Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica

dc.contributor.advisorCuca Suarez, Luis Enriquespa
dc.contributor.authorMuñoz Cendales, Diego Ricardospa
dc.contributor.researchgroupQuímica de Productos Naturales Vegetales Bioactivosspa
dc.date.accessioned2020-07-24T16:54:26Zspa
dc.date.available2020-07-24T16:54:26Zspa
dc.date.issued2020-07-23spa
dc.description.abstractThe cytotoxic effect of different Colombian Piper plants was determined by the MTT assay in human cancer cell lines A549 (lung), PC-3 (prostate) and MDAMB-231 (breast). The most potent cytotoxic effect was found in the leaves ethanolic extract of P. eriopodon with IC50 values less than 25 μg/mL. After different chromatographic techniques, nine alkenylphenols (1 - 9) were isolated from the ethanolic extract of leaves from P. eriopodon and their molecular structures were identified by the analysis of the spectroscopic data (IR; NMR 1H, 13C 1D and 2D; HRESIMS), as well as by comparison of the spectral data with those reported in the literature. Of note, compounds 2, 3, 4, 5, 6, 7, 8 and 9 were reported for the first time. All isolated compounds showed cytotoxicity against the human cancer cell lines U373 (glioblastoma) and MCF7 (breast) with IC50 values in a range of 1.78 - 40.14 μg/mL. The higher cytotoxic effect of compounds 1, 2 and 3 was also shown by MTT assay using additional cancer cell lines A549 (lung), PC-3 (prostate) and non-tumourigenic HUVEC and human breast MCF10 cells. Compound 1 was the most potent inhibitor of human cancer cell viability, follow by compounds 2 and 1 respectively. Compounds 1 and 2 induced apoptosis through mitochondrial permeabilization and caspase activation while compound 3 acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species (ROS). Finally, in silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-BIR3 domain. The results confirm the therapeutic potential of isolated compounds from P. eriopodon and demonstrates that XIAP is a key determinant of tumor control, at the molecular crossroad of caspase-dependent/independent cell death pathways.spa
dc.description.abstractEn este trabajo, se evaluó el efecto citotóxico de diferentes especies colombianas del género Piper, por medio del ensayo del MTT en líneas celulares de cáncer humano A549 (pulmón), PC-3 (próstata) y MDA-MB-231 (mama). El extracto etanólico de hojas de P. eriopodon presentó el mayor efecto citotóxico con valores de IC50 por debajo de 25 μg/mL; y su fraccionamiento llevó al aislamiento de nueve compuestos (1-9) de tipo alquenilfenol. Los compuestos 2, 3, 4, 5, 6, 7, 8 y 9 son reportados por primera vez y sus estructuras químicas fueron establecidas por medio del análisis detallado de sus datos espectroscópicos (IR; RMN 1H, 13C 1D y 2D, HRESIMS) y la comparación con los datos reportados en la literatura. Todos los compuestos aislados mostraron tener propiedades citotóxicas en líneas celulares de cáncer humano U373 (glioblastoma) y MCF7 (mama) con valores de IC50 en un rango de 1.78 a 40.14 μg/mL. Los compuestos 1, 2 y 3 presentaron el efecto citotóxico más potente y fueron adicionalmente evaluados en células tumorales A549 (pulmón) y PC-3 (próstata), así como en células no tumorales HUVEC y MCF10. El compuesto 3 fue el inhibidor más potente en la viabilidad celular, seguido de los compuestos 2 y 1 respectivamente. Adicionalmente, se determinó que los compuestos 1 y 2 inducen apoptosis por medio de permeabilización mitocondrial y activación de caspasas, mientras que el compuesto 3 induce muerte celular independiente de caspasas que involucra disfunción mitocondrial y una producción aberrante de especies reactivas de oxígeno (ROS). Finalmente, se realizaron estudios in silico con el fin de evaluar el potencial efecto antagonista sobre la proteína XIAP, encontrando que los tres compuestos evaluados podrían unirse al dominio BIR3 de la proteína XIAP. Estos resultados confirman el potencial farmacológico que tienen los compuestos aislados de P. eriopodon y permiten demostrar el papel fundamental que tiene la proteína XIAP en el control de tumores, proporcionando información importante sobre la participación de XIAP en mecanismos de muerte celular tanto dependientes como independientes de caspasas.spa
dc.description.additionalLínea de Investigación: Bioprospección en agentes terapéuticosspa
dc.description.degreelevelDoctoradospa
dc.description.projectConvocatoria Nacional para estudios de Doctorado en Colombia "Francisco José de Caldas" No 528 de 2011spa
dc.description.sponsorshipColcienciasspa
dc.format.extent167spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationMuñoz, D & Cuca, L. (2020). Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77848
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.referencesShen, B. A New Golden Age of Natural Products Drug Discovery. Cell 2015, 163 (6), 1297–1300.spa
dc.relation.referencesHarvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14 (2), 111–129.spa
dc.relation.referencesGuerra, A. R.; Duarte, M. F.; Duarte, I. F. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. J. Agric. Food Chem. 2018, 66 (41), 10663–10658.spa
dc.relation.referencesCarocho, M.; Ferreira, I. The Role of Phenolic Compounds in the Fight against Cancer – A Review. Anticancer. Agents Med. Chem. 2013, No. 13, 1236–1258.spa
dc.relation.referencesTungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5 (93), 1–16.spa
dc.relation.referencesJafari, S.; Saeidnia, S.; Abdollahi, M. Role of Natural Phenolic Compounds in Cancer Chemoprevention via Regulation of the Cell Cycle. Curr. Pharm. Biotechnol. 2014.spa
dc.relation.referencesDiaz, L. E.; Munoz, D. R.; Prieto, R. E.; Cuervo, S. A.; Gonzalez, D. L.; Guzman, J. D.; Bhakta, S. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale. Molecules 2012, 17 (4), 4142–4157.spa
dc.relation.referencesWang, Y.-H.; Lee, K.-H.; Long, C.-L.; Morris-Natschke, S.; Niu, H.-M.; Yang, J. Anticancer Principles from Medicinal Piper Plants. J. Tradit. Complement. Med. 2014, 4 (1), 8–16.spa
dc.relation.referencesParmar, V. S.; Jain, S. C.; Gupta, S.; Talwar, S.; Rajwanshi, V. K.; Kumar, R.; Azim, A.; Malhotra, S.; Kumar, N.; Jain, R.; et al. Polyphenols and Alkaloids from Piper Species. Phytochemistry 1998, 49 (4), 1069–1078.spa
dc.relation.referencesValdivia, C.; Marquez, N.; Eriksson, J.; Vilaseca, A.; Muñoz, E.; Sterner, O. Bioactive Alkenylphenols from Piper obliquum. Bioorganic Med. Chem. 2008, 16 (7), 4120–4126.spa
dc.relation.referencesAli, I.; Satti, N. K.; Dutt, P.; Prasad, R.; Khan, I. A. Hydroxychavicol: A Phytochemical Targeting Cutaneous Fungal Infections. Sci. Rep. 2016, 6 (37867), 1–20.spa
dc.relation.referencesMgbeahuruike, E. E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive Compounds from Medicinal Plants: Focus on Piper Species. South African J. Bot. 2017, 112, 54–69.spa
dc.relation.referencesSanubol, A.; Chaveerach, A.; Tanee, T.; Sudmoon, R. Pre-Clinical Evaluation of Extracts and Essential Oils from Betel-like Scent Piper Species Identifed Potential Cancer Treatment. African J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14 (1), 89–102.spa
dc.relation.referencesRekha, V. P. B.; Kollipara, M.; Srinivasa Gupta, B. R. S. S.; Bharath, Y.; Pulicherla, K. K. A Review on Piper betle L.: Nature’s Promising Medicinal Reservoir. Am. J. Ethnomedicine 2014, 1 (5), 276–289.spa
dc.relation.referencesDurant-Archibold, A. A.; Santana, A. I.; Gupta, M. P. Ethnomedical Uses and Pharmacological Activities of Most Prevalent Species of Genus Piper in Panama: A Review. J. Ethnopharmacol. 2018, 217, 63–82.spa
dc.relation.referencesGundala, S. R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M. D.; Aneja, R. Hydroxychavicol, a Betel Leaf Component, Inhibits Prostate Cancer through ROS-Driven DNA Damage and Apoptosis. Toxicol. Appl. Pharmacol. 2014, 280, 86–96.spa
dc.relation.referencesBenfica, P. L.; Ávila, R. I. de; Rodrigues, B. D. S.; Cortez, A. P.; Batista, A. C.; Gaeti, M. P. N.; Lima, E. M.; Rezende, K. R.; Valadares, M. C. 4-Nerolidylcatechol: Apoptosis by Mitochondrial Mechanisms with Reduction in Cyclin D1 at G0/G1 Stage of the Chronic Myelogenous K562 Cell Line. Pharm. Biol. 2017, 55 (1), 1899–1908.spa
dc.relation.referencesPiska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (Piplartine) as a Lead Compound for Anticancer Agents – Synthesis and Properties of Analogues: A Mini-Review. Eur. J. Med. Chem. 2018, 156, 13–20.spa
dc.relation.referencesOrjala, J.; Mian, P.; Rali, T.; Sticher, O. Gibbilimbols A-D, Cytotoxic and Antibacterial Alkenylphenols from Piper gibbilimbum. J. Nat. Prod. 1998, 61 (7), 939–941.spa
dc.relation.referencesHanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The next Generation. Cell 2011, 144 (5), 646–674.spa
dc.relation.referencesFulda, S.; Vucic, D. Targeting IAP Proteins for Therapeutic Intervention in Cancer. Nat. Rev. Drug Discov. 2012, 11 (4), 331–331.spa
dc.relation.referencesLalaoui, N.; Vaux, D. L. Recent Advances in Understanding Inhibitor of Apoptosis Proteins. F1000Research. 2018, pp 1–15.spa
dc.relation.referencesRathore, R.; McCallum, J. E.; Varghese, E.; Florea, A.-M.; Büsselberg, D. Overcoming Chemotherapy Drug Resistance by Targeting Inhibitors of Apoptosis Proteins (IAPs). Apoptosis 2017, 22 (7), 898–919.spa
dc.relation.referencesSchimmer, a D.; Dalili, S.; Batey, R. a; Riedl, S. J. Targeting XIAP for the Treatment of Malignancy. Cell Death Differ. 2006, 13 (2), 179–188.spa
dc.relation.referencesTamanini, E.; Buck, I. M.; Chessari, G.; Chiarparin, E.; Day, J. E. H.; Frederickson, M.; Griffiths-Jones, C. M.; Hearn, K.; Heightman, T. D.; Iqbal, A.; et al. Discovery of a Potent Non-Peptidomimetic, Small-Molecule Antagonist of Cellular Inhibitor of Apoptosis Protein 1 (CIAP1) and X-Linked Inhibitor of Apoptosis Protein (XIAP). J. Med. Chem. 2017, 60 (11), 4611–4625.spa
dc.relation.referencesCong, H.; Xu, L.; Wu, Y.; Qu, Z.; Bian, T.; Zhang, W.; Xing, C.; Zhuang, C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J. Med. Chem. 2019, 62 (12), 5750–5772.spa
dc.relation.referencesRiss, T. L.; Moravec, R. A.; Niles, A. L.; Duellman, S.; Benink, H. A.; Worzella, T. J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.spa
dc.relation.referencesBizzozero, L.; Cazzato, D.; Cervia, D.; Assi, E.; Simbari, F.; Pagni, F.; De Palma, C.; Monno, A.; Verdelli, C.; Querini, P. R.; et al. Acid Sphingomyelinase Determines Melanoma Progression and Metastatic Behaviour via the Microphtalmia-Associated Transcription Factor Signalling Pathway. Cell Death Differ. 2014, 21, 507–520.spa
dc.relation.referencesPerrotta, C.; Buonanno, F.; Zecchini, S.; Giavazzi, A.; Proietti Serafini, F.; Catalani, E.; Guerra, L.; Belardinelli, M. C.; Picchietti, S.; Fausto, A. M.; et al. Climacostol Reduces Tumour Progression in a Mouse Model of Melanoma via the P53-Dependent Intrinsic Apoptotic Programme. Sci. Rep. 2016, 6 (27281), 1–14.spa
dc.relation.referencesAssi, E.; Cervia, D.; Bizzozero, L.; Capobianco, A.; Pambianco, S.; Morisi, F.; De Palma, C.; Moscheni, C.; Pellegrino, P.; Clementi, E.; et al. Modulation of Acid Sphingomyelinase in Melanoma Reprogrammes the Tumour Immune Microenvironment. Mediators Inflamm. 2015, 2015 (130482), 1–13.spa
dc.relation.referencesVantaggiato, C.; Castelli, M.; Giovarelli, M.; Orso, G.; Bassi, M. T.; Clementi, E.; De Palma, C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front. Cell. Neurosci. 2019, 13 (120), 1–20.spa
dc.relation.referencesChessari, G.; Buck, I. M.; Day, J. E. H.; Day, P. J.; Iqbal, A.; Johnson, C. N.; Lewis, E. J.; Martins, V.; Miller, D.; Reader, M.; et al. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against CIAP1 and XIAP. J. Med. Chem. 2015, 58 (16), 6574–6588.spa
dc.relation.referencesPfisterer, P. H.; Wolber, G.; Efferth, T.; Rollinger, J. M.; Stuppner, H. Natural Products in Structure-Assisted Design of Molecular Cancer Therapeutics. Curr. Pharm. Des. 2010, 16 (15), 1718–1741.spa
dc.relation.referencesMuñoz, D.; Sandoval-Hernandez, A.; Delgado, W.; Arboleda, G.; Cuca, L. In Vitro Anticancer Screening of Colombian Plants from Piper Genus (Piperaceae). J. Pharmacogn. Phyther. 2018, 10 (9), 174–181.spa
dc.relation.referencesMay, J. E.; Donaldson, C.; Gynn, L.; Ruth Morse, H. Chemotherapy-Induced Genotoxic Damage to Bone Marrow Cells: Long-Term Implications. Mutagenesis 2018, 33, 241– 251.spa
dc.relation.referencesWang, Y.; Probin, V.; Zhou, D. Cancer Therapy-Induced Residual Bone Marrow Injury: Mechanisms of Induction and Implication for Therapy. Curr. Cancer Ther. Rev. 2006, 2 (3), 271–279.spa
dc.relation.referencesMoloney, J. N.; Cotter, T. G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64.spa
dc.relation.referencesTait, S. W. G.; Green, D. R. Caspase-Independent Cell Death: Leaving the Set without the final Cut. Oncogene 2008, 27, 6452–6461.spa
dc.relation.referencesYe, J.; Zhang, R.; Wu, F.; Zhai, L.; Wang, K.; Xiao, M.; Xie, T.; Sui, X. Non-Apoptotic Cell Death in Malignant Tumor Cells and Natural Compounds. Cancer Lett. 2018, 420, 210–227.spa
dc.relation.referencesGalluzzi, L.; Kepp, O.; Chan, F. K.-M.; Kroemer, G. Necroptosis: Mechanisms and relevance to Disease. Annu. Rev. Pathol. Mech. Dis. 2017, 12 (4), 1–28.spa
dc.relation.referencesGreen, D. R. The Coming Decade of Cell Death Research: Five Riddles. Cell 2019, 177, 1094–1107.spa
dc.relation.referencesGalluzzi, L.; Vitale, I.; Aaronson, S. A.; Abrams, J. M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D. W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541.spa
dc.relation.referencesHolze, C.; Michaudel, C.; MacKowiak, C.; Haas, D. A.; Benda, C.; Hubel, P.; Pennemann, F. L.; Schnepf, D.; Wettmarshausen, J.; Braun, M.; et al. Oxeiptosis, a ROS-Induced Caspase- Independent Apoptosis-like Cell-Death Pathway Article. Nat. Immunol. 2018, 19 (2), 130–140.spa
dc.relation.referencesChai, J.; Shiozaki, E.; Srinivasula, S. M.; Wu, Q.; Dataa, P.; Alnemri, E. S.; Shi, Y. Structural Basis of Caspase-7 Inhibition by XIAP. Cell 2001, 104, 769–780.spa
dc.relation.referencesShiozaki, E. N.; Chai, J.; Rigotti, D. J.; Riedl, S. J.; Li, P.; Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y. Mechanism of XIAP-Mediated Inhibition of Caspase-9. Mol. Cell 2003, 11, 519–527.spa
dc.relation.referencesSuzuki, Y.; Nakabayashi, Y.; Nakata, K.; Reed, J. C.; Takahashi, R. X-Linked Inhibitor of Apoptosis Protein (XIAP) Inhibits Caspase-3 and -7 in Distinct Modes. J. Biol. Chem. 2001, 276 (29), 27058–27063.spa
dc.relation.referencesLewis, J.; Burstein, E.; Reffey, S. B.; Bratton, S. B.; Roberts, A. B.; Duckett, C. S. Uncoupling of the Signaling and Caspase-Inhibitory Properties of X-Linked Inhibitor of Apoptosis. J. Biol. Chem. 2004, 279 (10), 9023–9029.spa
dc.relation.referencesWicki, S.; Gurzeler, U.; Wong, W. W. L.; Jost, P. J.; Bachmann, D.; Kaufmann, T. Loss of XIAP Facilitates Switch to TNFα-Induced Necroptosis in Mouse Neutrophils. Cell Death Dis. 2016, 7, 1–13.spa
dc.relation.referencesYabal, M.; Jost, P. J. XIAP as a Regulator of Inflammatory Cell Death: The TNF and RIP3 Angle. Mol. Cell. Oncol. 2015, 2 (1), 1–2.spa
dc.relation.referencesNikolovska-Coleska, Z.; Xu, L.; Hu, Z.; Tomita, Y.; Li, P.; Roller, P. P.; Wang, R.; Fang, X.; Guo, R.; Zhang, M.; et al. Discovery of Embelin as a Cell-Permeable, Small-Molecular Weight Inhibitor of XIAP through Structure-Based Computational Screening of a Traditional Herbal Medicine Three-Dimensional Structure Database. J. Med. Chem. 2004, 47 (10), 2430–2440.spa
dc.relation.referencesJohnson, C. N.; Ahn, J. S.; Buck, I. M.; Chiarparin, E.; Day, J. E. H.; Hopkins, A.; Howard, S.; Lewis, E. J.; Martins, V.; Millemaggi, A.; et al. A Fragment-Derived Clinical Candidate for Antagonism of X-Linked and Cellular Inhibitor of Apoptosis Proteins: 1-(6-[(4- Fluorophenyl)Methyl]-5-(Hydroxymethyl)-3,3-Dimethyl-1 H,2 H,3 H-Pyrrolo[3,2- b]Pyridin-1-Yl)-2-[(2 R,5 R)-5-Methyl-2-([(3R)-3-Methylmor. J. Med. Chem. 2018, 61 (16), 7314–7329.spa
dc.relation.referencesKashkar, H. X-Linked Inhibitor of Apoptosis: A Chemoresistance Factor or a Hollow Promise. Clin. Cancer Res. 2010, 16 (18), 4496–4503.spa
dc.relation.referencesWang, S.; Bai, L.; Lu, J. Targeting Inhibitors of Apoptosis Proteins ( IAPs ) For New Breast Cancer Therapeutics. J. Mammary Gland Biol. Neoplasia 2012, 17, 217–228.spa
dc.relation.referencesSchimmer, A. D.; Welsh, K.; Pinilla, C.; Wang, Z.; Krajewska, M.; Bonneau, M. J.; Pedersen, I. M.; Kitada, S.; Scott, F. L.; Bailly-Maitre, B.; et al. Small-Molecule Antagonists of Apoptosis Suppressor XIAP Exhibit Broad Antitumor Activity. Cancer Cell 2004, 5, 25– 35.spa
dc.relation.referencesObexer, P.; Ausserlechner, M. J. X-Linked Inhibitor of Apoptosis Protein – a Critical Death Resistance Regulator and Therapeutic Target for Personalized Cancer Therapy. Front. Oncol. 2014, 4 (197), 1–9.spa
dc.relation.referencesFulda, S. Promises and Challenges of Smac Mimetics as Cancer Therapeutics. Clin. Cancer Res. 2015, 21 (22), 5030–5036.spa
dc.relation.referencesMotaghed, M.; Al-Hassan, F. M.; Hamid, S. S. Cellular Responses with Thymoquinone Treatment in Human Breast Cancer Cell Line MCF-7. Pharmacognosy Res. 2013, 5 (3), 200–206.spa
dc.relation.referencesBarzegar, E.; Fouladdel, S.; Komeili Movahhed, T.; Atashpour, S.; Ghahremani, M. H.; Ostad, S. N.; Azizi, E. Effects of Berberine on Proliferation, Cell Cycle Distribution and Apoptosis of Human Breast Cancer T47D and MCF7 Cell Lines. Iran. J. Basic Med. Sci. 2015, 18, 334–342.spa
dc.relation.referencesHahm, E. R.; Singh, S. V. Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Associated with Suppression of Inhibitor of Apoptosis Family Protein Expression. Cancer Lett. 2013, 334, 101–108.spa
dc.relation.referencesParamasivam, A.; Sambantham, S.; Shabnam, J.; Vijayashree, J.; Jayaraman, G. Anti-Cancer Effects of Thymoquinone in Mouse Neuroblastoma ( Neuro-2a ) Cells through Caspase-3 Activation with down-Regulation of XIAP. Toxicol. Lett. 2012, 213 (2), 151– 159.spa
dc.relation.referencesSambade, C.; Helena, M.; Lima, R. T.; Martins, M. Specific Downregulation of Bcl-2 and XIAP by RNAi Enhances the Effects of Chemotherapeutic Agents in MCF-7 Human Breast Cancer Cells. Cancer Gene Ther. 2004, 11, 309–316.spa
dc.relation.referencesSensintaffar, J.; Scott, F. L.; Peach, R.; Hager, J. H. XIAP Is Not Required for Human Tumor Cell Survival in the Absence of an Exogenous Death Signal. BMC Cancer 2010, 10 (11), 1–13.spa
dc.relation.referencesZhang, Y.; Wang, Y.; Gao, W.; Zhang, R.; Han, X.; Jia, M.; Guan, W. Transfer of SiRNA against XIAP Induces Apoptosis and Reduces Tumor Cells Growth Potential in Human Breast Cancer in Vitro and in Vivo. Breast Cancer Res. Treat. 2006, 96, 267–277.spa
dc.relation.referencesFoster, F. M.; Owens, T. W.; Tanianis-Hughes, J.; Clarke, R. B.; Brennan, K.; Bundred, N. J.; Streuli, C. H. Targeting Inhibitor of Apoptosis Proteins in Combination with ErbB Antagonists in Breast Cancer. Breast Cancer Res. 2009, 11 (3), 1–13.spa
dc.relation.referencesMontero, J.; Letai, A. Why Do BCL-2 Inhibitorswork and Where Should We Use Them in the Clinic? Cell Death Differ. 2018, 25, 56–64.spa
dc.relation.referencesDelbridge, A. R. D.; Strasser, A. The BCL-2 Protein Family, BH3-Mimetics and Cancer Therapy. Cell Death Differ. 2015, 22, 1071–1080.spa
dc.relation.referencesHuang, X.; Wu, Z.; Mei, Y.; Wu, M. XIAP Inhibits Autophagy via XIAP-Mdm2-P53 Signalling. EMBO J. 2013, 32 (16), 2204–2216.spa
dc.relation.referencesMerlo, P.; Cecconi, F. XIAP : Inhibitor of Two Worlds. EMBO J. 2013, 32 (16), 2187–2188.spa
dc.relation.referencesGoncharov, T.; Hedayati, S.; Mulvihill, M. M.; Izrael-Tomasevic, A.; Zobel, K.; Jeet, S.; Fedorova, A. V.; Eidenschenk, C.; DeVoss, J.; Yu, K.; et al. Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling. Mol. Cell 2018, 69, 551–565.spa
dc.relation.referencesGiampazolias, E.; Zunino, B.; Dhayade, S.; Bock, F.; Cloix, C.; Cao, K.; Roca, A.; Lopez, J.; Ichim, G.; Proïcs, E.; et al. Mitochondrial Permeabilization Engages NF-ΚB-Dependent Anti-Tumour Activity under Caspase Deficiency. Nat. Cell Biol. 2017, 19 (9), 1116–1129.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.subject.proposalApoptosiseng
dc.subject.proposalApoptosisspa
dc.subject.proposalMuerte independiente de caspasasspa
dc.subject.proposalCaspase independent cell deatheng
dc.subject.proposalXIAPeng
dc.subject.proposalXIAPspa
dc.subject.proposalAlkenylphenolseng
dc.subject.proposalAlquenilfenolesspa
dc.subject.proposalPiper eriopodonspa
dc.subject.proposalPiper eriopodoneng
dc.titleEstudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxicaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80040049.2020.pdf
Tamaño:
38.32 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: