D. J. Stevenson, Análisis de sistemas de potencia. Mexico,D.F: McGraw-Hill, 1996.spa
dc.relation.references[37] P. Kundur, Power System Stability and Control, N. J. Balu and M. G. Lauby, Eds.New York: McGraw-Hill, 1994.spa
dc.relation.references[38] H. Saadat, Power System Analysis, B. Jones, Ed. New York: McGraw-Hill, 1999.spa
dc.relation.references[39] G. Luo and A. Semlyen, “Efficient Load Flow for Large Weakly Meshed Networks,”IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1309–1316, 1990.spa
dc.relation.references[40] C. S. Cheng and D. Shlrmohammadi, “A Three-Phase Power Flow Method For RealTime Distribution System Analysis,” IEEE Transactions on Power Systems, vol. 10,no. 2, pp. 671–679, 1995.spa
dc.relation.references[41] S. Khushalani, J. M. Solanki, and N. N. Schulz, “Development of Three-Phase Unbalanced Power Flow Using PV and PQ Models for Distributed Generation and Studyof the Impact of DG Models,” IEEE Transactions on Power Systems, vol. 22, no. 3,pp. 1019–1025, 2007.spa
dc.relation.references[42] A. Carlos, Z. D. Souza, M. Santos, M. Castilla, J. Miret, L. G. D. Vicuña, and D. Marujo, “Voltage security in AC microgrids : a power flow-based approach consideringdroop- controlled inverters,” IET Renewable Power Generation, vol. 9, no. 8, pp. 954–960, 2015.spa
dc.relation.references[43] M. Z. Kamh and R. Iravani, “A Unified Three-Phase Power-Flow Analysis Model forElectronically Coupled Distributed Energy Resources,” IEEE Transactions on PowerDelivery, vol. 26, no. 2, pp. 899–909, 2011.spa
dc.relation.references[44] M. Kamh and R. Iravani, “Unbalanced Model and Power-Flow Analysis of Microgridsand Active Distribution Systems,” IEEE Transactions on Power Delivery, vol. 25,no. 4, pp. 2851–2858, 2010.spa
dc.relation.references[45] W. H. Kersting, Distribution System Modeling and Analysis, third edit ed. Las Cruces,New Mexico: Taylor & Francis Group, 2012.spa
dc.relation.references[46] H. W. Dommel and W. F. Tinney, “Optimal Power Flow Solutions,” IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 10, pp. 1866–1876, 1968.spa
dc.relation.references[47] C. Bayliss and B. Hardy, Tansmission and Distribution Electrical Engineering, thirdedit ed. Oxford: Elsevier Ltd., 2007.spa
dc.relation.references[48] Central Station Engineers of the Westinghouse Electric Corporation, Electrical Transmission and Distribution Reference Book, fourth edi ed., Westinghouse Electric Corporation, Ed. East Pittsburgh, Pennsylvania: Donnelley & Sons Company, 1964.spa
dc.relation.references[49] DIgSILENT GmbH, “DIgSILENT PowerFactory 15,” Gomaringen, Germany, 2014.spa
dc.relation.references[50] R. D. Zimmerman and C. E. Murillo-Sanchez, “MATPOWER (Version 7.1),” 2020.[Online]. Available: https://matpower.orgspa
dc.relation.references[51] B. Yang, W. Li, Y. Zhao, and X. He, “Design and Analysis of a Grid-ConnectedPhotovoltaic Power System,” IEEE Transactions on Power Electronics, vol. 25, no. 4,pp. 992–1000, 2010.spa
dc.relation.references[52] Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 58, no. 4,pp. 1259–1267, 2011.spa
dc.relation.references[53] F. Hameed, M. A. Hosani, and H. H. Zeineldin, “A Modified Backward / ForwardSweep Load Flow Method for Islanded Radial Microgrids,” IEEE Transactions onSmart Grid, vol. 10, no. 1, pp. 910 – 918, 2019.spa
dc.relation.references[54] A. Gabash and P. Li, “Active-Reactive Optimal Power Flow in Distribution NetworksWith Embedded Generation and,” IEEE Transactions on Power Systems, vol. 27,no. 4, pp. 2026–2035, 2012.spa
dc.relation.references[55] S. Ge and T. S. Chung, “Optimal Active Power Flow Incorporating Power Flow ControlNeeds in Flexible Ac Transmission Systems,” IEEE Transactions on Power Systems,vol. 14, no. 2, pp. 738–744, 1999.spa
dc.relation.references[56] J. Hetzer, D. C. Yu, and K. Bhattarai, “An Economic Dispatch Model IncorporatingWind Power,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 603–611,2008.spa
dc.relation.references[57] Z.-l. Gaing, “Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints,” IEEE Transactions on Power Systems, vol. 18, no. 3,pp. 1187–1195, 2003.spa
dc.relation.references[58] H. Liang, B. J. Choi, A. Abdrabou, W. Zhuang, and X. S. Shen, “Decentralized Economic Dispatch in Microgrids via Heterogeneous Wireless Networks,” IEEE Journalon Selected Areas in Communications, vol. 30, no. 6, pp. 1061–1074, 2012.spa
dc.relation.references[59] M. Mahmoodi, P. Shamsi, and B. Fahimi, “Economic Dispatch of a Hybrid MicrogridWith Distributed Energy Storage,” IEEE Transactions on Smart Grid, vol. 6, no. 6,pp. 2607–2614, 2015.spa
dc.relation.references[60] S. Granville, “Optimal Reactive Dispatch Through Interior Point Methods,” IEEETransactions on Power Systems, vol. 9, no. 1, pp. 136–146, 1994.spa
dc.relation.references[61] B. Zhao, C. X. Guo, and Y. J. Cao, “A Multiagent-Based Particle Swarm Optimization Approach for Optimal Reactive Power Dispatch,” IEEE Transactions on PowerSystems, vol. 20, no. 2, pp. 1070–1078, 2005.spa
dc.relation.references[62] Yong-jun Zhang and Zhen Ren, “Optimal reactive power dispatch considering costs ofadjusting the control devices,” IEEE Transactions on Power Systems, vol. 20, no. 3,pp. 1349–1356, 2005.spa
dc.relation.references[63] Q. H. Wu and J. T. Ma, “Power system optimal reactive power dispatch using evolutionary programming,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp.1243–1249, 1995.spa
dc.relation.references[64] D. Boice, R. Gursky, and J. Trad, “Cost of Electrical Power System Losses for Usein Economic Evaluations,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp.586–593, 1989.spa
dc.relation.references[65] International Business Machines Corporation (IBM), “IBM ILOG CPLEX Optimization Studio,” 2019. [Online]. Available: https://www.ibm.com/co-es/products/ilog-cplex-optimization-studiospa
dc.relation.references[66] C. A. Floudas, Nonlinear and Mixed-Integer Optimization : Fundamentals and Applications. Cary, UNITED STATES: Oxford University Press, Incorporated, 1995.spa
dc.relation.references[67] Y. Xu and C. Singh, “Adequacy and Economy Analysis of Distribution SystemsIntegrated With Electric Energy Storage and Renewable Energy Resources,” IEEETransactions on Power Systems, vol. 27, no. 4, pp. 2332–2341, 2012.spa
dc.relation.references[68] K. Baker, J. Guo, G. Hug, and X. Li, “Distributed MPC for Efficient Coordination ofStorage and Renewable Energy Sources Across Control Areas,” IEEE Transactions onSmart Grid, vol. 7, no. 2, pp. 992–1001, 2016.142 Bibliografíaspa
dc.relation.references[69] C. X. Rosero, M. Velasco, P. Martí, A. Camacho, J. Miret, and M. Castilla, “ActivePower Sharing and Frequency Regulation in Droop-Free Control for Islanded Microgrids Under Electrical and Communication Failures,” IEEE Transactions on IndustrialElectronics, vol. 67, no. 8, pp. 6461–6472, 2020.spa
dc.relation.references[70] H. Mahmood, D. Michaelson, and J. Jiang, “Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control,” IEEE Transactions on Smart Grid,vol. 6, no. 6, pp. 3052–3060, 2015.spa
dc.relation.references[71] E. Denny and M. O’Malley, “Wind generation, power system operation, and emissionsreduction,” IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 341–347, 2006.spa
dc.relation.references[72] Comisión de regulación de energía y gas (CREG), “Resolución No. 119(21 dic. 2007),” 2007. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1aed427ff782911965256751001e9e55/c63f06a9114e1a150525785a007a6fa2spa
dc.relation.references[73] B. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage System,” IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 934–943, 2013.spa
dc.relation.references[74] Comisión de regulación de energía y gas (CREG), “Resolución No. 108(03 jul. 1997),” 1997. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/5704b5b3164bd1620525785a007a63c3spa
dc.relation.references[75] C. Roos, T. Terlaky, and J.-P. Vial, Interior Point Methods for Linear Optimization,second edi ed. Springer, Boston, MA, 2005.spa
dc.relation.references[76] G. Liu, M. Starke, X. Zhang, and K. Tomsovic, “A MILP-based distribution optimalpower flow model for microgrid operation,” 2016, pp. 1–5.spa
dc.relation.references[77] A. Ravichandran, S. Sirouspour, P. Malysz, and A. Emadi, “A Chance-ConstraintsBased Control Strategy for Microgrids With Energy Storage and Integrated ElectricVehicles,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 346–359, 2018.spa
dc.relation.references[78] L. Tian, L. Cheng, J. Guo, and K. Wu, “System Modeling and Optimal Dispatchingof Multi-energy Microgrid with Energy Storage,” Journal of Modern Power Systemsand Clean Energy, vol. 8, no. 5, pp. 809–819, 2020.spa
dc.relation.references[79] M.-h. Lin, J. G. Carlsson, D. Ge, J. Shi, and J.-f. Tsai, “A Review of Piecewise Linearization Methods,” Mathematical Problems in Engineering, vol. 2013, p. 8, 2013.spa
dc.relation.references[80] P. L. Cavalcante, J. C. López, J. F. Franco, M. J. Rider, A. V. Garcia, M. R. R.Malveira, L. L. Martins, and L. C. M. Direito, “Centralized Self-Healing Scheme forElectrical Distribution Systems,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp.145–155, 2016.spa
dc.relation.references[81] Z. Yang, W. Lin, F. Qiu, J. Yu, and G. Yang, “Correct the Piecewise LinearizationError of Quadratic Objective Function in DC OPF Model,” IEEE Transactions onPower Systems, vol. 34, no. 6, pp. 5083–5086, 2019.spa
dc.relation.references[82] J. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, “Optimal Dispatch of Electric Vehicles and Wind Power Using Enhanced Particle Swarm Optimization,” IEEETransactions on Industrial Informatics, vol. 8, no. 4, pp. 889–899, 2012.spa
dc.relation.references[83] C. M. Colson, M. H. Nehrir, and C. Wang, “Ant colony optimization for microgridmulti-objective power management,” in 2009 IEEE/PES Power Systems Conferenceand Exposition, 2009, pp. 1–7.spa
dc.relation.references[84] A. Askarzadeh, “A Memory-Based Genetic Algorithm for Optimization of Power Generation in a Microgrid,” IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp.1081–1089, 2018.spa
dc.relation.references[85] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings ofICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948vol.4.spa
dc.relation.references[86] M. Yousif, Q. Ai, Y. Gao, W. Ahmad, Z. J. Wattoo, and R. Hao, “An Optimal DispatchStrategy for Distributed Microgrids Using PSO,” CSEE JOURNAL OF POWER ANDENERGY SYSTEMS, vol. 6, no. 3, pp. 724–734, 2020.spa
dc.relation.references[87] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, 2nd ed., B. Zobrist, Ed. Hoboken: John Wiley & Sons, Inc., 2005.spa
dc.relation.references[88] F. Y. Ettoumi, H. Sauvageot, and A. Adane, “Statistical bivariate modelling of windusing first-order Markov chain and Weibull distribution,” Renewable Energy, vol. 28,pp. 1787–1802, 2003.spa
dc.relation.references[89] A. Loukatou, S. Howell, P. Johnson, and P. Duck, “Stochastic wind speed modellingfor estimation of expected wind power output,” Applied Energy, vol. 228, no. March,pp. 1328–1340, 2018.spa
dc.relation.references[90] J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty Cost Functions for Solar Photovoltaic Generation , Wind Energy Generation , and Plug-In Electric Vehicles : Mathematical Expected Value and Verification by Monte Carlo Simulation Sergio Rivera,”International Journal of Power and Energy Conversion, vol. x, no. x, pp. 1–37.spa
dc.relation.references[91] Mathematics Research Developments, Linear Programming New Frontiers in Theoryand Applications, Z. A. Mann, Ed. New York: Nova Science Publishers, Inc, 2020.spa
dc.relation.references[92] International Business Machines Corporation (IBM), “ILOG CPLEX Optimization Studio,” 2020. [Online]. Available: https://www.ibm.com/co-es/products/ilog-cplex-optimization-studiospa
dc.relation.references[93] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control Theory,Computation, and Design, 2nd ed. Santa Barbara, California: Nob Hill Publishing,LLC, 2019.spa
dc.relation.references[94] S. Paran, T. Vu, F. Diaz, C. S. Edrington, T. El-mezyani, S. Paran, T. Vu, F. Diaz,C. S. Edrington, and T. El-mezyani, “MPC-Based Distributed Control for IntelligentEnergy Management of AC Microgrids,” Electric Power Components and Systems,vol. 0, no. 0, pp. 1–13, 2019.spa
dc.relation.references[95] C. Bordons, F. Garcia-torres, and M. A. Ridao, Model Predictive Control of Microgrids,M. J. Grimble, A. Ferrara, and O. Jackson, Eds. Springer Nature Switzerland AG,2020.spa
dc.relation.references[96] K. Utkarsh, D. Srinivasan, A. Trivedi, W. Zhang, and T. Reindl, “Distributed ModelPredictive Real-Time Optimal Operation of a Network of Smart Microgrids,” IEEETransactions on Smart Grid, vol. 10, no. 3, pp. 2833–2845, 2019.spa
dc.relation.references[97] Y. Du, J. Wu, S. Li, C. Long, and I. Ch, “Distributed MPC for Coordinated Energy Efficiency Utilization in Microgrid Systems,” IEEE Transactions on Smart Grid, vol. 10,no. 2, pp. 1781 – 1790, 2019.spa
dc.relation.references[98] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. S. Masoum, “Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Lossesand Improve Voltage Profile,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp.456–467, 2011.spa
dc.relation.references[99] S. Bae and A. Kwasinski, “Dynamic Modeling and Operation Strategy for a MicrogridWith Wind and Photovoltaic Resources,” IEEE Transactions on Smart Grid, vol. 3,no. 4, pp. 1867–1876, 2012.spa
dc.relation.references[100] A. Rodríguez, G. Daniel, L. Alvarado-Barrios, A. Tapia, and J. M. Escaño, “A MPC ´Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization,” Electronics, vol. 8, no. 1371, pp. 1–16, 2019.spa
dc.relation.references[101] P. J. Zucatelli, E. G. S. Nascimento, G. Y. R. Aylas, N. B. P. Souza, Y. K. L. Kitagawa,A. A. B. Santos, A. M. G. Arce, and D. M. Moreira, “Short-term wind speed forecastingin Uruguay using computational intelligence,” Heliyon, vol. 5, p. 11, 2019.spa
dc.relation.references[102] S. Fan and R. J. Hyndman, “Short-Term Load Forecasting Based on a Semi-ParametricAdditive Model,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 134–141,2012.spa
dc.relation.references[103] H. Chitsaz, P. Zamani-Dehkordi, H. Zareipour, and P. P. Parikh, “Electricity PriceForecasting for Operational Scheduling of Behind-the-Meter Storage Systems,” IEEETransactions on Smart Grid, vol. 9, no. 6, pp. 6612–6622, 2018.spa
dc.relation.references[104] E. K. P. Chong and S. H. Zak, An Introduction to Optimization, fourth ed. ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.spa
dc.relation.references[105] S. C. Dhulipala, R. V. A. Monteiro, R. F. d. Silva Teixeira, C. Ruben, A. S. Bretas,and G. C. Guimar˜aes, “Distributed Model-Predictive Control Strategy for DistributionNetwork Volt/VAR Control: A Smart-Building-Based Approach,” IEEE Transactionson Industry Applications, vol. 55, no. 6, pp. 7041–7051, 2019.spa
dc.relation.references[106] A. Saad, T. Youssef, A. T. Elsayed, A. Amin, O. H. Abdalla, and O. Mohammed, “Data-Centric Hierarchical Distributed Model Predictive Control for Smart GridEnergy Management,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7,pp. 4086–4098, 2019.spa
dc.relation.references[107] Y. Censor and S. Zenios, Parallel optimization: Theory, algorithms, and applications.New York: Oxford University Press, 1997.spa
dc.relation.references[108] C. Durazzi, V. Ruggiero, and G. Zanghirati, “Parallel Interior-Point Method for Linearand Quadratic Programs with Special Structure,” Journal of Optimization Theory andApplications, vol. 110, no. 2, pp. 289–313, 2001.spa
dc.relation.references[109] J. Kazempour, “Distributed optimization,” 2019. [Online]. Available: https://energy-markets-school.dk/summer-school-2019/spa
dc.relation.references[110] S. Mei, W. Wei, and L. Feng, “On engineering game theory with its application inpower systems,” Control Theory and Technology, vol. 15, pp. 1–12, 2017.spa
dc.relation.references[111] Y. Zheng, Y. Song, D. J. Hill, and K. Meng, “Online Distributed MPC-Based OptimalScheduling for EV Charging Stations in Distribution Systems,” IEEE Transactions onIndustrial Informatics, vol. 15, no. 2, pp. 638–649, 2019.spa
dc.relation.references[112] E. Mojica-Nava, C. A. Macana, and N. Quijano, “Dynamic Population Games forOptimal Dispatch on Hierarchical Microgrid Control,” IEEE Transactions on Systems,Man, and Cybernetics: Systems, vol. 44, no. 3, pp. 306–317, 2014.spa
dc.relation.references[113] X. Kong, X. Liu, L. Ma, and K. Y. Lee, “Hierarchical Distributed Model PredictiveControl of Standalone Wind/Solar/Battery Power System,” IEEE Transactions onSystems, Man, and Cybernetics: Systems, vol. 49, no. 8, pp. 1570–1581, 2019.spa
dc.relation.references[114] G. Carmona, Existence and Stability of Nash Equilibrium. Singapore: WORLDSCIENTIFIC, 2013.spa
dc.relation.references[115] L. A. Rademacher, “Cálculo y Estabilidad de Equilibrios de Nash y Aplicaciones alModelamiento del Mercado de Energía Eléctrica,” Ph.D. dissertation, Universidad deChile, 2002.spa
dc.relation.references[116] J. A. Jardini, C. M. V. Tahan, M. R. Gouvea, S. U. Ahn, and F. M. Figueiredo, “Dailyload profiles for residential, commercial and industrial low voltage consumers,” IEEETransactions on Power Delivery, vol. 15, no. 1, pp. 375–380, 2000.spa
dc.relation.references[117] J. Urrego-Ortiz, J. A. Martínez, P. A. Arias, and A. Jaramillo-Duque, “Assessment and ´Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia,” Energies,vol. 12, no. 4402, pp. 1–29, 2019.spa
dc.relation.references[118] S. Papathanassiou and N. D. Hatziargyriou, “A Benchmark Low Voltage MicrogridNetwork,” in Power systems with dispersed generation: technologies, impacts on development, operation and performances, no. June 2014, Athens, Greece, 2005.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembDistribución de energía eléctrica
dc.subject.lembElectric power distribution
dc.subject.proposalmicrorredesspa
dc.subject.proposalcontrol predictivo por modelospa
dc.subject.proposalflujo óptimo de potenciaspa
dc.subject.proposalsistemas desbalanceadosspa
dc.subject.proposaloptimización distribuidaspa
dc.subject.proposaldespacho económicospa
dc.subject.proposalredes inteligentesspa
dc.subject.proposaloperaciónspa
dc.subject.proposalcontrol de voltajespa
dc.subject.proposalpotencia reactivaspa
dc.subject.proposalmicrogridseng
dc.subject.proposalmodel predictive controleng
dc.subject.proposaloptimal power floweng
dc.subject.proposalunbalancedeng
dc.subject.proposaldistributed optimizationeng
dc.subject.proposaleconomic dispatcheng
dc.subject.proposalsmart gridseng
dc.subject.proposalvoltage controleng
dc.subject.proposalreactive power floweng
dc.subject.proposalunit commitmenteng
dc.subject.unescoControl automático
dc.subject.unescoAutomatic control
dc.titleControl MPC distribuido para el despacho óptimo de potencia activa y reactiva en microrredesspa
dc.title.translatedDistributed MPC for optimal active and reactive power dispatch in microgridseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePrograma de Becas Formación de Talento Humano de alto Nivel “FORMACIÓN DEL TALENTO HUMANO DE ALTO NIVEL PARA EL FORTALECIMIENTO DE NECESIDADES ESTRATÉGICAS DE CTeI DEL DEPARTAMENTO DE NARIÑO"spa
oaire.fundernameFundación CEIBAspa
oaire.fundernameGobernación de Nariñospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085321613.2021.pdf
Tamaño:
2.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: