Efecto de los cambios microestructurales sobre la medida de la integridad con ultrasonido en una superaleación policristalina
dc.contributor.advisor | Toro, Alejandro | |
dc.contributor.advisor | Mesa, Juan Manuel | |
dc.contributor.author | Uribe Santa, Walter David | |
dc.date.accessioned | 2023-02-17T13:00:04Z | |
dc.date.available | 2023-02-17T13:00:04Z | |
dc.date.issued | 2017-11-13 | |
dc.description.abstract | Este trabajo inicia con una revisión bibliográfica relativa a las turbinas a gas y la importancia de las superaleaciones para la fabricación de componentes de la zona de flujo de gases calientes en las turbinas de ciclo Brayton, estas turbinas usan en dicha zona diferentes tipos de superaleaciones las cuales poseen una al resistencia a esfuerzos termomecánicos, creep, corrosión, entre otras cualidades que hacen de este material uno de los principales para trabajar en ambientes de alta temperatura y ambientes corrosivos. Las superaleaciones poseen diferentes fases incluyendo γ, γ’, γ’’, δ, μ, laves y carburos MC, M6C y M23C6. Las fases δ, μ y laves son no deseadas ya que deterioran las propiedades de resistencia que caracterizan al material. En la teoría se encuentra la importancia de los ensayos no destructivos (END) en el medio de evaluación de la integridad en componentes de turbinas a gas, una de las técnicas no destructivas es el ultrasonido Phased array, con la cual se envían pulsos ultrasónicos en el material, estos pulsos se transforman en ecos al encontrar discontinuidades en el material tales como poros o grietas. Además de poder identificar defectos como los mencionados, se pueden conocer los efectos que causa la microestructura del material sobre la energía de la onda ultrasónica, un ejemplo es el tamaño de grano y la interacción con las ondas ultrasónicas para determinadas longitudes de ondas, lo cual permite medir la atenuación y mediante modelos matemáticos poder encontrar valores de diferentes módulos del material y hasta inferir en el tamaño de grano. Los resultados de esta tesis muestran que existe una relación entre el tamaño de grano y la atenuación ultrasónica, la cual varia a medida que se cambia la frecuencia de la onda que interactúa con el material de estudio, que para este caso fue la superaleación Inconel 625, a la cual se le realizaron tratamientos térmicos de recristalización y de esta manera hacer que el tamaño de grano aumentara significativamente y de este modo poder tener una información precisa sobre tamaño de grano, frecuencia, velocidad del sonido y atenuación ultrasónica. (tomado de la fuente) | spa |
dc.description.abstract | The inconel superalloy 625, it’s been used in the field as a raw material in the manufacture of containers for the storage of petrochemical substances, in pipelines under the surface of the sea and as a substrate in different components of gas turbines of the Brayton cycle and combined cycles, in which the substrate (Inconel 625) can reach temperatures of 1200 ° C (Gómez, 2012) and it is indispensable to carry out preventive and predictive inspections due to the extreme conditions of the medium in which the material, using technics non destructive testing (NDT). The Inconel 625 superalloy is made up of FCC crystalline cells and an equiaxial crystalline structure in which the different phases including γ, γ ', γ' ', δ, μ, laves and MC, M6C and M23C6 carbides are housed. The δ, μ and laves phases are undesired since they deteriorate the resistance properties that characterize the material. Due to its crystalline structure, ultrasonic inspection can be performed on the microstructural changes that occur in the material when it is subjected to recrystallization heat treatments, as observed in this study, where the material was subjected to different temperatures starting from 800 ° C until 1100 ° C, where it was found and reported that the grain size increases significantly as the treatment temperature increases, generating an ultrasonic distortion and attenuation of the wave emitted by the Phased Array system at the time of performing an inspection of the material. | eng |
dc.description.curriculararea | Área Curricular de Materiales y Nanotecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Materiales y Procesos | spa |
dc.format.extent | xv, 93 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83511 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | General Electric Company . (2010). Heavy-Duty Gas Turbine Operating and Maintenance | spa |
dc.relation.references | Anandamurugan, S. (2009). Proceedings of the National Seminar & Exhibition. Bangalore: General Electric | spa |
dc.relation.references | ASM Internacional Handbook. (2008). Elements of Metallurgy and Engineering Alloys. | spa |
dc.relation.references | Baig Gyu Choi, I. S. (2004). ETA PHASE FORMATION DURING THERMAL EXPOSURE AND ITS EFECT. Korea | spa |
dc.relation.references | Bhadeshia, H. (SF). Unirsity of Cambridge. Obtenido de http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys.html | spa |
dc.relation.references | Boyce, M. P. (2002). Gas Trubine Engineering Handbook . Gulf Professional Publishing | spa |
dc.relation.references | C. Pascal, R. M.-A. (2003). Combustion synthesis: a new roture for repair of a gas turbine components-achivements and perspectives for development of SHS rebuilding. Journal of Materials Processing Techonology , 91-100 | spa |
dc.relation.references | Castillo, J. C. (2015). Lectiras para Ingeniería. DF Mexico. | spa |
dc.relation.references | Choi, B. G. (2004). ETA PHASE FORMATION DURING THERMAL EXPOSURE AND ITS EFECT. TMS (The Minerals, Metals & Materials Society). | spa |
dc.relation.references | Claudio, R. (2012). Ensayos no destructivos por el método de ultrasonid | spa |
dc.relation.references | Cyrus B. Meher, G. G. (1998). Gas turbine Blade Failures-Causes, and Troubleshooting. Houston. | spa |
dc.relation.references | D. Kulawinski, A. W. (2015). Isothermal and thermo-mechanical fatigue behavior of the nickel base. International Journal of Fatigue, 21-36. | spa |
dc.relation.references | D. Locq & P. Caron. (2011). On Some Advanced Nickel-Based. High Temperature Materials, 1-9. | spa |
dc.relation.references | E. Silveira, G. A. (2007). ESTUDIO DE LAS CAUSAS DE LA ROTURA PREMATURA DE UN ÁLABE DE TURBINA DE | spa |
dc.relation.references | El-Bagoury, N. (2011). Microstructure and Mechanical Properties of Aged Nickel Base Superalloy. Scholars Research Library , 266-276 | spa |
dc.relation.references | Geddes, B. (2010). Superalloys: Alloying And Performance. Ohio: ASM International. | spa |
dc.relation.references | General Electric Company . (2009). Inspection Technologies. | spa |
dc.relation.references | Gomez, P. A. (2012). ANALYTICAL MODEL FOR HIGH TEMPERATURE WEAR IN. Medellín: Universidad Nacional | spa |
dc.relation.references | H. Thomas Yolken & George A. Matzkanin. (2009). Nondestructive Evaluation of Advanced Fiber. Austin: Texas Research Institute (NASA). | spa |
dc.relation.references | Haldipur, P. (2006). Material characterization of nickel-based super. Iowa: Retrospective Theses . Paper 1259 | spa |
dc.relation.references | Haldipur, P. (2006). Material characterization of nickel-based super alloys. Iowoa: Iowa State University | spa |
dc.relation.references | Handbook, A. (1991). ASM Handbook (Volumen 4 | spa |
dc.relation.references | Hellier, C. (2003). Handbook of nondestructive evaluation. McGraw-Hill. | spa |
dc.relation.references | Hellier, C. J. (2007). Nondestructive Testing Handbook, Third Edition: Volume 7, Ultrasonic Testing (UT). McGraw-Hill. | spa |
dc.relation.references | Hendee, W., & Ritenour , E. (2002). Medical Imaging Physic, 4ta edn. . London: Wiley Liss Inc | spa |
dc.relation.references | J.-C. Zhao, M. L. (2000). Phase precipitation and time–temperature-transformation diagram. Materials Science and Engineering, 112-119. | spa |
dc.relation.references | Kruger, S., Robello, J., & De Camargo, P. (1999). Hydrogen demage detection by ultrasonic spectral analysis. NDT E Int., 275-281 | spa |
dc.relation.references | Lane, C. (2014). The Development of a 2D Ultrasonic array Inspection for Single Cristal Turbine Blade. Bristol: Springer. | spa |
dc.relation.references | Li, C., White, R., Fang, X., Weaver, M., & Guo, Y. (2017). Microstructure Evolution Characteristics of Inconel 625 Alloy from Selective Laser Melting to Heat. Materials Science & Engineering A. | spa |
dc.relation.references | LIU, M., ZHENG, W.-j., XIANG, J.-Z., SONG, Z.-g., PU, E.-x., & FENG, H. (2016). Grain Growth Behavior of Inconel 625 Superalloy . Journal of Iron and Steel research, 1111-1118. | spa |
dc.relation.references | Ministerio de Minas y Energía . (2015). Proyección de Demanda de Energía Eléctrica y Potencia Máxima en Colombia. Bogotá. | spa |
dc.relation.references | Norton, R. L. (1998). Diseño de Máquinas. Juárez: Pearson- Prentice Hall. | spa |
dc.relation.references | Olympus NDT. (2012). Ultrasonic Transducers. | spa |
dc.relation.references | Pamel, A. V. (2008). Yltrasonic Inspections of highly scattering materials . Londres: Imperial College London. | spa |
dc.relation.references | Panyawat WANGYAO, V. K. (2007). OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel-Based Superalloy, GTD-111. Journal of Metals, Materials and Minerals., 87-92 | spa |
dc.relation.references | Qi Lei, Z. Z. (2012). Control of secondary flow loss in turbine cascade by streamwise vortex. Computers & Fluids, 45-55. | spa |
dc.relation.references | R.Bruce, T., F.J, M., P, H., L, Y., A., L., P, P., & H, W. (2008). Scattering of elastic waves in simple and complex polycrystals . Wave Motion, 655-674. | spa |
dc.relation.references | Rai, S., Kumar, A., Shankar, V., Jayakumar, T., Sankara Rao, K., & Raj, B. (2004). Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements. Scripta Materialia, 59-63. | spa |
dc.relation.references | Reed, R. C. (2006). Superaloys, fundamental and applications. Cambridge. | spa |
dc.relation.references | SIEMENS GA. (2014). Advanced NDT Methods for Efficient Service. New Delhi, India : SIEMENS. | spa |
dc.relation.references | Thomas Garcin, G., Jean Hubert , S., & Matthias , M. (2016). In-situ laser ultrasonic grain size measurement in superalloy. Journal of Alloys and Compounds, 329-336. | spa |
dc.relation.references | Toozandehjani, M., Amin M, K., Ostovan, F., Musstapha, F., Zahari, N. I., & Oskoueian, A. (2015). On the correlation between microstructural avolution and ultrasonic propietes: a review. J Mater SCI | spa |
dc.relation.references | Tyler Kakuda, A. L. (2010). Non-destructive thermal property measurements of an APS TBC on an intact. Surface & Coatings Technology, 456-491. | spa |
dc.relation.references | Wangyao P., K. V. (2006 ). COMPARING REJUVENATED MICROSTRUCTURES AFTER HIP PROCESS AND DIFFERENT HEAT TREATMENTS IN CAST NICKEL BASE SUPERALLOYS, IN-738 AND GTD-111 AFTER LONG-TERM SERVICE. Metallurgy and Materials Science Research Institute (MMRI), 23-32. | spa |
dc.relation.references | Xiongbing , L., Xiaoqin, H., Arguelles, A., Song, Y., & Hu, H. (2017). Evaluating grain size in polycrystals with rough surfaces by corrected. Ultrasonic, 23-29 | spa |
dc.relation.references | Yan, H. (2010). Microstructure evolution of a new directionally solidified Ni-based. Transactions of no ferrous metals society of China, 2199-2204 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::669 - Metalurgia | spa |
dc.subject.lemb | Turbinas de gas | |
dc.subject.lemb | Tratamiento térmico de metales | |
dc.subject.proposal | Turbinas a gas | spa |
dc.subject.proposal | Superaleación | spa |
dc.subject.proposal | Ensayos no destructivos | spa |
dc.subject.proposal | Atenuación | spa |
dc.subject.proposal | Phased array | spa |
dc.subject.proposal | Tamaño de grano | spa |
dc.subject.proposal | Gas turbines | eng |
dc.subject.proposal | Non destructive essays | eng |
dc.subject.proposal | Grain size | eng |
dc.title | Efecto de los cambios microestructurales sobre la medida de la integridad con ultrasonido en una superaleación policristalina | spa |
dc.title.translated | Effect of changes microstructural on the measure of integrity with ultrasound in a polycrystalline superalloy | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |