Estudio del método de captura neutrónica con Boro-10 para su uso en radioterapia

dc.contributor.advisorCastro Serrato, Héctor Fabio
dc.contributor.authorGiraldo Torres, Yurani Andrea
dc.contributor.researchgroupFisica de Bajas Temperaturas y Magnetismo Cryomagspa
dc.date.accessioned2022-06-01T19:54:59Z
dc.date.available2022-06-01T19:54:59Z
dc.date.issued2022
dc.descriptionilustraciones, graficas, mapas,spa
dc.description.abstractLa terapia de captura neutrónica con boro (BNCT) es un tipo de radioterapia, que tiene como fin la entrega de una dosis alta y localizada de radiación a un tejido tumoral, al tiempo de que se minimiza significativamente la dosis en el tejido sano. La BNCT es realizada con la captura de neutrones de bajas energías, cuyas fuentes son los reactores nucleares y los aceleradores de partículas, por núcleos de 10B que se incorporan con anterioridad en el tumor. Las dosis son obtenidas de las partículas secundarias resultantes de la reacción nuclear 10B(n, α)7Li, núcleos de 7Li y partículas alfa (α), que depositan altas energías en su trayectoria, de modo que atenúan la radiación emitida rápidamente y penetran poco tejido a su alrededor (alta transferencia lineal de energía). En este trabajo se estudió la dosimetría de un haz de neutrones que interactúa con una mezcla homogénea de 10B y agua, así como se analizó el comportamiento del depósito de dosis a profundidad. Con este objetivo se construyó una simulación usando el código Montecarlo Geant4. En primer lugar, este código modeló un haz de neutrones de energías variables (1 meV, 1 eV, 1 keV y 1 MeV) que interactuó con un maniquí de agua cuyo contenido de 10B es 100 µg/ml. Como resultado se obtiene que a bajas energías (hasta 1 keV) la dosis depositada por captura neutrónica supera el 90 % de la dosis total. En segundo lugar, se estudió el comportamiento de la dosis con la variación de concentración, para ello se irradió un maniquí con el espectro de neutrones del reactor de investigación LVR-15, y se usaron diferentes concentraciones de 10B en agua (50, 100, 150 y 200 µg/ml). Como resultado se obtuvo que la dosis depositada es directamente proporcional al incremento de la concentración de 10B y que la dosis máxima para una concentración de 200 µg/ml alcanzó a ser 29 veces la dosis en ausencia de 10B. Posteriormente, se investigó cómo es el comportamiento de la dosis con la posición del blanco (variación en profundidad), empleando como fuente el haz de neutrones del reactor de investigación LVR-15. Para cumplir el propósito, se construyó una nueva simulación donde el maniquí fue conformado por un cubo de agua que tenía inscrito otro cubo de agua y 10B, se realizó una variación en la ubicación (0 cm., 2.5 cm., y 5 cm desde la entrada del haz) del cubo interno, así mismo se cambió la concentración en cada una de las profundidades. Como resultado se produjo que la razón de dosis depositada en el tumor respecto al tejido sano se altera de acuerdo con la profundidad de la lesión, demostrando que el depósito de dosis localizado para este tipo de terapia es mejor en tumores superficiales, debido a que la razón de dosis entre tejidos es mayor, esto quiere decir que el tejido sano se irradia en menor cantidad. Finalmente, se simuló un plan de tratamiento de radioterapia para una lesión tumoral ubicada en la región cerebral, cuya fuente de irradiación fue el espectro de neutrones del reactor nuclear de investigación IAN-R1 ubicado en el Servicio Geológico Colombiano, tras cuantificar la dosis recibida en estructuras de riesgo se encontró que los valores de razón entre la dosis del tejido tumoral y la del tejido sano fue de 8.3:1. Con esto se demuestra que es posible realizar investigación de BNCT en el reactor IAN R1. (Texto tomado de la fuente)spa
dc.description.abstractBoron neutron capture therapy (BNCT) is a type of radiation therapy, which aims to deliver a high, localized dose of radiation to tumor tissue, while significantly minimizing the dose to healthy tissue. BNCT is performed with the capture of low energy neutrons, the sources are nuclear reactors and particle accelerators, by 10B nuclei that are previously incorporated into the tumor. The doses are obtained from the secondary particles resulting from the nuclear reaction 10B(n, α) 7Li, nuclei of 7Li and alpha particles (α), which deposit high energies in their path, so that they attenuate the radiation emitted quickly and penetrate little tissue around them (high linear energy transfer). In this work, the dosimetry of a neutron beam interacting with a homogeneous mixture of 10B and water was studied, as well as the behavior of the dose deposit at depth was analyzed. With this objective, a simulation was built using the Montecarlo Geant4 code. First, this code modeled a neutron beam of variable energies (1 meV, 1 eV, 1 keV and 1 MeV) that interacted with a water phantom whose content of 10B is 100µg/ml. As a result, it is obtained that at low energies (up to 1 keV) the dose deposited by neutron capture exceeds 90 % of the total dose. Second, the behavior of the dose with the variation of concentration was studied, for this a phantom was irradiated with the neutron spectrum of the LVR-15 research reactor, and different concentrations of 10B were used in water (50, 100, 150 and 200 µg/ml). As a result, it was obtained that the dose deposited is directly proportional to the increase in the concentration of 10B and that the maximum dose for a concentration of 200 µg/ml was 29 times the dose in the absence of 10B. Subsequently, the behavior of the dose with the position of the target (depth variation) was investigated, using the neutron beam from the LVR-15 research reactor as a source. To fulfill the purpose, a new simulation was built where the mannequin was made up of a bucket of water that had another bucket of water inscribed and 10B, a variation was made in the location (0 cm., 2.5 cm., And 5 cm from the entrance of the beam) of the internal cube, likewise the concentration in each of the depths was changed. As a result, it was produced that the dose ratio deposited in the tumor with respect to healthy tissue alters according to the depth of the lesion, demonstrating that the localized dose deposit for this type of therapy is better in superficial tumors, due to the fact that the The dose ratio between tissues is higher, this means that healthy tissue is irradiated in less quantity. Finally, a radiotherapy treatment plan was simulated for a tumor lesion located in the brain region, whose irradiation source was the neutron spectrum of the IAN-R1 nuclear research reactor located in the Colombian Geological Survey, after quantifying the dose received in risk structures, it was found that the ratio values between the dose of tumor tissue and that of healthy tissue was 8.3:1. This demonstrates that it is possible to conduct BNCT research in the IAN R1 reactor.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Física Médicaspa
dc.format.extent98 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81482
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Física Médicaspa
dc.relation.referencesR. F. Barth, A. H. Soloway, and R. M. Brugger, “Boron neutron capture therapy of brain tumors: Past history, current status, and future potential,” Cancer Investigation, vol. 14, no. 6, pp. 534–550, 1996.spa
dc.relation.referencesMinisiterio de Salud y Protección Social, “Observatorio Nacional de Cáncer guia metodológica,” ONC Colombia, pp. 1–59, 2018spa
dc.relation.referencesN. Hawkes, “A comprehensive history of cancer treatment,” Healtcare, 2015.spa
dc.relation.referencesJ. F. Brailsford, “Roentgen’s Discovery of Rays Their Apliccation to Medicine and Surgery,” Br J Radiol., vol. 227, pp. 453–461, 1946.spa
dc.relation.referencesP. Allisy-Roberts and J. Williams, “Gamma imaging,” Farr’s Physics for Medical Imaging, pp. 121–145, 2008.spa
dc.relation.referencesR. F. Barth, J. A. Coderre, M. G. H. Vicente, and T. E. Blue, “Boron neutron capture therapy of cancer: Current status and future prospects,” pp. 3987–4002, jun 2005.spa
dc.relation.referencesJ. A. Coderre and G. M. Morris, “The radiation biology of boron neutron capture therapy,” Radiation Research, vol. 151, no. 1, pp. 1–18, 1999.spa
dc.relation.referencesTaiwan Society of Neutron Capture Therapy (TSNCT), “What is boron neutron capture therapy(bnct),” https://tsnct.org.tw/eng/about bnct/, (Accessed on 03/13/2022).spa
dc.relation.referencesIAEA, “Current status of neutron capture therapy,” Iaea, 2001 (8), no. May, pp. 75–77, 2001.spa
dc.relation.referencesT. Ohno, M. Kirihata, J. Hatazawa, and A. Maruhashi, “Pioneered by Japanese Brainpower: New horizons in cancer treatment BNCT,” BNCT Promotion and Research Society, 2009.spa
dc.relation.referencesA. Kaiser, J. G. Eley, N. E. Onyeuku, and E. al, “Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies,” Journal of visualized experiments : JoVE, no. 144, feb 2019.spa
dc.relation.referencesP. Radvanyi and J. Villain, “La découverte de la radioactivité,” Comptes Rendus Physique, vol. 18, 2017.spa
dc.relation.referencesA. Munoz Paez, “Marie Sklodowska-Curie y la radioactividad,” Educacion quimica, vol. 24, no. 2, pp. 224–228, 2013.spa
dc.relation.referencesM. Lederman, “The early history of radiotherapy: 1895-1939,” International Journal of Radiation Oncology, Biology, Physics, vol. 7, no. 5, pp. 639–648, 1981.spa
dc.relation.referencesJ. D. Cockcroft and E. T. S. Walton, “Experiments with high velocity positive ions.[U+2015](I) Further developments in the method of obtaining high velocity positive ions,” The Royal Society of London., vol. 136, no. 830, pp. 619–630, 1932.spa
dc.relation.referencesH. Svensson, “Neutron Therapy- The historical background,” Acta Oncologica, vol. 33, no. 3, pp. 227–231, 1994.spa
dc.relation.referencesD. W. Miller, “A review of proton beam radiation therapy,” Loma Linda University Medical Center, California, Tech. Rep. 11, 1995.spa
dc.relation.referencesA. Brown and R. Stuewer, “The Neutron and the Bomb: A Biography of Sir James Chadwick,” Physics Today, vol. 50, no. 12, pp. 65–66, 1997.spa
dc.relation.referencesM. C. Henderson, M. S. Livingston, and E. O. Lawrence, “Artificial radioactivity produced by Neutron bombardment,” Physical Review, vol. 45, no. 6, pp. 428–429, 1934.spa
dc.relation.referencesB. Reed, The Physics of the Manhattan Project, 2011.spa
dc.relation.referencesR. W. M.Frederick Hawthorne, Kenneth Shelly, Frontiers in neutron capture therapy, 2001.spa
dc.relation.referencesC. L. Lee, “The design of an intense accelerator-based epithermal neutron beam prototype for BNCT using near-threshold reactions,” 1998.spa
dc.relation.referencesJ. S. of Neutron Capture, “What is bnct? — japanese society of neutron capture therapy,” http://www.jsnct.jp/e/about nct/, (Accessed on 03/13/2022).spa
dc.relation.referencesH. Tanaka, Y. Sakurai, M. Suzuki, and et al., “Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 267, no. 11, pp. 1970–1977, 2009.spa
dc.relation.referencesD. Kim, “overview of the A-BNCT System in Korea,” pp. 1–24, feb 2018. [Online]. Available: https://indico.ibs.re.kr/event/191/material/slides/52.pdfspa
dc.relation.referencesSangmin Lee, Hyegang Chang, and Junyoung Lee, “Mixed field dosimetry,” https:// rplab.snu.ac.kr/bbs/board.php?bo table=sub3 3, (Accessed on 07/15/2021).spa
dc.relation.referencesH. Yang, D.-K. Yoon, and T. S. Suh, “Sensing changes in tumor during boron neutron capture therapy using PET with a collimator: Simulation study,” Nuclear Engineering and Technology, vol. 52, 2020.spa
dc.relation.referencesD. Haritz, D. Gabel, and R. Huiskamp, “Clinical phase-I study of NA2B12H11SH (BSH) in patients with malignant glioma as precondition for boron neutron capture therapy (BNCT),” International Journal of Radiation Oncology*Biology*Physics, vol. 28, no. 5, pp. 1175–1181, 1994.spa
dc.relation.referencesR. Moss, P. Watkins, C. Vroegindeweij, and et al., The BNCT facility at the HFR Petten: Quality assurance for reactor facilities in clinical trials, 2001, pp. 268–274.spa
dc.relation.referencesS. Savolainen, M. Kortesniemi, M. Timonen, V. Reijonen, and et al., “Boron neutron capture therapy (BNCT) in Finland: Technological and physical prospects after 20 years of experiences,” Physica Medica, vol. 29, no. 3, pp. 233–248, 2013.spa
dc.relation.referencesJ. Capala, B. H. Stenstam, K. Sk¨old, P. M. Rosensch¨old, V. Giusti, Persson, and et al., “Boron neutron capture therapy for glioblastoma multiforme: Clinical studies in Sweden,” Journal of Neuro-Oncology, vol. 62, no. 1, pp. 135–144, 2003.spa
dc.relation.referencesJ. B. Kriz, M. Marek, J. Rataj, K. Prokes, F. Novy, F. Tovarys, V. D. Tomandl, and J. Honzatko, “The BNCT project in the Czech Republic before the start of clinical treatment,” pp. 419–424, 2001.spa
dc.relation.referencesJ. Burian, M. Marek, J. Rataj, S. Flibor, J. Rejchrt, L. Viererbl, Sus, and et al., “Report on the first patient group of the phase I BNCT trial at the LVR-15 reactor,” International Congress Series, vol. 1259, no. C, pp. 27–32, 2004.spa
dc.relation.referencesC. Achilli, S. Grandi, A. Ciana, G. F. Guidetti, A. Malara, V. Abbonante, Cansolino, and et al., “Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 10, no. 3, 2014.spa
dc.relation.referencesPavia, “Bnct,” https://www.bnct.it, (Accessed on 07/15/2021)spa
dc.relation.referencesE. L. Kreimann, “Estudios de terapia por captura neutr´onica en boro (BNCT) en un modelo experimental de c´ancer oral,” Ph.D. dissertation, Universidad de Buenos Aires, 2002.spa
dc.relation.referencesCNEA, “Protocolo de estudio fase ii para el tratamiento de melanoma con bnct — argentina.gob.ar,” https://www.argentina.gob.ar/cnea/ terapia-por-captura-neutronica-en-boro/protocolo-de-estudio-fase-ii, (Accessed on 03/10/2022)spa
dc.relation.referencesA. J. Molinari, S. I. Thorp, A. M. Portu, G. S. Martin, Pozzi, and et al., “Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels,” Acta Oncologica, vol. 54, no. 1, pp. 99–106, 2015.spa
dc.relation.referencesM. A. Pisarev, M. A. Dagrosa, L. Thomasz, and G. Juvenal, “Tratamiento del cancer por captura neutronica de boro su aplicacion al carcinoma indiferenciado de tiroides,” Medicina, vol. 66, no. 6, pp. 569–573, 2006.spa
dc.relation.referencesE. N. Latinoamericana, “Argentina: Avances en la terapia por captura neutr´onica en boro — enula.org – energ´ıa nuclear latinoamericana,” http://enula.org/2018/04/ argentina-avances-en-la-terapia-por-captura-neutronica-en-boro/, Abril 2018, (Accessed on 03/14/2022).spa
dc.relation.referencesA. J. Kreiner, J. Bergueiro, D. Cartelli, and et al., “Present status of Accelerator-Based BNCT,” Reports of Practical Oncology Radiotherapy, vol. 21, no. 2, pp. 95–101, 2016.spa
dc.relation.references“Mapamundi político para imprimir,” https://mapamundiparaimprimir.com/politico/, (Accessed on 04/21/2021).spa
dc.relation.referencesO. K. Harling, K. J. Riley, T. H. Newton, B. A. Wilson, and et al., “The new fission converter based epithermal neutron irradiation facility for neutron capture therapy,” Neutron News, vol. 12, no. 1, pp. 24–26, 2001.spa
dc.relation.referencesE. Bisceglie, P. Colangelo, N. Colonna, and et al., “On the optimal energy of epithermal neutron beams for BNCT,” Physics in Medicine and Biology, vol. 45, no. 1, pp. 49–58, 2000.spa
dc.relation.referencesR. Zamenhof, B. Murray, G. Brownell, G. Wellum, and E. Tolpin, “Boron neutron capture therapy for the treatment of cerebral gliomas. I: Theoretical evaluation of the efficacy of various neutron beams,” Medical physics, vol. 2, pp. 47–60, 1975.spa
dc.relation.referencesM. García, “El Boro en las Ciencias Médicas,” Ph.D. dissertation, Universidad Complutense de Madrid, 2018.spa
dc.relation.referencesS. Y. Taskaev, “Accelerator based epithermal neutron source,” Physics of Particles and Nuclei, vol. 46, no. 6, pp. 956–990, 2015.spa
dc.relation.referencesR. W. Hamm, “Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator,” Penetrating Radiation Systems and Applications II, vol. 4142, pp. 39–47, 2000.spa
dc.relation.referencesF. Naito, “Introduction to accelerators for boron neutron capture therapy,” Therapeutic Radiology and Oncology, vol. 2, p. 54, nov 2018.spa
dc.relation.referencesM. Suzuki, “Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era,” International Journal of Clinical Oncology, vol. 25, no. 1, pp. 43–50, 2019.spa
dc.relation.references“Sah and neutron therapeutics inc. enter into agreement to develop boron neutron capture therapy - sah global,” https://www.sahglobal.com/ sah-and-neutron-therapeutics-inc-enter-into-agreement-to-develop-boron-neutron-cap\ ture-therapy/, 2019, (Accessed on 03/13/2022).spa
dc.relation.referencesJ.-K. Kim and K.-O. Kim, “Current research on accelerator-based boron neutron capture therapy in Korea,” Nuclear Engineering and Technology, vol. 41, 2009.spa
dc.relation.referencesL. Y. Sierra, “Evaluación Preliminar de la Moderación de Neutrones en un Generador D-D compacto de Alto Flujo,” Master’s thesis, Pontificia Universidad Javeriana, 2019.spa
dc.relation.referencesL. Deng, C. Chen, T. Ye, and G. Li, “The Dosimetry Calculation for Boron Neutron Capture Therapy,” Diagnostic Techniques and Surgical Management of Brain Tumors, 2011.spa
dc.relation.referencesI. Ota and T. Kitahara, “Boron neutron capture therapy (BNCT),” Practica Oto-RhinoLaryngologica, vol. 107, no. 12, pp. 937–946, 2014.spa
dc.relation.referencesJ. Floberg, “The physics of boron neutron capture therapy: an emerging and innovative treatment for glioblastoma and melanoma,” Carleton College, Tech. Rep., 2005.spa
dc.relation.referencesR. F. Barth, A. H. Soloway, and R. G. Fairchild, “Boron neutron capture therapy for cancer,” Scientific American, vol. 263, no. 4, pp. 100–106, 1990.spa
dc.relation.referencesW. Sauerwein, A. Wittig, R. Moss, and Y. Nakagawa, Neutron Capture Therapy. Principles and Applications., 2012.spa
dc.relation.referencesW. Sauerwein, A. Wittig, R. Moss, and Y. Nakagawa, Neutron Capture Therapy. Principles and Applications., 2012.spa
dc.relation.referencesH. Koivunoro, “Dosimetry and dose planning in boron neutron capture therapy : Monte Carlo studies,” University of Helsinki, Tech. Rep., 2012spa
dc.relation.referencesR. F. Barth, M. G. Vicente, and E. al., “Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer,” Radiation Oncology, vol. 7, no. 1, pp. 1–21, 2012.spa
dc.relation.referencesS. I. Miyatake, S. Kawabata, and et al., “Survival benefit of Boron neutron capture therapy for recurrent malignant gliomas,” Journal of Neuro-Oncology, vol. 91, no. 2, pp. 199–206, 2009.spa
dc.relation.referencesM. Pedrosa, I. Porras, J. Praena, and et al., “Ppt - beams of the “lightest radionuclide useful for hadron therapy”: neutron beams for bnct powerpoint presentation - id:8820176,” https://www.slideserve.com/jcreasey/beams-of-the-lightest-radionuclide-useful-for-hadron-therapy-neutron-beams-for-bnct\-powerpoint-ppt-presentation, 10 2019, (Accessed on 04/17/2021).spa
dc.relation.referencesR. Seki, Y. Wakisaka, N. Morimoto, and et al., “Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT),” Radiological Physics and Technology, vol. 10, no. 4, pp. 387–408, dec 2017.spa
dc.relation.referencesR. S. Medina, D. A. Téllez, E. Munévar, and J. A. Leyva, “Caracterización de la reacción nuclear de la terapia de captura neutrónica por Boro (BNCT) por medio de Geant4,” Revista Investigaciones y Aplicaciones Nucleares, no. 2, pp. 43–54, dec 2018.spa
dc.relation.referencesY. M. Cruz Guerra, J. A. Sarta Fuentes, and J. A. Leyva Rojas, “Cálculo preliminar de dosis en la terapia por captura neutrónica del boro empleando teoría de difusión y remoción,” Master’s thesis, Pontificia Universidad Javeriana, jul 2019.spa
dc.relation.referencesJ. A. Cifuentes Parada, J. A. Sarta Fuentes, and J. A. Leyva Rojas, “Evaluación Preliminar de la Aceleración de Deuterio en un Generador de Neutrones Deuterio-Deuterio Compacto de Alto Flujo Contenido,” Master’s thesis, Pontificia Universidad Javeriana, 2019.spa
dc.relation.referencesE. B. Podgorsak, Biological and Medical Physics Biomedical Engineering, Physics for Medical Physicist, 2010.spa
dc.relation.referencesW. R. Leo and D. G. Haase, Techniques for Nuclear and Particle Physics Experiments,1990, vol. 58, no. 12.spa
dc.relation.referencesS. M. Malkapur and M. C. Narasimhan, “10 - Virgin and waste polymer incorporated concrete mixes for enhanced neutron radiation shielding characteristics,” in Use of Recycled Plastics in Eco-efficient Concrete, ser. Woodhead Publishing Series in Civil and Structural Engineering, F. Pacheco-Torgal, J. Khatib, F. Colangelo, and R. Tuladhar, Eds. Woodhead Publishing, 2019, pp. 215–247.spa
dc.relation.referencesS. F. Mughabghab, Atlas of neutron resonances. Resonance parameters and thermal cross sections, 2006.spa
dc.relation.referencesJ. Kopecky, “Atlas of Neutron Capture Cross Sections,” International Atomic Energy Agency, Tech. Rep., 1997.spa
dc.relation.referencesN. Bohr, “Neutron capture and nuclear constitution [1],” Niels Bohr Collected Works, vol. 9, no. C, pp. 151–156, 1986.spa
dc.relation.referencesA. Karaoglu, P. Arce, D. Obradors, J. I. Lagares, and P. Unak, “Calculation by GAMOS/Geant4 simulation of cellular energy distributions from alpha and lithium-7 particles created by BNCT,” Applied Radiation and Isotopes, vol. 132, no. November, pp. 206–211, 2018.spa
dc.relation.referencesJ.-L. Basdevant, J. Rich, and M. Spiro, Fundamentals In Nuclear Physics, Springer, Ed., 2005.spa
dc.relation.referencesInternational Atomic Energy Agency, “Radiation Biology: A handbook for teachers and students,” Vienna, Tech. Rep., 2010.spa
dc.relation.referencesJ. A. Coderre, J. C. Turcotte, K. J. Riley, P. J. Binns, O. K. Harling, and W. S. Kiger, “Boron Neutron Capture Therapy: Cellular Targeting of High Linear Energy Transfer Radiation,” Technology in Cancer Research and Treatment, vol. 2, no. 5, pp. 355–375, 2003.spa
dc.relation.referencesG. Daquino, “Treatment Planning Systems for BNCT,” CERN, Tech. Rep., 2003.spa
dc.relation.references“acidoacetico.com,” https://www.acidoacetico.com/boro/, (Accessed on 04/15/2021).spa
dc.relation.referencesRichard Beatty, The Element - Boron. New York: Marshall Cavendish Benchmark.spa
dc.relation.referencesGerencia de Seguridad Industrial y Responsabilidad Integral / Mon´omeros Colombo Venezolanos S.A., “Hoja de datos de seguridad del material,” Mon´omeros, Barranquilla, Tech. Rep. Ntc 4435, 2003.spa
dc.relation.referencesLos Alamos National laboratory, “Periodic table of elements: Los alamos national laboratory,” https://periodic.lanl.gov/5.shtml, 2019, (Accessed on 01/15/2021).spa
dc.relation.referencesE. J. Hall and S. Willson, Radiobiology for the Radiologist, 7th ed., Wolters Kluwer, Ed., 2019.spa
dc.relation.referencesJ. B. Storer, P. S. Harris, J. E. Furchner, and W. H. Langham, “The Relative Biological Effectiveness of Various Ionizing Radiations in Mammalian Systems,” Radiation Research, vol. 6, no. 2, p. 188, 1957.spa
dc.relation.referencesJ. H. Hendry, “Cellular Radiation Biology,” in Comprehensive Biomedical Physics, A. Brahme, Ed. Oxford: Elsevier, 2014, pp. 63–74.spa
dc.relation.referencesJ. M. Thoday and J. Read, “Effect of oxygen on the frequency of chromosome aberrations produced by X-rays,” p. 608, 1947.spa
dc.relation.referencesG. W. Barendsen, “Review RBE and LET for Different The Relationships between Types of Lethal Cells : Biophysical and Molecular Mechanisms Damage in Mammalian,” Laboratory for Radiobiology, Amsterdam, Tech. Rep. 3, 2013.spa
dc.relation.referencesB. Braunn, J. Colin, C. Courtois, D. Cussol, J. M. Fontbonne, and M. Labalme, “Nuclear physics and Hadron therapy,” Universit`e de Caen Basse-Normandie, Tech. Rep., 2011.spa
dc.relation.referencesRadiology Key, “Linear energy transfer and relative biologic effectiveness — radiology key,” https://radiologykey.com/ linear-energy-transfer-and-relative-biologic-effectiveness/, 2016, (Accessed on 04/04/2021).spa
dc.relation.referencesK. Wirtz and K.-H. Beckurts, “Neutron Physics,” Physics Today, vol. 14, no. 5, p. 84, 1961.spa
dc.relation.referencesM. L’Annunziata, “Radiation physics and radionuclide decay,” Handbook of Radioactivity Analysis, pp. 1–162, 01 2013.spa
dc.relation.referencesF. Parreño, R. Páucar, and C. Picón, “Introducción a la simulación con el código de Monte Carlo MCNP y sus aplicaciones en la Física Médica,” Instituto Peruano de Energía Nuclear, Lima, Tech. Rep.spa
dc.relation.referencesJ. Schuemann, “Monte carlo calculations in nuclear medicine, second edition: Applications in diagnostic imaging.” Medical Physics, vol. 41, p. 047302, 04 2014.spa
dc.relation.referencesS. Agostinelli and E. al, “GEANT4 - A simulation toolkit,” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3, pp. 250–303, 2003.spa
dc.relation.referencesGeant4 Collaboration, Book For Application Developers, 2019.spa
dc.relation.referencesN. Ratcliffe, “Potential of a Compact Low Energy Proton Accelertor for Medical Applications,” Ph.D. dissertation, University of Huddersfield, 2005.spa
dc.relation.referencesL. Moghaddasi and E. Bezak, “Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components,” Australasian Physical and Engineering Sciences in Medicine, vol. 41, no. 1, pp. 129–141, 2018.spa
dc.relation.referencesD. W. Nigg, C. A. Wemple, R. Risler, and et al., “Modification of the University of Washington neutron radiotherapy facility for optimization of neutron capture enhanced fast-neutron therapy,” Medical Physics, vol. 27, no. 2, pp. 359–367, 2000.spa
dc.relation.referencesM. Marek, M. Vins, Z. Lahodova, L. Viererbl, and M. Koleska, “Extended set of activation monitors for NCT beam characterization and spectral conditions of the beam after reactor fuel conversion,” Applied Radiation and Isotopes, vol. 88, pp. 157–161, 2014.spa
dc.relation.referencesN. Zahra, T. Frisson, L. Grevillot, and et al., “Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation,” Physica Medica, vol. 26, no. 4, pp. 202–208, 2010.spa
dc.relation.referencesY. H. Liu, S. Nievaart, P. E. Tsai, and et al., “Neutron spectra measurement and comparison of the HFR and THOR BNCT beams,” Applied Radiation and Isotopes, vol. 67, no. 7-8 SUPPL., pp. 137–140, 2009.spa
dc.relation.referencesJ. J. Ahumada and A. Spin, “Modificación del Reactor IAN-R1,” Instituto de Asuntos Nucleares, Bogotá, Tech. Rep.spa
dc.relation.referencesJ. A. Sarta Fuentes and L. A. Castiblanco Bohorquez, “Neutron flux measurement and thermal power calibration of the ian-r1 triga reactor,” Oct 2008.spa
dc.relation.referencesJ. A. Coderre, M. S. Makar, P. L. Micca, and et al., “Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9l rat gliosarcoma in vitro and in vivo,” International Journal of Radiation Oncology, Biology, Physics, vol. 27, no. 5, pp. 1121–1129, 1993.spa
dc.relation.referencesJ. A. Coderre, E. H. Elowitz, M. Chadha, and et al, “Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: Trial design and early clinical results,” Journal of Neuro-Oncology, vol. 33, no. 1-2, pp. 141– 152, 1997.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddcuriRadiotherapyeng
dc.subject.otherRadioterapiaspa
dc.subject.proposalBoroterapiaspa
dc.subject.proposalTerapia con neutronesspa
dc.subject.proposalBorotherapyeng
dc.subject.proposalRadiation therapyeng
dc.subject.proposalNeutron therapyeng
dc.subject.proposalSimulaciónspa
dc.subject.proposalGeant4
dc.subject.proposalSimulationeng
dc.titleEstudio del método de captura neutrónica con Boro-10 para su uso en radioterapiaspa
dc.title.translatedStudy of the neutron capture method with Boro-10 for its use in radiotherapyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037644842-2022.pdf
Tamaño:
4.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Física Médica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: