Clasificación y determinación de litofacies aplicando metodologías de Inteligencia Artificial en el Grupo Real de la cuenca del Valle Medio del Magdalena a partir de Registros Eléctricos
dc.contributor.advisor | Ochoa Gutiérrez, Luis Hernán | spa |
dc.contributor.author | González Chacón, Andrés Felipe | spa |
dc.contributor.researchgroup | MEGIA | spa |
dc.date.accessioned | 2025-07-24T19:58:07Z | |
dc.date.available | 2025-07-24T19:58:07Z | |
dc.date.issued | 2024 | |
dc.description.abstract | El Grupo MEGIA viene realizando durante los últimos años diferentes tipos de estudios que ayudan a estudiar y entender el comportamiento de los acuíferos presentes en la Cuenca del Valle Medio del Magdalena (VMM). Uno de dichos estudios fue el petrofísico, donde litológicamente se clasificaron diferentes formaciones y facies dentro de la unidad de interés; este trabajo es una extensión de dichos estudios petrofísicos, usando metodologías de Inteligencia Artificial (IA) entre ellas diferentes algoritmos de Machine Learning (ML) que ayudan a clasificar y predecir diferentes propiedades y características de la cuenca. En la presente investigación se utilizaron dichas técnicas para replicar metodologías clásicas en petrofísica, para predecir y modelar curvas faltantes en los pozos, y para clasificar y predecir litofacies, el cual es el objetivo principal de este proyecto. Para los cálculos petrofísicos se utilizaron las ecuaciones convencionales, calculando entonces la porosidad, volumen de arcilla y saturación de agua en los pozos, a partir de curvas litológicas, como la Gamma Ray (GR) y el Factor Fotoeléctrico (PEF), además de curvas de porosidad, como la sónica (DT), densidad (RHOB) y la de Neutrón (NPHI). Para la predicción de curvas faltantes fueron necesarios diferentes mecanismos de correlación para determinar las mejores curvas que se ajusten a cada registro que se quiere predecir. Se pudo definir una buena correlación entre las curvas GR y RHOB, además de NPHI con PE. Para la predicción de la curva sónica, se utilizaron todas las curvas previamente nombradas, y se pudo hacer una buena predicción, con un ligero desfase en los intervalos más arcillosos. Se optimizaron los hiperparámetros de Random Forest, viendo un incremento no tan considerable, dado que los hiperparámetros estándar, dieron un excelente ajuste. Para la clasificación de facies se usó un método de Aprendizaje No Supervisado, KMneas, dando por lo general agrupamiento de 3 grupos de Facies, las de Lodolita, Arenita Limpia y Arenita Lodosa. Para la clasificación de las facies se usaron métodos de Aprendizaje Supervisado, utilizando el número de clústeres ya usado. Dentro de los algoritmos utilizados, el de mejores resultados de precisión, fue el de Árbol de Decisión, con valores incluso del 99% (Texto tomado de la fuente). | spa |
dc.description.abstract | The MEGIA Group has been conducting various types of studies in recent years to help study and understand the behavior of aquifers in the Middle Magdalena Valley Basin (VMM). One of these studies was petrophysical, where different formations and units within the unit of interest were lithologically classified. This work is an extension of these petrophysical studies, using artificial intelligence (AI) methodologies, including various machine learning (ML) algorithms to help classify and predict different properties and characteristics of the basin. In this work, these techniques were used to replicate classical petrophysical methodologies, to predict and model missing petrophysical well logs in wells, and to classify and predict lithologies, which is the main objective of this document. For petrophysical calculations, conventional equations were used to calculate porosity, shale volume, and water saturation in wells from lithological curves, such as Gamma Ray (GR) and Photoelectric Factor (PEF), and also from porosity curves, such as sonic (DT), density (RHOB), and neutron (NPHI). For the prediction of missing curves, different correlation mechanisms were necessary to determine the best well logs that fit each record to be predicted. A good correlation could be defined between the GR and RHOB well logs, as well as NPHI with PE. The Random Forest hyperparameters were optimized, seeing a not so considerable increase, since the standard hyperparameters gave an excellent fit. For the prediction of the sonic well log, all the previously named curves were used, and a good prediction could be made, with a slight lag in the most clayey intervals. For the classification of facies, a non-supervised learning method, the K-means method, was used, generally giving a grouping of 3 groups of facies, namely mudstone, clean sand, and loamy sand. Supervised learning methods were used for the classification of facies, using the number of clusters already used. Among the algorithms used, the one with the best accuracy results was the Decision Tree, with values of even 99% accuracy. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias – Geología | spa |
dc.description.methods | Puede decirse que el presente capítulo va a presentar dos tipos de metodología: La metodología clásica del cálculo de propiedades petrofísicas, y la metodología Machine Learning (que es la base del proyecto). Esto con el fin de comparar, analizar los pasos y resultados de cada manera de hacer petrofísica. | spa |
dc.description.researcharea | Aplicación de técnicas IA/ML en las geociencias | spa |
dc.format.extent | 166 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88380 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Geología | spa |
dc.relation.references | Aly, M.H., Rodgers, D.W., Thackray, G.D., and Hughes, S.S. 2009. Recent magmatotectonic activity in the Eastern Snake River Plain–Island Park region revealed by SAR interferometry. Journal of Volcanology and Geothermal Research 188: 297-304. | spa |
dc.relation.references | Bedrosian, P.A., and Feucht, D.W. 2014. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data. Earth and Planetary Science Letters 402: 275-289. | spa |
dc.relation.references | Bestagini, P., Lipari, V., and Tubaro, S. 2017. A machine learning approach to facies classification using well logs. | spa |
dc.relation.references | Bishop, C.M. 2006. Pattern Recognition and Machine Learning. Singapore: Springer Science Business Media, LLC. | spa |
dc.relation.references | Carmona, P., Climent, F., and Momparler, A. 2018. Predicting failure in the U.S. banking sector: An extreme gradient boosting approach. International Review of Economics & Finance. | spa |
dc.relation.references | Chen, T., and Guestrin, C. 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '16, 785-794. | spa |
dc.relation.references | De Boissieu, F., Sevin, B., Cudahy, T., Mangeas, M., Chevrel, S., Ong, C., Rodger, A., Maurizot, P., Laukamp, C., Lau, I., Touraivane, T., Cluzel, D., and Despinoy, M. 2018. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia. International Journal of Applied Earth Observation and Geoinformation 64: 377-385. | spa |
dc.relation.references | DeNosaquo, K.R., Smith, R.B., and Lowry, A.R. 2009. Density and lithospheric strength models of the Yellowstone–Snake River Plain volcanic system from gravity and heat flow data. Journal of Volcanology and Geothermal Research 188: 108-127. | spa |
dc.relation.references | Thongsame at al., 2018. Lithological classification from machine learning algorithm, Vol. 9, 31-43 | spa |
dc.relation.references | Devak, M., Dhanya, C.T., and Gosain, A.K. 2015. Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology 525: 286-301. | spa |
dc.relation.references | Dubois, M.K., Bohling, G.C., and Chakrabarti, S. 2007. Comparison of four approaches to a rock facies classification problem. Computers & Geosciences 33: 599-617. | spa |
dc.relation.references | Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., and Xiang, Y. 2018. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management 164: 102-111. | spa |
dc.relation.references | Friedl, M.A., and Brodley, C.E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61: 399-409. | spa |
dc.relation.references | Glowacz, A., and Glowacz, Z. 2016. Recognition of images of finger skin with application of histogram, image filtration and K-NN classifier. Biocybernetics and Biomedical Engineering 36: 95-101. | spa |
dc.relation.references | Humphreys, E.D. 1995. Post-Laramide removal of the Farallon slab, western United States. Geology 23. | spa |
dc.relation.references | Konaté, A.A., Pan, H., Khalid, M.A., Li, G., Yang, J.H., Deng, C., and Fang, S. 2015. Machine Learning Interpretation of Conventional Well Logs in Crystalline Rocks. pp. 360-370. Cham. Springer International Publishing. | spa |
dc.relation.references | Lonsdale, P. 2005. Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404: 237-264. | spa |
dc.relation.references | Lopes, R., and Jorge, A. 2017. Mind the Gap: A Well Log Data Analysis. The Workshop on Data Mining for Oil and Gas, Houston, Texas, USA. 1-6. | spa |
dc.relation.references | Rastegarzadeh, G., and Nemati, M. 2018. Primary mass discrimination of high energy cosmic rays using PNN and k-NN methods. Advances in Space Research 61: 1181-1191. | spa |
dc.relation.references | Shervais, J.W., Schmitt, D.R., Nielson, D., Evans, J.P., Christiansen, E.H., Morgan, L., Pat Shanks, W.C., Prokopenko, A.A., Lachmar, T., Liberty, L.M., Blackwell, D.D., Glen, J.M., Champion, L.D., Potter, K.E., and Kessler, J.A. 2013. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A. Sci. Dril. 15: 36-45. | spa |
dc.relation.references | Smirnoff, A., Boisvert, E., and Paradis, S.J. 2008. Support vector machine for 3D modelling from sparse geological information of various origins. Computers & Geosciences 34: 127-143. | spa |
dc.relation.references | Soltani, S., Kordestani, M., and Karim Aghaee, P. 2016. New estimation methodologies for well logging problems via a combination of fuzzy Kalman filter and different smoothers. Journal of Petroleum Science and Engineering 145: 704-710. | spa |
dc.relation.references | Steinbach, M., and Tan, P.-N. 2009. kNN: k-Nearest Neighbors. In Wu, X. and Kumar, V. (eds.), The Top Ten Algorithms in Data Mining, pp. 151-161. New York: Taylor & Francis Group, LLC. | spa |
dc.relation.references | Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S., Toksöz, M.N., Ralph W. Veatch, J., Baria, R., Augustine, C., Murphy, E., Negraru, P., and Richards, M. 2006. Geothermal ResourceBase Assessment. In The future of geothermal energy: impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, pp. 35-81. Geothermal Program, MS 3830 Renewable Energy and Power Department Idaho National Laboratory: U.S. Department of Energy. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::552 - Petrología | spa |
dc.subject.lemb | FACIES (GEOLOGIA) | spa |
dc.subject.lemb | Facies (geology) | eng |
dc.subject.lemb | ESTRATIGRAFIA | spa |
dc.subject.lemb | Geology, Stratigraphic | eng |
dc.subject.lemb | PETROLOGIA | spa |
dc.subject.lemb | Petrology | eng |
dc.subject.lemb | APRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL) | spa |
dc.subject.lemb | Machine learning | eng |
dc.subject.lemb | INTELIGENCIA ARTIFICIAL | spa |
dc.subject.lemb | Artificial intelligence | eng |
dc.subject.lemb | INTELIGENCIA ARTIFICIAL-PROCESAMIENTO DE DATOS | spa |
dc.subject.lemb | Artificial intelligen - data processing | eng |
dc.subject.lemb | ACUIFEROS | spa |
dc.subject.lemb | Aquifers | eng |
dc.subject.lemb | AGUAS SUBTERRANEAS | spa |
dc.subject.lemb | Water, underground | eng |
dc.subject.proposal | Petrofísica | spa |
dc.subject.proposal | Grupo Real | spa |
dc.subject.proposal | Inteligencia Artificial | spa |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | CLasificación | spa |
dc.subject.proposal | Predicción | spa |
dc.subject.proposal | Litofacies | spa |
dc.subject.proposal | Petrophysics | eng |
dc.subject.proposal | Artificial Intelligence | eng |
dc.subject.proposal | MEGIA Group | eng |
dc.subject.proposal | Artificial Intelligence | eng |
dc.subject.proposal | Machine Learning | eng |
dc.subject.proposal | Classification | eng |
dc.subject.proposal | Prediction | eng |
dc.subject.proposal | Lithologies | eng |
dc.title | Clasificación y determinación de litofacies aplicando metodologías de Inteligencia Artificial en el Grupo Real de la cuenca del Valle Medio del Magdalena a partir de Registros Eléctricos | spa |
dc.title.translated | Lithofacies classification and determination using Artificial Intelligence methodologies in the Real Group of the Middle Magdalena Valley basin based on well log data | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015438844.2025.pdf
- Tamaño:
- 11.42 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias – Geología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: