Estimación espacial de anomalías agronómicas de un cultivo con técnicas de segmentación en imágenes de sensores remotos : caso aplicado para Maíz (Zea mays L) en Cumaribo – Vichada

dc.contributor.advisorRodríguez Vásquez, Andrés Felipe
dc.contributor.advisorChristian José, Mendoza Castiblanco
dc.contributor.authorCuevas Bocanegra, Jerson Jair
dc.coverage.countryColombia
dc.coverage.regionVichada
dc.date.accessioned2025-10-10T13:03:37Z
dc.date.available2025-10-10T13:03:37Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, mapas, planosspa
dc.description.abstractLa presente investigación propone un protocolo para la estimación de anomalías agronómicas mediante segmentación orientada a objetos, con el objetivo de cuantificar y visualizar dichas anomalías a lo largo del ciclo fenológico del cultivo de maíz (Zea mays L) en el municipio de Cumaribo, Vichada. La metodología se fundamentó en el uso de imágenes satelitales Sentinel-2 correspondientes al periodo comprendido entre el 13 de diciembre de 2023 y el 14 de abril de 2024. La adquisición y procesamiento de los datos satelitales se llevó a cabo a través de la plataforma en la nube Google Earth Engine (GEE); la delimitación de parcelas se realizó con el complemento Segment Anything Model (SAM), y la segmentación se ejecutó mediante Orfeo Toolbox (OTB) en el entorno del software Quantum Geographic Information System (QGIS). La clasificación de anomalías contempló cinco clases diferenciadas para cada fase fenológica del cultivo. Los resultados de la validación de la clasificación semiautomática obtenida mediante el segmentador OTB, frente a la segmentación manual, arrojaron un coeficiente Kappa global de 0,90 lo que evidencia un nivel de concordancia casi perfecto. En su conjunto, el esquema metodológico propuesto constituye un marco replicable y escalable a otros ciclos fenológicos, con alto potencial para incorporar sensores de mayor resolución, así como variables climáticas y edáficas complementarias. Su capacidad para identificar desde anomalías leves hasta zonas críticas de estrés resalta su utilidad como herramienta para el diseño de intervenciones agronómicas oportunas, focalizadas y basadas en evidencia (Texto tomado de la fuente).spa
dc.description.abstractThis research proposes a protocol for estimating agronomic anomalies through object-based image segmentation, aiming to quantify and visualize such anomalies throughout the phenological cycle of maize (Zea mays L) in the municipality of Cumaribo, Vichada. The methodology was based on the use of Sentinel-2 satellite imagery for the period between December 13, 2023, and April 14, 2024. Satellite data acquisition and processing were conducted using the Google Earth Engine (GEE) cloud platform; plot delineation was performed with the Segment Anything Model (SAM), and segmentation was executed using the Orfeo Toolbox (OTB) within the Quantum Geographic Information System (QGIS) environment. The anomaly classification regarded five distinct categories for each phenological phase of the crop. Validation results of the semi-automated classification obtained through the OTB segmenter, compared to manual segmentation, yielded a global Kappa coefficient of 0,90 indicating an almost perfect level of agreement. Overall, the proposed methodological framework provides a replicable and scalable approach applicable to other phenological stages, with strong potential for the integration of higher-resolution sensors and complementary climatic and edaphic variables. Its ability to detect both minor and critical stress anomalies highlights its applicability as a decision-support tool for timely and targeted agronomic interventions.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería – Ingeniería de Biosistemas
dc.description.methodsLa metodología se fundamentó en el uso de imágenes satelitales Sentinel-2 correspondientes al periodo comprendido entre el 13 de diciembre de 2023 y el 14 de abril de 2024. La adquisición y procesamiento de los datos satelitales se llevó a cabo a través de la plataforma en la nube Google Earth Engine (GEE); la delimitación de parcelas se realizó con el complemento Segment Anything Model (SAM), y la segmentación se ejecutó mediante Orfeo Toolbox (OTB) en el entorno del software Quantum Geographic Information System (QGIS). La clasificación de anomalías contempló cinco clases diferenciadas para cada fase fenológica del cultivo.
dc.description.researchareaManejo sostenible de agua y suelo
dc.format.extent129 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89026
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesBanko, G. (1998). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory. https://www.researchgate.net/publication/23738314
dc.relation.referencesBertrand C, & Pierre M. (2023). Segment Anything by Meta as a foundation model for image segmentation: a new era for histopathological images. In Pathology (pp. 1017–1020). https://drive.google.com/file/d/1nnlA3qHcrNq4PhTL
dc.relation.referencesBhumika, S. P., Vipul, K. D., & Harshadkumar, B. P. (2016). A Survey on Detection and Classification of Cotton Leaf Diseases. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).
dc.relation.referencesCorpoica. (2006). Cultivo de Maiz.
dc.relation.referencesDANE. (2019). Estructura de población: Cumaribo, CG 2005 y CNPV 2018.
dc.relation.referencesDeepkiran, Pandey, M., & Singh, L. (2024). Spectral Segmentation Augmented with Normalized Cuts for Detection of Early Blight Disease in Potato. Procedia Computer Science, 233, 1034–1043. https://doi.org/10.1016/j.procs.2024.03.292
dc.relation.referencesDíaz Rivera, J. C., Aguirre-Salado, C. A., Loredo-Osti, C., & Escoto-Rodríguez, M. (2024). Identification of the phytosanitary status of trees using machine learning and very high spatial resolution images. Scientia Agropecuaria, 15(2), 177–189. https://doi.org/10.17268/sci.agropecu.2024.013
dc.relation.referencesEz-zahouani, B., Teodoro, A., El Kharki, A., El Kharki, O., & Rhachi, H. (2025). Evaluating the potential of Landsat 8/9 and Sentinel 2 data and different spectral and spatial indices for segment extraction in large watersheds for OBIA approach in remote sensing: A case study of the Sebou watershed. Remote Sensing Applications: Society and Environment, 38. https://doi.org/10.1016/j.rsase.2025.101575
dc.relation.referencesFENALCE. (2020). Aspectos técnicos de la producción de maíz en Colombia.
dc.relation.referencesFerentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311–318. https://doi.org/10.1016/j.compag.2018.01.009
dc.relation.referencesFerro, M. V., Catania, P., Miccichè, D., Pisciotta, A., Vallone, M., & Orlando, S. (2023). Assessment of vineyard vigour and yield spatio-temporal variability based on UAV high resolution multispectral images. Biosystems Engineering, 231, 36–56. https://doi.org/10.1016/j.biosystemseng.2023.06.001
dc.relation.referencesGalindo, D., Pinzón, D., & Gómez, R. (2023). Caracterización del mercado de tierras: departamento del Vichada. UPRA y Proyecto Biocarbono Orinoquia. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://upra.gov.co/es-co/Publicaciones/20231124_Mem_Tec_Bioc_VICHADA.pdf
dc.relation.referencesGhorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
dc.relation.referencesGiannakis, I., Bhardwaj, A., Sam, L., & Leontidis, G. (2024). A flexible deep learning crater detection scheme using Segment Anything Model (SAM). Icarus, 408. https://doi.org/10.1016/j.icarus.2023.115797
dc.relation.referencesGitelson, A. A., Kaufman, Y. J., Merzlyak, M. N., & Blaustein, J. (1995). Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. In REMOTE SENS. ENVIRON (Vol. 58). ©Elsevier Science Inc.
dc.relation.referencesGómez-Camperos, J., Jaramillo, H., & Guerrero-Gómez, G. (2021). Técnicas de procesamiento digital de imágenes para detección de plagas y enfermedades en cultivos: una revisión. INGENIERÍA Y COMPETITIVIDAD, 24(1). https://doi.org/10.25100/iyc.v24i1.10973
dc.relation.referencesGorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
dc.relation.referencesGraesser, J., & Ramankutty, N. (2017). Detection of cropland field parcels from Landsat imagery. Remote Sensing of Environment, 201, 165–180. https://doi.org/10.1016/j.rse.2017.08.027
dc.relation.referencesGraser, A., Sutton, T., & Bernasocchi, M. (2025). The QGIS project: Spatial without compromise. Patterns. https://doi.org/10.1016/j.patter.2025.101265
dc.relation.referencesGrizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., & Cresson, R. (2017). Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software and Standards, 2(1). https://doi.org/10.1186/s40965-017-0031-6
dc.relation.referencesGui, B., Bhardwaj, A., & Sam, L. (2024). Evaluating the Efficacy of Segment Anything Model for Delineating Agriculture and Urban Green Spaces in Multiresolution Aerial and Spaceborne Remote Sensing Images. Remote Sensing, 16(2). https://doi.org/10.3390/rs16020414
dc.relation.referencesGuijarro, M., Riomoros, I., Pajares, G., & Zitinski, P. (2015). Discrete wavelets transform for improving greenness image segmentation in agricultural images. Computers and Electronics in Agriculture, 118, 396–407. https://doi.org/10.1016/j.compag.2015.09.011
dc.relation.referencesHall, D. K., Riggs, G. A., Salomonson, V. V, Digirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. www.elsevier.com/locate/rse
dc.relation.referencesHuete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. www.elsevier.com/locate/rse
dc.relation.referencesIbarra-Bonilla, J. S., Pinedo-Alvarez, A., Prieto-Amparán, J. A., Siller-Clavel, P., Santellano-Estrada, E., Álvarez-Holguín, A., & Villarreal-Guerrero, F. (2024). Post-fire vegetation dynamics of a temperate mixed forest: An assessment based on the variability of Landsat spectral indices. Trees, Forests and People, 17. https://doi.org/10.1016/j.tfp.2024.100648
dc.relation.referencesJafarbiglu, H., & Pourreza, A. (2022). A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. In Computers and Electronics in Agriculture (Vol. 197). Elsevier B.V. https://doi.org/10.1016/j.compag.2022.106844
dc.relation.referencesKarila, K., Matikainen, L., Karjalainen, M., Puttonen, E., Chen, Y., & Hyyppä, J. (2023). Automatic labelling for semantic segmentation of VHR satellite images: Application of airborne laser scanner data and object-based image analysis. ISPRS Open Journal of Photogrammetry and Remote Sensing, 9. https://doi.org/10.1016/j.ophoto.2023.100046
dc.relation.referencesKattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 173, pp. 24–49). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2020.12.010
dc.relation.referencesKhanal, S., Kushal, K. C., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote sensing in agriculture—accomplishments, limitations, and opportunities. In Remote Sensing (Vol. 12, Issue 22, pp. 1–29). MDPI AG. https://doi.org/10.3390/rs12223783
dc.relation.referencesKilleen, J., Jaupi, L., & Barrett, B. (2022). Impact assessment of humanitarian demining using object-based peri-urban land cover classification and morphological building detection from VHR Worldview imagery. Remote Sensing Applications: Society and Environment, 27. https://doi.org/10.1016/j.rsase.2022.100766
dc.relation.referencesKirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., & Girshick, R. (2023). Segment Anything. http://arxiv.org/abs/2304.02643
dc.relation.referencesLandis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data (Vol. 33, Issue 1). https://about.jstor.org/terms
dc.relation.referencesLiepa, A., Thiel, M., Taubenböck, H., Steffan-Dewenter, I., Abu, I. O., Singh Dhillon, M., Otte, I., Otim, M. H., Lutaakome, M., Meinhof, D., Martin, E. A., & Ullmann, T. (2024). Harmonized NDVI time-series from Landsat and Sentinel-2 reveal phenological patterns of diverse, small-scale cropping systems in East Africa. Remote Sensing Applications: Society and Environment, 35. https://doi.org/10.1016/j.rsase.2024.101230
dc.relation.referencesLillesand, T., Kiefer, R., & Chipman, J. (2015). Remote sensing and image interpretation. In Earth Surface Processes and Landforms (7th ed., Issue 12). John Wiley & Sons.
dc.relation.referencesMcFeeters, S. K. (2013). Using the normalized difference water index (ndwi) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544
dc.relation.referencesMéndez, A., Pablo Vélez, J., Scaramuzza, F., & Villarroel, D. (2015). Los drones como herramienta para el monitoreo de cultivos AGRICULTURA. Revista Institucional N° 1524.
dc.relation.referencesMeyer, D., & Riechert, M. (2019). Open source QGIS toolkit for the Advanced Research WRF modelling system. Environmental Modelling and Software, 112, 166–178. https://doi.org/10.1016/j.envsoft.2018.10.018
dc.relation.referencesMulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. In Biosystems Engineering (Vol. 114, Issue 4, pp. 358–371). Academic Press. https://doi.org/10.1016/j.biosystemseng.2012.08.009
dc.relation.referencesNarváez L. (2019). CARACTERIZACIÓN SOCIOECONÓMICA Y CULTURAL DE LOS RESGUARDOS INDÍGENAS DEL MUNICIPIO DE CUMARIBO, VICHADA.
dc.relation.referencesNiño L. (2019). Aproximación socioeconómica al territorio de las selvas transicionales de Cumaribo, Vichada (Colombia).
dc.relation.referencesNora, S., & Ulises, R. (2009). Tecnicas de segmentacion en procesamimento digital de imagenes. Revista de Ingeniería de Sistemas e Informática , 6(2).
dc.relation.referencesOsco, L. P., Wu, Q., de Lemos, E. L., Gonçalves, W. N., Ramos, A. P. M., Li, J., & Marcato, J. (2023). The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot. International Journal of Applied Earth Observation and Geoinformation, 124. https://doi.org/10.1016/j.jag.2023.103540
dc.relation.referencesPatil, R., & Kumar, S. (2020). Bibliometric Survey on Diagnosis of Plant Leaf Diseases Using Artificial Intelligence. International Journal of Modern Agriculture, 9(3).
dc.relation.referencesPaula, M., Acción, R.-F., Aguilera -Fondo, A., Juan, A., & Correa -Proyecto Biocarbono, C. (2024). Boletín Agroclimático Edición N°1 Marzo 2024 Vichada Convocatoria y Coordinación.
dc.relation.referencesPei, T., Xu, J., Liu, Y., Huang, X., Zhang, L., Dong, W., Qin, C., Song, C., Gong, J., & Zhou, C. (2021). GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives. Geography and Sustainability, 2(3), 207–215. https://doi.org/10.1016/j.geosus.2021.08.004
dc.relation.referencesPino-Vargas, E., & Huayna, G. (2022). Spatial and temporal evolution of olive cultivation due to pest attack, using remote sensing and satellite image processing. Scientia Agropecuaria, 13(2), 149–157. https://doi.org/10.17268/sci.agropecu.2022.013
dc.relation.referencesQader, S. H., Utazi, C. E., Priyatikanto, R., Najmaddin, P., Hama-Ali, E. O., Khwarahm, N. R., Tatem, A. J., & Dash, J. (2023). Exploring the use of Sentinel-2 datasets and environmental variables to model wheat crop yield in smallholder arid and semi-arid farming systems. Science of the Total Environment, 869. https://doi.org/10.1016/j.scitotenv.2023.161716
dc.relation.referencesQin, R., & Liu, T. (2022). A Review of Landcover Classification with Very-High Resolution Remotely Sensed Optical Images—Analysis Unit, Model Scalability and Transferability. In Remote Sensing (Vol. 14, Issue 3). MDPI. https://doi.org/10.3390/rs14030646
dc.relation.referencesQGIS Development Team. (2024). QGIS: A free and open source geographic information system (Version 3.40.3) [Computer software]. QGIS Association. https://www.qgis.org/
dc.relation.referencesR Core Team. (2025). R: A language and environment for statistical computing (Version 4.5.0 [UCRT]) [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/
dc.relation.referencesRadočaj, D., Plaščak, I., & Jurišić, M. (2025). Fusion of Sentinel-2 Phenology Metrics and Saturation-Resistant Vegetation Indices for Improved Correlation with Maize Yield Maps. Agronomy, 15(6), 1329. https://doi.org/10.3390/agronomy15061329
dc.relation.referencesRana, S., Gerbino, S., Barretta, D., Carillo, P., Crimaldi, M., Cirillo, V., Maggio, A., & Sarghini, F. (2024). RafanoSet: Dataset of raw, manually, and automatically annotated Raphanus Raphanistrum weed images for object detection and segmentation. Data in Brief, 110430. https://doi.org/10.1016/j.dib.2024.110430
dc.relation.referencesRangel, J. O., Fernando, L., & Merino, G. (2020). CARACTERIZACIÓN CLIMÁTICA DEL TERRITORIO DE LAS SELVAS TRANSICIONALES DE CUMARIBO, VICHADA (COLOMBIA) Climatic characterization of the territory of the transitional jungle of Cumar. https://www.researchgate.net/publication/339570621
dc.relation.referencesSoccolini, A., & Vizzari, M. (2023). Predictive Modelling of Maize Yield Using Sentinel 2 NDVI. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14107 LNCS, 327–338. https://doi.org/10.1007/978-3-031-37114-1_22
dc.relation.referencesTamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 164, pp. 152–170). Elsevier B.V. https://doi.org/10.1016/j.isprsjprs.2020.04.001
dc.relation.referencesThorp, K. R., Wang, G., Badaruddin, M., & Bronson, K. F. (2016). Lesquerella seed yield estimation using color image segmentation to track flowering dynamics in response to variable water and nitrogen management. Industrial Crops and Products, 86, 186–195. https://doi.org/10.1016/j.indcrop.2016.03.035
dc.relation.referencesTripathy, P., Baylis, K., Wu, K., Watson, J., & Jiang, R. (2024). Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels.
dc.relation.referencesUPRA. (2023). Actualización de la Frontera Agrícola Nacional: 43 millones de hectáreas disponibles para la producción. https://www.upra.gov.co
dc.relation.referencesWaldner, F., Diakogiannis, F. I., Batchelor, K., Ciccotosto-Camp, M., Cooper-Williams, E., Herrmann, C., Mata, G., & Toovey, A. (2021). Detect, consolidate, delineate: Scalable mapping of field boundaries using satellite images. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112197
dc.relation.referencesWu, H., Liu, B., Zhu, B., Zhen, Z., Song, K., & Ren, J. (2024). Combining Vegetation Indices to Identify the Maize Phenological Information Based on the Shape Model. Agriculture, 14(9), 1608. https://doi.org/10.3390/agriculture14091608
dc.relation.referencesZhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. In Precision Agriculture (Vol. 13, Issue 6, pp. 693–712). https://doi.org/10.1007/s11119-012-9274-5
dc.relation.referencesZhao, S., Liu, J., Bai, Z., Hu, C., & Jin, Y. (2022). Crop Pest Recognition in Real Agricultural Environment Using Convolutional Neural Networks by a Parallel Attention Mechanism. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.839572
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.lembCARACTERISTICAS AGRONOMICASspa
dc.subject.lembAgronomic Characteristicseng
dc.subject.lembPRECOCIDADspa
dc.subject.lembPrecocityeng
dc.subject.lembSENSORES REMOTOSspa
dc.subject.lembRemote sensingeng
dc.subject.lembINDUSTRIA DEL MAIZspa
dc.subject.lembCorn industryeng
dc.subject.lembMAIZ-COSECHAspa
dc.subject.lembCorn - harvestingeng
dc.subject.proposalSegmentaciónspa
dc.subject.proposalSAMspa
dc.subject.proposalOTBspa
dc.subject.proposalGEEspa
dc.subject.proposalAnomalías agronómicasspa
dc.subject.proposalSentinel 2spa
dc.subject.proposalSegmentationeng
dc.subject.proposalAgronomic anomalieseng
dc.titleEstimación espacial de anomalías agronómicas de un cultivo con técnicas de segmentación en imágenes de sensores remotos : caso aplicado para Maíz (Zea mays L) en Cumaribo – Vichadaspa
dc.title.translatedSpatial estimation of agronomic anomalies in a Crop using segmentation techniques on remote sensing images : applied case for maize (Zea mays L) in Cumaribo – Vichadaeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TrabajoFinal1031151869.pdf
Tamaño:
5.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Ingeniería de Biosistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: