Evaporación de un agujero negro de Schwarzschild y potenciales efectivos

dc.contributor.advisorArenas Salazar, José Robel
dc.contributor.authorPitalua Pantoja, Jorge Luis
dc.date.accessioned2022-03-24T14:35:21Z
dc.date.available2022-03-24T14:35:21Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn el presente trabajo se determinó la validez de la teoría de dinámica de campos térmicos para el estudio de un proceso de evaporación de un agujero negro de Schwarzschild. De igual forma, se determinó de forma numérica los factores de cuerpo gris para un campo escalar con masa y la manera en que los parámetros propios del sistema intervienen en las probabilidades de transmisión de los modos del campo. El proceso de Evaporación descrito es semiclasico y se planteó en torno al proceso de tunelamiento, que se presenta de forma natural, en torno a la barrera de potencial generada por el agujero negro. (Texto tomado de la fuente)spa
dc.description.abstractIn the present research work we sought to determine the general characteristics of an evaporation process of a Schwarzschild black hole, in the context of thermo eld dynamics. From a semiclassical point of view, we determined the necessary conditions to study a tunneling process through the potential barrier produced by the hole, and how this intervenes in the evaporation process. Once the conditions were established, characteristic situations that could occur in the evaporation process were established and the gray body factors were determined, using a numerical method based on the discretization of the potential barrier.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81357
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesS. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys, 43:199 220, 1975spa
dc.relation.referencesW. Israel. Thermo- eld dynamics of black holes. Physics Letters A, 57(2):107 110, 1976.spa
dc.relation.referencesW. G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870 892, 1976spa
dc.relation.referencesStephen A. Fulling. Nonuniqueness of canonical eld quantization in riemannian space-time. Physical Review D, 7(10):2850 2862, 1973.spa
dc.relation.referencesJ. B. Hartle and S. W. Hawking. Path-integral derivation of black-hole radiance. Physical Review D, 13(8):2188 2203, apr 1976.spa
dc.relation.referencesG. W. Gibbons and M. J. Perry. Black Holes and Thermal Green Functions. Proc R Soc London Ser A, 358(1695):467 494, 1978spa
dc.relation.referencesJ. D. Bekenstein. Black holes and the second law. Lettere Al Nuovo Cimento Series 2, 4(15):737 740, 1972.spa
dc.relation.referencesJacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333 2346, 1973spa
dc.relation.referencesJacob D. Bekenstein. Statistical black-holr thermodynamics. Physical Review D, 12(10):3077 3085, 1975.spa
dc.relation.referencesJacob D. Bekenstein. Black-hole Thermodynamics. Physics Today, 33(1):24 31, 1980.spa
dc.relation.referencesDavid G Boulware. Quantum eld theory in Schwarzschild and Rindler spaces. Physical Review D, 11:1404 1424, 1975.spa
dc.relation.referencesDavid G. Boulware. Hawking Radiation and thin shells. Physical Review D, 13:2169 2187, 1976.spa
dc.relation.referencesS. W. Hawking. Black holes and thermodynamics. Physical Review D, 13(2):191 197, 1976.spa
dc.relation.referencesLeonard Parker. The production of elemetary particles by strong gravitational elds. PhD thesis, 1977spa
dc.relation.referencesDon N Page. Particle emission rates from a black hole.I. Phys. Rev. D13, (2):198 206, 1976spa
dc.relation.referencesDon N. Page. Particle emission rates from a black hole. II. Massless particles from a rotating hole. Physical Review D, 14(12):3260 3273, 1976.spa
dc.relation.referencesBryce S. DeWitt. Quantum eld theory in curved spacetime. Physics Reports, 19(6):295 357, 1975spa
dc.relation.referencesSai Iyer and Cli ord M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Physical Review D, 35(12):3621 3631, 1987spa
dc.relation.referencesD. V. Gal'tsov and A. A. Matiukhin. Matrix WKB method for black hole normal modes and quasibound states. Classical and Quantum Gravity, 9(9):2039 2055, 1992.spa
dc.relation.referencesFinnian Gray and Matt Visser. Greybody factors for Schwarzschild black holes: Path-ordered ex ponentials and product integrals. Universe, 4(9), 2018.spa
dc.relation.referencesDon N Page. Black hole information. arXiv:hep-th/9305040v5, pages 1 41, 1993.spa
dc.relation.referencesCurtis G Callan, Steven B Giddings, Je rey A Harvey, and Andrew Strominger. Evanescent Black Holes arXiv : hep-th / 9111056v1 28 Nov 1991.spa
dc.relation.referencesWilliam A Hiscock. Models of Evaporationg Black Holes I. Physical Review D, 23(12):2813 2822, 1981.spa
dc.relation.referencesWilliam A Hiscock. Models of evaporating black holes II: E ects of the outgoing created radiation. Physical Review D, 23(12):2823 2827, 1981spa
dc.relation.referencesYuhji Kuroda. Model for Evaporating Black Holes. Progress of Theoretical Physics, 71(1):100 108, 1984.spa
dc.relation.referencesValentina Baccetti, Sebastian Murk, and Daniel R Terno. Black hole evaporation and semiclassical thin shell collapse. Physical Review D, 100(6):064054, sep 2019spa
dc.relation.referencesValeri P. Frolov and Andrei Zelnikov. Introduction to Black Hole Physics. Oxford University Press, New York, 2012.spa
dc.relation.referencesAlessandro Fabbri and José Navarro-Salas. Modeling black hole evaporation. 2005.spa
dc.relation.referencesLeonard Susskind and James Lindesay. An Introduction to Black Holes, Information and the String Theory Revolution. The Holographic Universe, volume 91. World Scienti c Publishing Co. Pte. Ltd, Singapore, 2005spa
dc.relation.referencesRobert M. Wald. General Relativity. The University Chicago Press, Chicago, 1984.spa
dc.relation.referencesEduard Alexis Larrañaga. Agujeros negros clasicos. Notas de Clases no Publicadas., 2008spa
dc.relation.referencesInc. Wolfram Research. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 2016spa
dc.relation.referencesL. D. LANDAU and E. M. LIFSHITZ. Mecánica Cuántica no-Relativista, volume III. 1983.spa
dc.relation.referencesJ. P. Vigneron and Ph Lambin. Transmission coe cient for one-dimensional potential barriers using continued fractions. Journal of Physics A: Mathematical and General, 13(4):1135 1144, 1980.spa
dc.relation.referencesG.G. Emch. Algebraic Methods in Statistical and qunatum Field Theory. Jhon Wiley ,New York, 1972.spa
dc.relation.referencesR. Haag. Local Quanrum Physics: Field, Particles, Algebra. Springer-Verlag, New York, 1992spa
dc.relation.referencesYasushi Takahashi and Hiroomi Umezawa. Thermo Field Dynamics. International Journal of Modern Physics B, 10(2):1755 1805, 1996.spa
dc.relation.referencesH. Umezawa. Thermo Field Dynamics and Condensed States. North-Holland Publishing Company, 1982.spa
dc.relation.referencesH. Umezawa. Advanced eld theory: Micro, macro, and thermal Physics, 1995.spa
dc.relation.referencesAdemir E Santana and F.C. Khanna. Lie Groups and the thermal eld theory. Physics Letters A, 203:68 72, 1995.spa
dc.relation.referencesAdemir E. Santana, F. C. Khanna, H. Chu, and Y. C. Chang. Thermal lie groups, classical mechanics, and thermo eld dynamics. Annals of Physics, 249(2):481 498, 1996.spa
dc.relation.referencesA. Kireev, H Umezawa, A. Mann, and M. Revzen. Thermal Squeezed States in Thermo Field Dynamics ad Quabtum and Thermal Fluctuations. Physics Letters A, 142(4):215 221, 1989.spa
dc.relation.referencesN.D Birrel and P.C.W Davies. Quantum Fields in Curved Space. Cambridge University Press, 1994.spa
dc.relation.referencesWalter Greiner. Quantum Mechanics. Springer, 2000spa
dc.relation.referencesJ. Robel Arenas and Juan Manuel Tejeiro-Sarmiento. ENTROPIA DE ENTANGLEMENT ASO CIADA A LA RADIACION UNRUH. Revista Colombiana de Física, 34(1):565 568, 2002spa
dc.relation.referencesH. Majima and A. Suzuki. A generalized time-dependent harmonic oscillator at nite temperature. AIP Conference Proceedings, 832(2006):549 552, 2006.spa
dc.relation.referencesJane H. MacGibbon and B. R. Webber. Quark- and gluon-jet emission from primordial black holes: The instantaneous spectra. Physical Review D, 41(10):3052 3079, 1990spa
dc.relation.referencesM. Dias, Daniel L. Nedel, and C. R. Senise. Time dependent Entanglement Entropy in dissipative conformal theories: TFD approach. pages 1 28, 2019spa
dc.relation.referencesJ. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90 95, 2007.spa
dc.relation.referencesCharles R. Harris, K. Jarrod Millman, St'efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern'andez del R' o, Mark Wiebe, Pearu Peterson, Pierre G'erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357 362, September 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosspa
dc.subject.proposalBlack Holeseng
dc.subject.proposalGreybody Factorseng
dc.subject.proposalDinámica de campos térmicosspa
dc.subject.proposalAgujero Negro de Schwarzschildspa
dc.subject.proposalFactores de cuerpo grisspa
dc.subject.proposalTunelamientospa
dc.subject.proposalTunnel Effecteng
dc.subject.proposalThermofield Dynamiceng
dc.subject.proposalSchwarzschild Black Holeeng
dc.subject.unescoAgujero negrospa
dc.subject.unescoBlack holeseng
dc.titleEvaporación de un agujero negro de Schwarzschild y potenciales efectivosspa
dc.title.translatedEvaporation of a Schwarzschild black hole and effective potentialseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
ThesisV19012022.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: