Estimación espacial de anomalías agronómicas de un cultivo con técnicas de segmentación en imágenes de sensores remotos : caso aplicado para Maíz (Zea mays L) en Cumaribo – Vichada
dc.contributor.advisor | Rodríguez Vásquez, Andrés Felipe | |
dc.contributor.advisor | Christian José, Mendoza Castiblanco | |
dc.contributor.author | Cuevas Bocanegra, Jerson Jair | |
dc.coverage.country | Colombia | |
dc.coverage.region | Vichada | |
dc.date.accessioned | 2025-10-10T13:03:37Z | |
dc.date.available | 2025-10-10T13:03:37Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, mapas, planos | spa |
dc.description.abstract | La presente investigación propone un protocolo para la estimación de anomalías agronómicas mediante segmentación orientada a objetos, con el objetivo de cuantificar y visualizar dichas anomalías a lo largo del ciclo fenológico del cultivo de maíz (Zea mays L) en el municipio de Cumaribo, Vichada. La metodología se fundamentó en el uso de imágenes satelitales Sentinel-2 correspondientes al periodo comprendido entre el 13 de diciembre de 2023 y el 14 de abril de 2024. La adquisición y procesamiento de los datos satelitales se llevó a cabo a través de la plataforma en la nube Google Earth Engine (GEE); la delimitación de parcelas se realizó con el complemento Segment Anything Model (SAM), y la segmentación se ejecutó mediante Orfeo Toolbox (OTB) en el entorno del software Quantum Geographic Information System (QGIS). La clasificación de anomalías contempló cinco clases diferenciadas para cada fase fenológica del cultivo. Los resultados de la validación de la clasificación semiautomática obtenida mediante el segmentador OTB, frente a la segmentación manual, arrojaron un coeficiente Kappa global de 0,90 lo que evidencia un nivel de concordancia casi perfecto. En su conjunto, el esquema metodológico propuesto constituye un marco replicable y escalable a otros ciclos fenológicos, con alto potencial para incorporar sensores de mayor resolución, así como variables climáticas y edáficas complementarias. Su capacidad para identificar desde anomalías leves hasta zonas críticas de estrés resalta su utilidad como herramienta para el diseño de intervenciones agronómicas oportunas, focalizadas y basadas en evidencia (Texto tomado de la fuente). | spa |
dc.description.abstract | This research proposes a protocol for estimating agronomic anomalies through object-based image segmentation, aiming to quantify and visualize such anomalies throughout the phenological cycle of maize (Zea mays L) in the municipality of Cumaribo, Vichada. The methodology was based on the use of Sentinel-2 satellite imagery for the period between December 13, 2023, and April 14, 2024. Satellite data acquisition and processing were conducted using the Google Earth Engine (GEE) cloud platform; plot delineation was performed with the Segment Anything Model (SAM), and segmentation was executed using the Orfeo Toolbox (OTB) within the Quantum Geographic Information System (QGIS) environment. The anomaly classification regarded five distinct categories for each phenological phase of the crop. Validation results of the semi-automated classification obtained through the OTB segmenter, compared to manual segmentation, yielded a global Kappa coefficient of 0,90 indicating an almost perfect level of agreement. Overall, the proposed methodological framework provides a replicable and scalable approach applicable to other phenological stages, with strong potential for the integration of higher-resolution sensors and complementary climatic and edaphic variables. Its ability to detect both minor and critical stress anomalies highlights its applicability as a decision-support tool for timely and targeted agronomic interventions. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magister en Ingeniería – Ingeniería de Biosistemas | |
dc.description.methods | La metodología se fundamentó en el uso de imágenes satelitales Sentinel-2 correspondientes al periodo comprendido entre el 13 de diciembre de 2023 y el 14 de abril de 2024. La adquisición y procesamiento de los datos satelitales se llevó a cabo a través de la plataforma en la nube Google Earth Engine (GEE); la delimitación de parcelas se realizó con el complemento Segment Anything Model (SAM), y la segmentación se ejecutó mediante Orfeo Toolbox (OTB) en el entorno del software Quantum Geographic Information System (QGIS). La clasificación de anomalías contempló cinco clases diferenciadas para cada fase fenológica del cultivo. | |
dc.description.researcharea | Manejo sostenible de agua y suelo | |
dc.format.extent | 129 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89026 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ingeniería | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola | |
dc.relation.indexed | Agrosavia | |
dc.relation.indexed | Agrovoc | |
dc.relation.references | Banko, G. (1998). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory. https://www.researchgate.net/publication/23738314 | |
dc.relation.references | Bertrand C, & Pierre M. (2023). Segment Anything by Meta as a foundation model for image segmentation: a new era for histopathological images. In Pathology (pp. 1017–1020). https://drive.google.com/file/d/1nnlA3qHcrNq4PhTL | |
dc.relation.references | Bhumika, S. P., Vipul, K. D., & Harshadkumar, B. P. (2016). A Survey on Detection and Classification of Cotton Leaf Diseases. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). | |
dc.relation.references | Corpoica. (2006). Cultivo de Maiz. | |
dc.relation.references | DANE. (2019). Estructura de población: Cumaribo, CG 2005 y CNPV 2018. | |
dc.relation.references | Deepkiran, Pandey, M., & Singh, L. (2024). Spectral Segmentation Augmented with Normalized Cuts for Detection of Early Blight Disease in Potato. Procedia Computer Science, 233, 1034–1043. https://doi.org/10.1016/j.procs.2024.03.292 | |
dc.relation.references | Díaz Rivera, J. C., Aguirre-Salado, C. A., Loredo-Osti, C., & Escoto-Rodríguez, M. (2024). Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images. Scientia Agropecuaria, 15(2), 177–189. https://doi.org/10.17268/sci.agropecu.2024.013 | |
dc.relation.references | Ez-zahouani, B., Teodoro, A., El Kharki, A., El Kharki, O., & Rhachi, H. (2025). Evaluating the potential of Landsat 8/9 and Sentinel 2 data and different spectral and spatial indices for segment extraction in large watersheds for OBIA approach in remote sensing: A case study of the Sebou watershed. Remote Sensing Applications: Society and Environment, 38. https://doi.org/10.1016/j.rsase.2025.101575 | |
dc.relation.references | FENALCE. (2020). Aspectos técnicos de la producción de maíz en Colombia. | |
dc.relation.references | Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009 | |
dc.relation.references | Ferro, M. V., Catania, P., Miccichè, D., Pisciotta, A., Vallone, M., & Orlando, S. (2023). Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering, 231, 36–56. https://doi.org/10.1016/j.biosystemseng.2023.06.001 | |
dc.relation.references | Galindo, D., Pinzón, D., & Gómez, R. (2023). Caracterización del mercado de tierras: departamento del Vichada. UPRA y Proyecto Biocarbono Orinoquia. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://upra.gov.co/es-co/Publicaciones/20231124_Mem_Tec_Bioc_VICHADA.pdf | |
dc.relation.references | Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013 | |
dc.relation.references | Giannakis, I., Bhardwaj, A., Sam, L., & Leontidis, G. (2024). A flexible deep learning crater detection scheme using Segment Anything Model (SAM). Icarus, 408. https://doi.org/10.1016/j.icarus.2023.115797 | |
dc.relation.references | Gitelson, A. A., Kaufman, Y. J., Merzlyak, M. N., & Blaustein, J. (1995). Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. In REMOTE SENS. ENVIRON (Vol. 58). ©Elsevier Science Inc. | |
dc.relation.references | Gómez-Camperos, J., Jaramillo, H., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. INGENIERÍA Y COMPETITIVIDAD, 24(1). https://doi.org/10.25100/iyc.v24i1.10973 | |
dc.relation.references | Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 | |
dc.relation.references | Graesser, J., & Ramankutty, N. (2017). Detection of cropland field parcels from Landsat imagery. Remote Sensing of Environment, 201, 165–180. https://doi.org/10.1016/j.rse.2017.08.027 | |
dc.relation.references | Graser, A., Sutton, T., & Bernasocchi, M. (2025). The QGIS project: Spatial without compromise. Patterns. https://doi.org/10.1016/j.patter.2025.101265 | |
dc.relation.references | Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., & Cresson, R. (2017). Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2(1). https://doi.org/10.1186/s40965-017-0031-6 | |
dc.relation.references | Gui, B., Bhardwaj, A., & Sam, L. (2024). Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images. Remote Sensing, 16(2). https://doi.org/10.3390/rs16020414 | |
dc.relation.references | Guijarro, M., Riomoros, I., Pajares, G., & Zitinski, P. (2015). Discrete wavelets transform for improving greenness image segmentation in agricultural images. Computers and Electronics in Agriculture, 118, 396–407. https://doi.org/10.1016/j.compag.2015.09.011 | |
dc.relation.references | Hall, D. K., Riggs, G. A., Salomonson, V. V, Digirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. www.elsevier.com/locate/rse | |
dc.relation.references | Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. www.elsevier.com/locate/rse | |
dc.relation.references | Ibarra-Bonilla, J. S., Pinedo-Alvarez, A., Prieto-Amparán, J. A., Siller-Clavel, P., Santellano-Estrada, E., Álvarez-Holguín, A., & Villarreal-Guerrero, F. (2024). Post-fire vegetation dynamics of a temperate mixed forest: An assessment based on the variability of Landsat spectral indices. Trees, Forests and People, 17. https://doi.org/10.1016/j.tfp.2024.100648 | |
dc.relation.references | Jafarbiglu, H., & Pourreza, A. (2022). A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. In Computers and Electronics in Agriculture (Vol. 197). Elsevier B.V. https://doi.org/10.1016/j.compag.2022.106844 | |
dc.relation.references | Karila, K., Matikainen, L., Karjalainen, M., Puttonen, E., Chen, Y., & Hyyppä, J. (2023). Automatic labelling for semantic segmentation of VHR satellite images: Application of airborne laser scanner data and object-based image analysis. ISPRS Open Journal of Photogrammetry and Remote Sensing, 9. https://doi.org/10.1016/j.ophoto.2023.100046 | |
dc.relation.references | Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 173, pp. 24–49). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2020.12.010 | |
dc.relation.references | Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. In Remote Sensing (Vol. 12, Issue 22, pp. 1–29). MDPI AG. https://doi.org/10.3390/rs12223783 | |
dc.relation.references | Killeen, J., Jaupi, L., & Barrett, B. (2022). Impact assessment of humanitarian demining using object-based peri-urban land cover classification and morphological building detection from VHR Worldview imagery. Remote Sensing Applications: Society and Environment, 27. https://doi.org/10.1016/j.rsase.2022.100766 | |
dc.relation.references | Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment Anything. http://arxiv.org/abs/2304.02643 | |
dc.relation.references | Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data (Vol. 33, Issue 1). https://about.jstor.org/terms | |
dc.relation.references | Liepa, A., Thiel, M., Taubenböck, H., Steffan-Dewenter, I., Abu, I. O., Singh Dhillon, M., Otte, I., Otim, M. H., Lutaakome, M., Meinhof, D., Martin, E. A., & Ullmann, T. (2024). Harmonized NDVI time-series from Landsat and Sentinel-2 reveal phenological patterns of diverse, small-scale cropping systems in East Africa. Remote Sensing Applications: Society and Environment, 35. https://doi.org/10.1016/j.rsase.2024.101230 | |
dc.relation.references | Lillesand, T., Kiefer, R., & Chipman, J. (2015). Remote sensing and image interpretation. In Earth Surface Processes and Landforms (7th ed., Issue 12). John Wiley & Sons. | |
dc.relation.references | McFeeters, S. K. (2013). Using the normalized difference water index (ndwi) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544 | |
dc.relation.references | Méndez, A., Pablo Vélez, J., Scaramuzza, F., & Villarroel, D. (2015). Los drones como herramienta para el monitoreo de cultivos AGRICULTURA. Revista Institucional N° 1524. | |
dc.relation.references | Meyer, D., & Riechert, M. (2019). Open source QGIS toolkit for the Advanced Research WRF modelling system. Environmental Modelling and Software, 112, 166–178. https://doi.org/10.1016/j.envsoft.2018.10.018 | |
dc.relation.references | Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. In Biosystems Engineering (Vol. 114, Issue 4, pp. 358–371). Academic Press. https://doi.org/10.1016/j.biosystemseng.2012.08.009 | |
dc.relation.references | Narváez L. (2019). CARACTERIZACIÓN SOCIOECONÓMICA Y CULTURAL DE LOS RESGUARDOS INDÍGENAS DEL MUNICIPIO DE CUMARIBO, VICHADA. | |
dc.relation.references | Niño L. (2019). Aproximación socioeconómica al territorio de las selvas transicionales de Cumaribo, Vichada (Colombia). | |
dc.relation.references | Nora, S., & Ulises, R. (2009). Tecnicas de segmentacion en procesamimento digital de imagenes. Revista de Ingeniería de Sistemas e Informática , 6(2). | |
dc.relation.references | Osco, L. P., Wu, Q., de Lemos, E. L., Gonçalves, W. N., Ramos, A. P. M., Li, J., & Marcato, J. (2023). The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot. International Journal of Applied Earth Observation and Geoinformation, 124. https://doi.org/10.1016/j.jag.2023.103540 | |
dc.relation.references | Patil, R., & Kumar, S. (2020). Bibliometric Survey on Diagnosis of Plant Leaf Diseases Using Artificial Intelligence. International Journal of Modern Agriculture, 9(3). | |
dc.relation.references | Paula, M., Acción, R.-F., Aguilera -Fondo, A., Juan, A., & Correa -Proyecto Biocarbono, C. (2024). Boletín Agroclimático Edición N°1 Marzo 2024 Vichada Convocatoria y Coordinación. | |
dc.relation.references | Pei, T., Xu, J., Liu, Y., Huang, X., Zhang, L., Dong, W., Qin, C., Song, C., Gong, J., & Zhou, C. (2021). GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives. Geography and Sustainability, 2(3), 207–215. https://doi.org/10.1016/j.geosus.2021.08.004 | |
dc.relation.references | Pino-Vargas, E., & Huayna, G. (2022). Spatial and temporal evolution of olive cultivation due to pest attack, using remote sensing and satellite image processing. Scientia Agropecuaria, 13(2), 149–157. https://doi.org/10.17268/sci.agropecu.2022.013 | |
dc.relation.references | Qader, S. H., Utazi, C. E., Priyatikanto, R., Najmaddin, P., Hama-Ali, E. O., Khwarahm, N. R., Tatem, A. J., & Dash, J. (2023). Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Science of the Total Environment, 869. https://doi.org/10.1016/j.scitotenv.2023.161716 | |
dc.relation.references | Qin, R., & Liu, T. (2022). A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability. In Remote Sensing (Vol. 14, Issue 3). MDPI. https://doi.org/10.3390/rs14030646 | |
dc.relation.references | QGIS Development Team. (2024). QGIS: A free and open source geographic information system (Version 3.40.3) [Computer software]. QGIS Association. https://www.qgis.org/ | |
dc.relation.references | R Core Team. (2025). R: A language and environment for statistical computing (Version 4.5.0 [UCRT]) [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/ | |
dc.relation.references | Radočaj, D., Plaščak, I., & Jurišić, M. (2025). Fusion of Sentinel-2 Phenology Metrics and Saturation-Resistant Vegetation Indices for Improved Correlation with Maize Yield Maps. Agronomy, 15(6), 1329. https://doi.org/10.3390/agronomy15061329 | |
dc.relation.references | Rana, S., Gerbino, S., Barretta, D., Carillo, P., Crimaldi, M., Cirillo, V., Maggio, A., & Sarghini, F. (2024). RafanoSet: Dataset of raw, manually, and automatically annotated Raphanus Raphanistrum weed images for object detection and segmentation. Data in Brief, 110430. https://doi.org/10.1016/j.dib.2024.110430 | |
dc.relation.references | Rangel, J. O., Fernando, L., & Merino, G. (2020). CARACTERIZACIÓN CLIMÁTICA DEL TERRITORIO DE LAS SELVAS TRANSICIONALES DE CUMARIBO, VICHADA (COLOMBIA) Climatic characterization of the territory of the transitional jungle of Cumar. https://www.researchgate.net/publication/339570621 | |
dc.relation.references | Soccolini, A., & Vizzari, M. (2023). Predictive Modelling of Maize Yield Using Sentinel 2 NDVI. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14107 LNCS, 327–338. https://doi.org/10.1007/978-3-031-37114-1_22 | |
dc.relation.references | Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 164, pp. 152–170). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2020.04.001 | |
dc.relation.references | Thorp, K. R., Wang, G., Badaruddin, M., & Bronson, K. F. (2016). Lesquerella seed yield estimation using color image segmentation to track flowering dynamics in response to variable water and nitrogen management. Industrial Crops and Products, 86, 186–195. https://doi.org/10.1016/j.indcrop.2016.03.035 | |
dc.relation.references | Tripathy, P., Baylis, K., Wu, K., Watson, J., & Jiang, R. (2024). Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels. | |
dc.relation.references | UPRA. (2023). Actualización de la Frontera Agrícola Nacional: 43 millones de hectáreas disponibles para la producción. https://www.upra.gov.co | |
dc.relation.references | Waldner, F., Diakogiannis, F. I., Batchelor, K., Ciccotosto-Camp, M., Cooper-Williams, E., Herrmann, C., Mata, G., & Toovey, A. (2021). Detect, consolidate, delineate: Scalable mapping of field boundaries using satellite images. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112197 | |
dc.relation.references | Wu, H., Liu, B., Zhu, B., Zhen, Z., Song, K., & Ren, J. (2024). Combining Vegetation Indices to Identify the Maize Phenological Information Based on the Shape Model. Agriculture, 14(9), 1608. https://doi.org/10.3390/agriculture14091608 | |
dc.relation.references | Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. In Precision Agriculture (Vol. 13, Issue 6, pp. 693–712). https://doi.org/10.1007/s11119-012-9274-5 | |
dc.relation.references | Zhao, S., Liu, J., Bai, Z., Hu, C., & Jin, Y. (2022). Crop Pest Recognition in Real Agricultural Environment Using Convolutional Neural Networks by a Parallel Attention Mechanism. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.839572 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | |
dc.subject.lemb | CARACTERISTICAS AGRONOMICAS | spa |
dc.subject.lemb | Agronomic Characteristics | eng |
dc.subject.lemb | PRECOCIDAD | spa |
dc.subject.lemb | Precocity | eng |
dc.subject.lemb | SENSORES REMOTOS | spa |
dc.subject.lemb | Remote sensing | eng |
dc.subject.lemb | INDUSTRIA DEL MAIZ | spa |
dc.subject.lemb | Corn industry | eng |
dc.subject.lemb | MAIZ-COSECHA | spa |
dc.subject.lemb | Corn - harvesting | eng |
dc.subject.proposal | Segmentación | spa |
dc.subject.proposal | SAM | spa |
dc.subject.proposal | OTB | spa |
dc.subject.proposal | GEE | spa |
dc.subject.proposal | Anomalías agronómicas | spa |
dc.subject.proposal | Sentinel 2 | spa |
dc.subject.proposal | Segmentation | eng |
dc.subject.proposal | Agronomic anomalies | eng |
dc.title | Estimación espacial de anomalías agronómicas de un cultivo con técnicas de segmentación en imágenes de sensores remotos : caso aplicado para Maíz (Zea mays L) en Cumaribo – Vichada | spa |
dc.title.translated | Spatial estimation of agronomic anomalies in a Crop using segmentation techniques on remote sensing images : applied case for maize (Zea mays L) in Cumaribo – Vichada | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- TrabajoFinal1031151869.pdf
- Tamaño:
- 5.1 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería – Ingeniería de Biosistemas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: