Parámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustrato

dc.contributor.advisorMoreno Fonseca, Liz Patriciaspa
dc.contributor.authorLadino Fandiño, Wendy Andreaspa
dc.contributor.orcidhttps://orcid.org/0000-0001-7317-1052spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Wendy-Ladino-2spa
dc.date.accessioned2024-01-18T18:52:31Z
dc.date.available2024-01-18T18:52:31Z
dc.date.issued2023-09-03
dc.descriptionilustraciones, fotografías, diagramasspa
dc.description.abstractannabis sativa L. es en la actualidad, de las tres especies de Cannabis, la que ha despertado mayor interés por parte de investigadores y productores debido a sus múltiples usos, destacando entre todos el medicinal. En el año 2016, Colombia se convirtió en el cuarto país de América Latina en legalizar el Cannabis con fines medicinales y científicos, lo que ha promovido la constitución de nuevas empresas con el fin de obtener productos aprovechables de esta planta. Sin embargo, dado el historial ilegal de la especie, hay muy poca información con relación a su manejo agronómico bajo las condiciones de Colombia. Así entonces uno de los principales factores a determinar es el medio de establecimiento óptimo del cultivo. Por lo tanto, el objetivo de la investigación fue determinar los parámetros fisiológicos, la curva de extracción de nutrientes y el rendimiento de tres variedades de Cannabis sativa L. cultivadas en suelo y sustrato. Para dar cumplimiento al objetivo, la experimentación se llevó a cabo en la finca El Candil, lote Guacachica, la Conejera, Bogotá, Colombia (4°47'02,6" N, 74°06'10,9" O). Se estableció un experimento con un diseño en bloques en parcelas divididas. Se sembraron tres variedades de Cannabis medicinal no psicoactivo (Souce Cauca, Higthcol y Calotoweed), las cuales cuentan con registro ICA y fueron proporcionadas por la compañía Medcolcanna, en condiciones de suelo (propio del invernadero, textura francoarcillosa) y sustrato (Sustracoco Germiplus®), para un total de seis tratamientos que correspondieron a la interacción entre las variedades y el medio de producción. Antes de la siembra se realizó un análisis de los parámetros fisicoquímicos del suelo y del sustrato. Se evaluaron la fenología y grados día para etapas fenológicas principales, parámetros relacionados con el rendimiento fotosintético de la planta, contenido nutricional completo en etapas clave, curvas de extracción de nutrientes foliar, componentes de rendimiento y rendimiento en términos de flor seca y potencia de dos cannabinoides principales. Como resultado se realizó un ajuste a la escala fenológica reportada para cáñamo, con el fin de obtener los estadios fenológicos principales y secundarios para Cannabis medicinal dioico femenino. Se obtuvieron en total cinco estadios fenológicos principales y basados en la codificación BBCH, nueve códigos individuales los cuales se adaptan perfectamente a las condiciones de suelo y sustrato. Con esta información se pudo determinar que las plantas de sustrato presentaron un ciclo significativamente más corto en días comparado con las plantas de suelo (p<0,01), lo que en consecuencia generó que en términos de grados día el resultado fuera similar. Así entonces, las plantas de sustrato acumularon menor cantidad de grados día (entre 1367 a 1487 aprox.) comparado con las de suelo (entre 1487 a 1641 aprox.). Se pudo determinar que el sustrato retiene mayor cantidad de iones nutricionales a lo largo del ciclo del cultivo comparado con el suelo. Respecto al contenido de macro y micronutrientes, fue posible establecer que el nitrógeno (N), en sustrato, redujo su contenido foliar hasta niveles inferiores al mínimo reportado (<3,20%). El potasio (K) también disminuyó hasta niveles cercanos al 2% y el fósforo (P) aumentó a niveles cercanos al 0,85%, generando una relación N:P y K:P más baja. El magnesio (Mg) estuvo por encima de los niveles máximos reportados (>0,61%) y el azufre (S) no presentó variaciones significativas en el tiempo, sin embargo, estuvo por debajo del límite mínimo reportado (<0,16%). En suelo el contenido de N, K y calcio (Ca) disminuyó a través del tiempo, pero nunca estuvo en condiciones deficitarias. Tanto en suelo como en sustrato el contenido de hierro (Fe), cobre (Cu), manganeso (Mn) y zinc (Zn) estuvo por encima de los máximos niveles reportados, pero con diferencias entre suelo y sustrato (p<0,05). Con las curvas de extracción foliar fue posible determinar que el orden de extracción de los macronutrientes en suelo y sustrato fue N>Ca>K>Mg>P>S. Para los micronutrientes la extracción foliar en suelo en el orden de extracción fue Fe>Na>Zn>B>Mn>Cu. Sin embargo, en sustrato no fue clara una tendencia del comportamiento de los micronutrientes, pues fue variable entre variedades. En las variables fisiológicas se encontró que, en sustrato, después de iniciada la etapa de floración hubo una reducción en la eficiencia cuántica potencial del PSII (0,6), la tasa de transporte de electrones (0,32) y el rendimiento cuántico fotoquímico (18). En suelo los valores para estas variables se mantuvieron cerca al óptimo reportado para Cannabis. En sustrato fue más baja la conductancia estomática (<500 mmol H2O m-2s) y más alta la temperatura foliar (28°C) respecto a lo obtenido en suelo. Para el contenido relativo de clorofilas, luego de los 50 días después del trasplante, en sustrato los valores fueron menores a 40 SPAD y en suelo por encima de 50 SPAD. El área foliar y la distribución de materia seca en los órganos de la parte aérea fue más baja en sustrato que en suelo con diferencias significativas entre ellos (p<0,001). Finalmente, respecto al rendimiento fue posible establecer que los componentes de rendimiento permiten predecir los resultados de rendimiento final. En general, estos componentes fueron significativamente más bajos en las plantas de sustrato que en las de suelo. El rendimiento en flor seca fue mucho más alto en las variedades Souce Cauca (247,83 g/planta) y Higthcol (173,65 g/planta) en suelo, pero presentaron menor porcentaje de cannabidiol (11,11% y 10,76%, respectivamente). En sustrato, tuvieron menor rendimiento de flor seca (122,30 g/planta para Souce Cauca y 114,44 g/planta para Higthcol) pero mayor contenido de cannabidiol (11,52% para Souce Cauca y 12,61% para Higthcol). Calotoweed en sustrato presentó el mayor rendimiento de flor seca (168,69 g/planta) y la mayor potencia o contenido de cannabidiol (10,08% de CBD). En términos de gramos de cannabidiol por planta las que obtuvieron el mayor rendimiento de flor seca, fueron las que presentaron el mayor rendimiento final de cannabinoides. El rendimiento en términos de producción de CBD anual fue más alto en Souce Cauca y Higthcol en suelo (86,71 y 61,46 g/planta/año, respectivamente), y Calotoweed en sustrato (55,93 g/planta al año). En este trabajo es posible mostrar el impacto del medio de cultivo en Cannabis sativa L. sobre las variables fisiológicas y nutricionales directamente implicadas en el rendimiento de las plantas y genera bases para la toma de decisiones sobre las condiciones de establecimiento de este cultivo bajo invernadero con propósitos investigativos o productivos. (Texto tomado de la fuente).spa
dc.description.abstractCannabis sativa L. is currently, of the three Cannabis species, the one that has aroused the greatest interest on the part of researchers and producers due to its multiple uses, highlighting among all the medicinal ones. In 2016, Colombia became the fourth country in Latin America to legalize Cannabis for medicinal and scientific purposes, which has promoted the establishment of new companies to obtain usable products from this plant. However, given the illegal history of the species, there is very little information regarding its agronomic management under Colombian conditions. Thus, one of the main factors to be determined is the optimum establishment medium for the crop. Therefore, the objective of the research was to determine the physiological parameters, the nutrient extraction curve and the yield of three varieties of Cannabis sativa L. grown in soil and substrate. The experimentation was carried out at El Candil farm, Guacachica lot, La Conejera, Bogotá, Colombia (4°47'02.6" N, 74°06'10.9" W). An experiment with a split-plot block design was established. Three varieties of non-psychoactive medicinal Cannabis (Souce Cauca, Highcol and Calotoweed) were planted, which have ICA registration and were provided by the Medcolcanna company, under soil conditions (typical of the greenhouse, clay loam texture) and substrate (Sustracoco Germiplus®), for a total of six treatments that corresponded to the interaction between the varieties and the production medium. Before sowing, an analysis of the physicochemical parameters of the soil and the substrate was carried out. The phenology and degree days for main phenological stages, parameters related to the photosynthetic performance of the plant, complete nutritional content in key stages, foliar nutrient extraction curves, yield and yield components in terms of dry flower and power of two major cannabinoids were evaluated. As a result, an adjustment was made to the phenological scale reported for hemp, in order to obtain the main and secondary phenological stages for female dioecious medicinal Cannabis. A total of five main phenological stages were obtained and based on the BBCH coding, nine individual codes which perfectly adapt to the soil and substrate conditions. With this information it was possible to determine that the substrate plants presented a significantly shorter cycle in days compared to the soil plants (p<0.01), which consequently generated that in terms of degree days the result was similar. Thus, the substrate plants accumulated fewer degree days (between 1367 and 1487 approx.) compared to the soil plants (between 1487 and 1641 approx.). It was possible to determine that the substrate retains a greater amount of nutritional ions throughout the crop cycle compared to the soil. Regarding the macro and micronutrient content, it was possible to establish that nitrogen (N) in the substrate reduced its foliar content to levels below the minimum reported (<3.20%). Potassium (K) also decreased to levels close to 2% and phosphorus (P) increased to levels close to 0.85%, generating a lower N:P and K:P ratio. Magnesium (Mg) was above the maximum reported levels (>0.61%) and sulfur (S) did not present significant variations over time, however, it was below the minimum reported limit (<0.16%). In soil, the content of N, K and calcium (Ca) decreased over time, but it was never in deficient conditions. Both in the soil and in the substrate, the content of iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) was above the maximum levels reported, but with differences between soil and substrate (p<0.05). With the foliar extraction curves it was possible to determine that the order of extraction of macronutrients in soil and substrate was N>Ca>K>Mg>P>S. For micronutrients, foliar extraction in the soil in the order of extraction was Fe>Na>Zn>B>Mn>Cu. However, in the substrate, a trend in the behavior of micronutrients was not clear, since it was variable between varieties. The physiological variables, it was found that, in the substrate, after the flowering stage began, there was a reduction in the potential quantum efficiency of PSII (0.6), the electron transport rate (0.32) and the photochemical quantum yield. (18). In soil, the values for these variables remained close to the optimum reported for Cannabis. In substrate, stomatal conductance was lower (<500 mmol H2O m-2s) and leaf temperature was higher (28°C) compared to obtained in soil. For the relative content of chlorophylls, after 50 days after the transplant, in the substrate the values were less than 40 SPAD and in soil above 50 SPAD. The leaf area and the distribution of dry matter in the organs of the aerial part were lower in substrate than in soil, with significant differences between them (p<0.001). Finally, regarding performance, it was possible to establish that the performance components allow predicting the final performance results. In general, these components were significantly lower in substrate plants than in soil plants. The dry flower yield was much higher in Souce Cauca (247.83 g/plant) and Highcol (173.65 g/plant) varieties in soil, but they presented a lower percentage of cannabidiol (11.11% and 10.76 %, respectively). In substrate, it had a lower dry flower yield (122.30 g/plant for Souce Cauca and 114.44 g/plant for Highcol) but higher cannabidiol content (11.52% for Souce Cauca and 12.61% for Highcol). Calotoweed in substrate presented the highest dry flower yield (168.69 g/plant) and the highest potency or cannabidiol content (10.08% CBD). In terms of grams of cannabidiol per plant, those that obtained the highest dry flower yield were the ones that presented the highest final yield of cannabinoids. The yield in terms of annual CBD production was higher in Souce Cauca and Highcol in soil (86.71 and 61.46 g/plant/year, respectively), and Calotoweed in substrate (55.93 g/plant per year). In this work it is possible to show the impact of the culture medium in Cannabis sativa L. on the physiological and nutritional variables directly involved in the performance of the plants and generates bases for decision making on the conditions of establishment of this crop under greenhouse with research or production purposes.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsLa experimentación se llevó a cabo en la finca El Candil, lote Guacachica, la Conejera, Bogotá, Colombia (4°47'02,6" N, 74°06'10,9" O). Se estableció un experimento con un diseño en bloques en parcelas divididas. Se sembraron tres variedades de Cannabis medicinal no psicoactivo (Souce Cauca, Higthcol y Calotoweed), las cuales cuentan con registro ICA y fueron proporcionadas por la compañía Medcolcanna, en condiciones de suelo (propio del invernadero, textura francoarcillosa) y sustrato (Sustracoco Germiplus®), para un total de seis tratamientos que correspondieron a la interacción entre las variedades y el medio de producción. Antes de la siembra se realizó un análisis de los parámetros fisicoquímicos del suelo y del sustrato. Se evaluaron la fenología y grados día para etapas fenológicas principales, parámetros relacionados con el rendimiento fotosintético de la planta, contenido nutricional completo en etapas clave, curvas de extracción de nutrientes foliar, componentes de rendimiento y rendimiento en términos de flor seca y potencia de dos cannabinoides principales.spa
dc.description.researchareaFisiología de cultivosspa
dc.description.sponsorshipMedcolcanna (MCCN) is a Canadian vertically integrated cannabis company with fully licensed operations based in Colombia, approximately 30 minutes from the capital Bogotá. As an organization, they believe in the healing power of cannabis and are driven to connect people with accessible products that evolved from traditional preparations into scientifically studied formulas to impart consistency of delivery and effect to consumers. The firm provides an outstanding opportunity of return on investment. The global outlook of the experienced management team and board of directors means that the company is leveraging the low cost structure available in Colombia and developing its footprint in high value markets. MCCN has moved quicker than any of its competitors in its short history to become a global leader in innovative cannabis product exports to the world.spa
dc.format.extentxix, 148 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85365
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbad, M., Fornes, F., Carrión, C., Noguera, V., Noguera, P., Maquieira, Á., y Puchades, R. (2005). Physical properties of various coconut coir dusts compared to peat. HortScienc. 40, 2138–2144. doi: 10.21273/HORTSCI.40.7.2138.spa
dc.relation.referencesAbad, M., Noguera, P., Puchades, R., Maquieira, A., y Noguera, V. (2002). Physicochemical and chemical properties of some coconut coir dust for use as a peat substitute for containerised ornamental plants. Bioresour. Technol. 82(3), 241-245. doi: 10.1016/s0960-8524(01)00189-4.spa
dc.relation.referencesAč, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U., y Mohammed, G. (2015). Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sensing of Environment, 168, 420–436. doi:10.1016/j.rse.2015.07.022.spa
dc.relation.referencesAhmad, R., Tehsin, Z., Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M., y Khan, S.A. (2016). Phytoremediation potential of hemp (Cannabis sativa L.): Identification and characterization of heavy metals responsive genes: Biotechnology. CLEAN Soil Air Water. 44, 195–201. doi: 10.1002/clen.201500117.spa
dc.relation.referencesAkram, N.A., Shafiq, F., Ashraf, M., Iqbal, M., y Ahmad, P. (2021). Advances in Salt Tolerance of Some Major Fiber Crops Through Classical and Advanced Biotechnological Tools: A Review. J. Plant Growth Regul. 40, 891–905. doi: 10.1007/s00344-020-10158-5spa
dc.relation.referencesAmaducci, S., Colauzzi, M., Bellocchi, G., y Venturi, G. (2008). Modelling post-emergent hemp phenology (Cannabis sativa L.): Theory and evaluation. Europ. J. Agronomy. 28, 90–102. doi: 10.1016/j.eja.2007.05.006.spa
dc.relation.referencesAmaducci, S., Errani, M., y Venturi, G. (2002). Response of hemp to plant population and nitrogen fertilization. Ital. J. Agron. 6, 103–111.spa
dc.relation.referencesAndre, C.M., Hausman, J.F., y Guerriero, G. (2016). Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 7:19. doi: 10.3389/fpls.2016.00019.spa
dc.relation.referencesAngelova, V., Ivanova, R., Delibaltova, V., y Ivanov, K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crops Prod. 19, 197–205. doi:10.1016/j.indcrop.2003.10.001.spa
dc.relation.referencesArcila-Pulgarin, J., Buhr L., Bleiholder, H., Hack, H., Meier, U., y Wicke H. (2002). Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology. 141, 19-27. doi: 10.1111/j.1744-7348.2002.tb00191.x.çspa
dc.relation.referencesAubin, M., Seguin, P., Vanasse, A., Tremblay, G.F., Mustafa, A.F., y Charron, J. (2015). Industrial Hemp Response to Nitrogen, Phosphorus, and Potassium Fertilization. Crop. Forage Turfgrass Manag. 1, 1–10. doi: 10.2134/cftm2015.0159.spa
dc.relation.referencesBacker, R., Schwinghamer, T., Rosenbaum, P., McCarty, V., Eichhorn Bilodeau, S., Lyu, D., Ahmed, M.B., Robinson, G., Lefsrud, M., Wilkins, O., y Smith, D.L. (2019). Closing the yield gap for Cannabis: a meta-analysis of factors determining Cannabis yield. Front. Plant Sci. 10, 1-15. doi: 10.3389/fpls.2019.00495spa
dc.relation.referencesBaker, D., Pryce, G., Giovannoni, G., y Thompson, A.J. (2003). The therapeutic potential of Cannabis. Lancet Neurol. 2(5), 291–298. doi: 10.1016/S1474-4422(03)00381-8.spa
dc.relation.referencesBaker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol. 59, 89-113. doi: 10.1146/annurev.arplant.59.032607.092759.spa
dc.relation.referencesBaron, E.P. (2018). Medicinal properties of cannabinoids, terpenes, and flavonoids in Cannabis, and benefits in migraine, headache, and pain: An update on current evidence and Cannabis science. Headache, 58(7), 1139–1186. doi: 10.1111/head.13345.spa
dc.relation.referencesBarrett, G.E., Alexander, P.D., Robinson, J.S., y Bragg, N.C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 212, 220–234. doi: 10.1016/j.scienta.2016.09.030.spa
dc.relation.referencesBar-Tal, A. (1999). The significance of root size for plant nutrition in intensive horticulture. In Mineral Nutrition of Crops: Fundamental Mechanisms and Implications (Z. Rengel, ed.). New York: Haworth Press, Inc., pp. 115–139.spa
dc.relation.referencesBeerling, E.A.M., Blok, C., van der Maas, A.A., y van Os, E.A. (2014). Closing the water and nutrient cycles in soilless cultivation systems. Acta Hortic.1034, 49–55. doi: 10.17660/ActaHortic.2014.1034.4.spa
dc.relation.referencesBenlloch, R., Berbel, A., Serrano-Mislata, A., y Madueno, F. (2007). Floral initiation and inflorescence architecture: a comparative view. Ann. Bot. 100, 659–676. doi: 10.1093/aob/mcm146spa
dc.relation.referencesBernstein, N., Gorelick, J., Zerahia, R., y Koch, S. (2019). Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 10, 1–13. doi: 10.3389/fpls.2019.00736.spa
dc.relation.referencesBertsch, F., Hernández, J.C., Arguedas, F. y Acosta, M. (2003). Curvas de absorción de nutrimentos en dos variedades, Bribri y Sacapobres, de frijol común de grano rojo. Agronomía Costarricense. 27(2), 75-81.spa
dc.relation.referencesBertsch-Hernández, F. (2003). Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia del Suelo. San José, Costa Rica.spa
dc.relation.referencesBlok, C., y Verhagen, J.B.G.M. (2009). Trends in rooting media in dutch horticulture during the period 2001–2005: The new growing media project. Acta Hortic. 819, 47–58.spa
dc.relation.referencesBonini, S., Pemoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., y Mastinu, A. (2018). Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of Ethnopharmacology. 227, 300-315. doi: 10.1016/j.jep.2018.09.004.spa
dc.relation.referencesBooth, J.K., y Bohlmann, J. (2019). Terpenes in Cannabis sativa – From plant genome to humans. Plant Science. 284, 67–72. doi: 10.1016/j.plantsci.2019.03.022.spa
dc.relation.referencesBouchard, M. (2008). Towards a realistic method to estimate Cannabis production in industrialized countries. Contemporary Drug Problems. 35, 291-320. doi:10.1177/009145090803500206.spa
dc.relation.referencesBridgeman, M.B., y Abazia, D.T. (2017). Medicinal Cannabis: history, pharmacology, and implications for the acute care setting. Pharm. Ther. 42(3), 180-188.spa
dc.relation.referencesBryson, G.M., Mills, H.A., Sasseville, D.N., Jones, J.B., Jr., y Barker, A.V. (2014). Plant Analysis Handbook III: A Guide to Sampling, Preparation, Analysis and Interpretation for Agronomic and Horticultural Crops; Micro-Macro Publishing, Inc.: Athens, GA, USA.spa
dc.relation.referencesBunt, A.C. (1988). Media and Mixes for Container-Growth Plants; Unwin Hyman: London, UK.spa
dc.relation.referencesBurgel, L., Hartung, J., Schibano, D., y Graeff-Hönninger, S. (2020). Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L. Plants. 9, 725. doi: 10.3390/plants9060725.spa
dc.relation.referencesBurgel, L., Hartung, J., y Graeff-Hönninger, S. (2020). Impact of Different Growing Substrates on Growth, Yield and Cannabinoid Content of Two Cannabis sativa L. Genotypes in a Pot Culture. Horticulturae. 6(4), 62. doi:10.3390/horticulturae6040062.spa
dc.relation.referencesCalvache, A. (2015). Curvas de absorción en plátano. En: Avellán, L., Calvache, M., y Cabeña, N. (ed.). Curvas de absorción de nutrientes por el cultivo de plátano barraganete (Musa paradisiaca L.). Tsafiqui. pp. 17-19.spa
dc.relation.referencesCampbell, B.J., Berrada, A.F., Hudalla, C., Amaducci, S., y McKay, J.K. (2019). Genotype x Environment Interactions of Industrial Hemp Cultivars Highlight Diverse Responses to Environmental Factors. Agrosyst. Geosci. Environ. 2, 1–11. doi: 10.2134/age2018.11.0057.spa
dc.relation.referencesCampbell, S.M., Anderson, S.L., Brym, Z.T., y Pearson, B.J. (2021). Evaluation of substrate composition and exogenous hormone application on vegetative propagule rooting success of essential oil hemp (Cannabis sativa L.). PLoS One.16(7):e0249160. doi: 10.1371/journal.pone.0249160.spa
dc.relation.referencesCandelario-Guerrero, D.A., Calabria-Parodi., L.E., Pardey-Rodríguez, C., y Vargas-Sánchez, J.J. (2023). Phenology of ten cultivars of Cannabis sativa L. under the environmental conditions of Palomino, La Guajira. Intropica, 18(1). doi: 10.21676/23897864.4672.spa
dc.relation.referencesCaplan, D., Dixon, M., and Zheng, Y. (2017). Optimal rate of organic fertilizer during the flowering stage for Cannabis grown in two coir-based substrates. HortScience 52, 1796-1803. doi: 10.21273/hortsci12401-17.spa
dc.relation.referencesCaplan, D., Dixon, M., y Zhenga, Y. 2019. Coir-based growing substrates for indoor Cannabis production. Acta Hortic. 1266, 55-62. doi: 10.17660/ActaHortic.2019.1266.9.spa
dc.relation.referencesCaplan, D., Dixon, y M., Zheng, Y. (2019). Increasing inflorescence dry weight and cannabinoid content in medical Cannabis using controlled drought stress. HortScience. 54, 964-969. doi: 10.21273/HORTSCI13510-18.spa
dc.relation.referencesCaplan, D.M. (2018). Propagation and Root Zone Management for Controlled Environment Cannabis Production. Ph.D. Thesis. Guelph, ON: University of Guelph.spa
dc.relation.referencesCaulkins, J.P., Coulson, C.C., Farber, C., y Vesely, J.V. (2012). Marijuana legalization: Certainty, impossibility, both, or neither? J. Drug Policy Anal. 5, 1–27. doi: 10.1515/1941-2851.1035.spa
dc.relation.referencesCervantes, J. (2006). Marijuana horticulture: The Indoor/Outdoor Medical Grower's Bible. (Vancouver: Van Patten Publishing).spa
dc.relation.referencesChadillon-Farinacci, V., Apparicioet, P., y Morselli, C. (2013). Géographie du Cannabis au Québec: Du producteur au consommateur. Revue canadienne de sciences regionals. Canadian Journal of Regional Science. 36, 13-22.spa
dc.relation.referencesChadillon-Farinacci, V., Apparicioet, P., y Morselli, C. (2015). Cannabis cultivation in Quebec: Between space–time hotspots and coldspots. International Journal of Drug Policy. 26, 311-322.spa
dc.relation.referencesChandra, S., Lata, H., Khan, I., y Elsohly, M. (2008). Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiology and molecular biology of plants. 14, 299-306. doi: 10.1007/s12298-008-0027-x.spa
dc.relation.referencesChandra, S., Lata, H., Khan, I., y Elsohly, M. (2011). Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L. Physiology and molecular biology of plants. 17, 297-303. doi: 10.1007/s12298-011-0068-4.spa
dc.relation.referencesChandrakant, M., y Upreti, K.K. (2019). Phenological growth stages in mangosteen (Garcinia mangostana L.) according to the extended BBCH scale. Annals Applied Biology. 176(1), 16–25. doi: 10.1111/aab.12552.spa
dc.relation.referencesChen, X., Qi, Z., Gui, D., Gu, Z., Ma, L., Zeng, F., Li, L. (2019). Simulating impacts of climate change on cotton yield and water requirement using RZWQM2. Agric. Water Manag. 222, 231–241. doi:10.1016/j.agwat.2019.05.030.spa
dc.relation.referencesChouvy, P. A. (2019). Cannabis cultivation in the world: heritages, trends and challenges. EchoGéo 48, 1–20. doi: 10.4000/echogeo.17591spa
dc.relation.referencesCitterio, S., Santagostino, A., Fumagalli, P., Prato, N., Ranalli, P., Sgorbati, S. (2003). Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil. 256, 243–252. doi: 10.1023/A:1026113905129.spa
dc.relation.referencesClark, M.J., y Zheng, Y. (2017). Effect of topdressed controlled-release fertilizer rates on nursery crop quality and growth and growing substrate nutrient status in the Niagara region, Ontario, Canada. HortScience. 52, 167-173. doi: 10.21273/HORTSCI11309-16.spa
dc.relation.referencesCockson, P., Landis, H., Smith, T., Hicks, K., y Whipker, B.E. (2019). Characterization of Nutrient Disorders of Cannabis sativa. Appl. Sci. 9, 4432. doi: 10.3390/app9204432.spa
dc.relation.referencesCoffman, C.B., y Gentner, W.A. (1977). Responses of greenhouse-grown Cannabis sativa L. To nitrogen, phosphorus, and potassium. Agron. J. 69, 832–836. doi: 10. 2134/agronj1977.00021962006900050026x.spa
dc.relation.referencesCooper, G. M., y Hausman, R. E. (2004). The cell: a molecular approach. Sunderland, MA: Sinauer Associates.spa
dc.relation.referencesDanziger, N., y Bernstein, N. (2021) Plant architecture manipulation increases cannabinoid standardization in ‘drug-type’ medical Cannabis. Industrial Crops & Products. 167, 113528. doi: 10.1016/j.indcrop.2021.113528.spa
dc.relation.referencesDavidenco, V., Vega, C., Viccardi, M., y Arguello, J. (2015). Development in Origanum sp.: A simple phenological scale to determine thermal time requirements to critical reproductive events. Scientia Horticulturae, 186. 70-76. doi: 10.1016/j.scienta.2015.02.012.spa
dc.relation.referencesDayanandan, P., y Kaufman, P. B. (1976). Trichomes Of Cannabis Sativa L. (Cannabaceae). American Journal of Botany. 63(5), 578-591. ISSN/ISBN: 0002-9122.spa
dc.relation.referencesDe Meijer, E. (2014). The chemical phenotypes (chemotypes) of Cannabis. In Handbook of Cannabis; Oxford University Press: Oxford, UK. pp. 89-110.spa
dc.relation.referencesDe Prato, L., Ansari, O., Hardy, G.E., Howieson, J., O’Hara, G., y Ruthrof, K.X. (2022). The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Industrial Crops & Products. 178, 114605. doi: 10.1016/j.indcrop.2022.114605.spa
dc.relation.referencesDeng, G., Du, G., Yang, Y., Bao, Y., y Liu, F. (2019). Planting Density and Fertilization Evidently Influence the Fiber Yield of Hemp (Cannabis sativa L.). Agronomy. 9, 368. doi:10.3390/agronomy9070368.spa
dc.relation.referencesEbersbach, P., Stehle, F., Kayser, O., y Freier, E. (2018). Chemical fingerprinting of single glandular trichomes of Cannabis sativa by coherent anti-stokes raman scattering (CARS) Microscopy. BMC Plant Biol. 18, 1-12. doi: 10.1186/s12870-018-1481-4.spa
dc.relation.referencesEndress, P.K. (2010). Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J. Syst. Evol. 48, 225–239. doi: 10.1111/j.1759-6831.2010.00087.x.spa
dc.relation.referencesEpstein, E., y Bloom, A.J. (2005). Mineral metabolism. In: Epstein, E., Bloom, A.J. (Eds.), Mineral Nutrition of Plants: Principles and Perspectives. Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 201–207.spa
dc.relation.referencesEvans, M.R., y Gachukia, M. (2004). Fresh Parboiled Rice Hulls Serve as an Alternative to Perlite in Greenhouse Crop Substrates. HortScience. 39, 232–235. doi: 10.21273/HORTSCI.39.2.232.spa
dc.relation.referencesFarag, S., y Kayser, O. (2015). Cultivation and breeding of Cannabis sativa L. For preparation of standardized extracts for medicinal purposes. In: Mathe, A. (Ed.), Medicinal and Aromatic Plants of the World. Springer, Budapest, Hungary, pp. 165–186. doi: 10.1007/978-94-017-9810-5_9.spa
dc.relation.referencesFaux, A.M., Draye, X., Lambert, R., d'Andrimont, R., Raulier, P., y Bertin, P. (2013). The relationship of stem and seed yields to flowering phenology and sex expression in monoecious hemp (Cannabis sativa L.). European Journal of Agronomy. 47. 11–22. doi: 10.1016/j.eja.2013.01.006.spa
dc.relation.referencesFinnan, J., y Burke, B. (2013). Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass. GCB Bioenergy. 5, 701–712. doi: 10.1111/gcbb.12045.spa
dc.relation.referencesFlores-Magdaleno, H., Flores-Gallardo, H., y Ojeda-Bustamante, W. (2014). Phenological prediction of potato crop by means of thermal time. Revista Fitotecnia Mexicana. 37(2), 149–157. ISSN 0187-7380.spa
dc.relation.referencesFonteno, W.C. (1993). Problems & considerations in determining physical properties of horticultural substrates. In International Symposium on Horticultural Substrates Other than Soil In Situ; Acta Horticulturae: Leuven, Belgium. Volumen 342, 197–204.spa
dc.relation.referencesPérez-Asseff, J. M., Peña E.J., y Torres, C. (2007) Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. 31(118), 49-55. ISSN 0370-3908.spa
dc.relation.referencesFournier, G., Richez-Dumanois, C., Duvezin, J., Mathieu, J.-P., y Paris, M. (1987). Identification of a new chemotype in Cannabis sativa: Cannabigerol-Dominant plants, biogenetic and agronomic prospects. Planta Med. 53, 277-280. doi: 10.1055/s-2006-962705.spa
dc.relation.referencesFriedrich, S., y Pauly, M. (2018). MATS: Inference for potentially singular and heteroscedastic MANOVA. Journal of Multivariate Analysis, 165, 166-179. doi: 10.1016/j.jmva.2017.12.008.spa
dc.relation.referencesGagne, S. J., Stout, J. M., Liu, E., Boubakir, Z., Clark, S. M., y Page, J. E. (2012). Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides, Proc. Natl. Acad. Sci. U. S. A. 109, 12811–12816. doi:10.1073/pnas.1200330109spa
dc.relation.referencesGallo-Molina, A., Castro-Vargas, H., Garzón-Méndez, W., Martínez, J., Rivera, Z., King, J., y Parada-Alfonso, F. (2019). Extraction, isolation and purification of tetrahydrocannabinol from the Cannabis sativa L. plant using supercritical fluid extraction and solid phase extraction. The Journal of Supercritical Fluids. 146, 208-216. doi: 10.1016/j.supflu.2019.01.020.spa
dc.relation.referencesGarcía, A.D., y López, C. (2002). Temperatura base y tasa de extensión foliar del maíz. Revista Fitotecnia Mexicana. 25(4), 381-386. doi:10.35196/rfm.2002.4.281.spa
dc.relation.referencesGiraldo, C.J., Cano, M.A.O., y Ribas, R.F. (2010). Respuesta fotosintética de diferentes ecotipos de fríjol a la radiación y la salinidad. Ciencia y Tecnología Agropecuaria. 10(2), 129-140. doi: 10.21930/rcta.vol10_num2_art:135.spa
dc.relation.referencesGoh, C.H., Ko, S.M., Koh, S., Kim, Y.J., y Bae, H.J. (2012). Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J. Plant Biol. 55(2), 93–101. doi: 10.1007/s12374-011-9195-2.spa
dc.relation.referencesGonzález, F., Cabezas, M., Ramírez-Gómez, M., y Ramírez, J. (2018). Macronutrient absorption curves in three varieties of sugarcane (Saccharum officinarum L.) for panela in the hoya del río Suárez. Rev. U.D.C.A Act. & Div. Cient. 21(2), 395-404. doi: 10.31910/rudca.v21.n2.2018.995.spa
dc.relation.referencesGorelick, J., y Bernstein, N. (2017). Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis. En: S. Chandra et al. (eds.), Cannabis sativa L. - Botany and Biotechnology, pp. 439-456. doi: 10.1007/978-3-319-54564-6_21.spa
dc.relation.referencesGraber, A., Junge, R. (2009). Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246, 147–156. doi: 10.1016/j.desal.2008.03.048.spa
dc.relation.referencesGuo, F., Luo, H., Shi, Z., Wu, Y., y Liu, H. (2021). Substrate salinity: A critical factor regulating the performance of microbial fuel cells, a review. Science of the Total Environment. 763, 143021. doi: 10.1016/j.scitotenv.2020.143021.spa
dc.relation.referencesHacke, A.C.M., Lima, D., de Costa, F., Deshmukh, K., Li, N., Chow, A.M., Marques, J.A.,Pereira, R.P., y Kerman, K. (2019). Probing the antioxidant activity of Δ 9-tetrahydrocannabinol and cannabidiol in Cannabis sativa extracts. Analyst. 144(16), 4952-4961. doi: 10.1039/c9an00890j.spa
dc.relation.referencesHampson, A.J., Grimaldi, M., Axelrod, J., y Wink, D. (1998). Cannabidiol and (−) Δ9 tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl. Acad. Sci. Unit. States Am. 95 (14), 8268-8273. doi: 10.1073/pnas.95.14.8268.spa
dc.relation.referencesHanuš, L.O., Meyer, S.M., Muñoz, E., Taglialatela-Scafati, O., y Appendino, G. (2016) Phytocannabinoids: a unified critical inventory. Nat Prod Rep. 33(12), 1357-1392. doi: 10.1039/c6np00074f.spa
dc.relation.referencesHartsel, J. A., Eades, J., Hickory, B., y Makriyannis, A. (2016). Cannabis sativa and Hemp. Nutraceuticals. 735–754. doi:10.1016/b978-0-12-802147-7.00053-x.spa
dc.relation.referencesHauck, R.D., Goyal, S.S., y Huffaker, R.C. (1984). Nitrogen toxicity in plants. Nitrogen in Crop Production, pp. 97–118. doi: 10.2134/1990.nitrogenincropproduction.c6.spa
dc.relation.referencesHawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager Møller, I., et al. (2012). “Functions of macronutrients,” en Marschner”s Mineral Nutrition of Higher Plants, ed. H. Marschner (Cambridge, MA: Academic Press), 135–190.spa
dc.relation.referencesHazekamp, A., Choi, Y, y Verpoorte, R. (2004). Quantitative Analysis of Cannabinoids from Cannabis sativa Using 1H-NMR. Chemical & pharmaceutical bulletin. 52, 718-21. doi: 10.1248/cpb.52.718.spa
dc.relation.referencesHazekamp, A., Tejkalov´a, K., Papadimitriou, S. (2016). Cannabis: From Cultivar to Chemovar II - A Metabolomics Approach to Cannabis Classification. Cannabis Cannabinoid Res. 1(1), 202–215. doi: 10.1089/can.2016.0017.spa
dc.relation.referencesHeller, H., Bar-Tal, A., Assouline, S., Narkis, K., Suryano, S., de la Forge, A., Barak, M., Alon, H., Bruner, M., Cohen, S., y Tsohar, D. (2015). The effects of container geometry on water and heat regimes in soilless culture: lettuce as a sase study. Irrig. Sci. 33, 53-65. doi: 10.1007/s00271-014-0448-y.spa
dc.relation.referencesHernández, M., Chailloux, M., Moreno, V., Igarza, A., y Ojeda, A. (2014). Nutrient levels of reference in the soil solution to the nutrition diagnostic in the tomato protected crop. IDESIA. 32(2), 79-88. doi: 10.4067/S0718-34292014000200011.spa
dc.relation.referencesHoyos, D., Morales, J.G., Chavarría, H., Montoya, A.P., Correa, G., y Jaramillo, S. (2012). Acumulación de Grados-Día en un Cultivo de Pepino (Cucumis sativus L.) en un Modelo de Producción Aeropónico. Rev.Fac.Nal.Agr.Medellín. 65(1), 6389-6398.spa
dc.relation.referencesHu, H., y Brown, P.H. (1994). Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol. 105, 681–689. doi: 10.1104/pp.105.2.681.spa
dc.relation.referencesHuaran, H., Haoa, L., Guanghuia, D., Feib, Y., Ganga, D., Yanga, Y., y Feihu, L. (2019). Fiber and seed type of hemp (Cannabis sativa L.) responded differently to salt-alkali stress in seedling growth and physiological indices. Industrial Crops & Products. 129, 624–630. doi: 10.1016/j.indcrop.2018.12.028.spa
dc.relation.referencesHussain T, Jeena G, Pitakbut T, Vasilev N, y Kayser O. (2021). Cannabis sativa research trends, challenges, and new-age perspectives. iScience. 24(12), 103391. doi: 10.1016/j.isci.2021.103391.spa
dc.relation.referencesHussain, J., Rehman, N., Al-Harrasi, A., Ali, L., Latif, A., Albroumi, M.A. (2013). Essential oil composition and nutrient analysis of selected medicinal plants in Sultanate of Oman. Asian Pac J Trop Dis. 3(6), 421-428. doi: 10.1016/S2222-1808(13)60095-X.spa
dc.relation.referencesIgwe, A.N., Quasem, B., Liu, N., y Vannette, R.L. (2021) Plant phenology influences rhizosphere microbial community and is accelerated by serpentine microorganisms in Plantago erecta. FEMS Microbiol Ecol. 97,1–12. doi: 10.1093/femsec/fiab085.spa
dc.relation.referencesJaramillo-Robledo, A. (2005). Clima andino y café en Colombia. Cenicafe.spa
dc.relation.referencesJi, F.-S., Tang, L., Li, Y.-Y., Wang, W.-C., Yang, Z., Li, X.-G., et al. (2019). Differential proteomic analysis reveals the mechanism of musa paradisiaca responding to salt stress. Mol. Biol. Rep. 46, 1057–1068. doi: 10.1007/s11033-018-4564-2.spa
dc.relation.referencesJiménez-Suancha, S.C., Álvarado S., O.H., y Balaguera-López, H.E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149–160. doi: 10.17584/rcch.2015v9i1.3753.spa
dc.relation.referencesJin, D., Jin, S., y Chen, J. (2019). Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review. Am. J. Plant Sci. 10, 925–946. doi: 10.4236/ajps.2019.106067.spa
dc.relation.referencesJin, Q., Wang, Y., Li, X., Wu, S., Wang, Y., Luo, J., Mattson, N., y Xu, Y. (2017). Interactions between ethylene, gibberellin and abscisic acid in regulating submergence induced petiole elongation in Nelumbo nucifera. Aquatic Botany, 137, 9–15. doi:10.1016/j.aquabot.2016.11.002.spa
dc.relation.referencesJoshi, S.C., y Palni, L.M.S. (2005). Greater sensitivity of Hordeum himalayens Schult. to increasing temperature causes reduction in its cultivated area. Current Science, 89(5), 879–882. https://www.jstor.org/stable/24111036.spa
dc.relation.referencesKhajuria, M., Prakash, V., y Vyasa, D. (2020). Photochemical efficiency is negatively correlated with the Δ9 - tetrahydrocannabinol content in Cannabis sativa L. Plant Physiology and Biochemistry. 151, 589-600. doi: 10.1016/j.plaphy.2020.04.003.spa
dc.relation.referencesKhan, M., Van-Eck, H.,y Striuk, P. (2013). Model-Based Evaluation of Maturity Type of Potato Using a Diverse Set of Standard Cultivars and a Segregating Diploid Population. Potato Research, 56(1), 127-146. doi: 10.1007/s11540-013-9235-z.spa
dc.relation.referencesKishore, K. (2019). Phenological growth stages and heat unit requirement of Indian blackberry (Syzygium cumini L., Skeels). Scientia Horticulturae, 249, 455-460. doi: 10.1016/j.scienta.2019.02.032.spa
dc.relation.referencesKocjan Ačko, D., Flajšman, M., Trdan, S. (2019). Apical bud removal increased seed yield in hemp (Cannabis sativa L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 69, 317–323. doi: 10.1080/09064710.2019.1568540spa
dc.relation.referencesKudo, G., y Cooper, E.J. (2019). When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proc Biol Sci, 286, 20190573. doi: 10.1098/rspb.2019.0573.spa
dc.relation.referencesKutman, U.B., Yildiz, B., Cakmak, I. (2011). Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil. 342, 149–164. doi: 10.1007/s11104-010-0679-5.spa
dc.relation.referencesLaginha, A.M. (2018). High-Tech-Anbau von Cannabis. Dtsch. Apoth. Ztg. 158, 36-43. doi:10.13140/RG.2.1.1790.2486.spa
dc.relation.referencesLamarck, J.-B. (1811). Encyclopédie méthodique, botanique: Suppl. 2: Panckoucke.spa
dc.relation.referencesLancashire, P.D., Bleiholder, H., Langelüddecke, P., Stauss, R., Van Den Boom, T., Weber, E., y Witzenberger, A. (1991). An uniform decimal code for growth stages of crops and weeds. Ann. appl. Biol. 119, 561-601. doi: 10.1111/j.1744-7348.1991.tb04895.x.spa
dc.relation.referencesLandis, H., Hicks, K., Cockson, P., Henry, J.B., Smith, J.T., y Whipker, B.E. (2019). Expanding leaf tissue nutrient survey ranges for greenhouse cannabidiol-hemp. Crop Forage Turfgrass Manag. 5, 1–3. doi: 10.2134/cftm2018.09.0081.spa
dc.relation.referencesLanyon, V.S., Turner, J.C., y Mahlberg, P.G. (1981). Quantitative Analysis of Cannabinoids in the Secretory Product from Capitate-Stalked Glands of Cannabis sativa L. (Cannabaceae). Botanical Gazette. 142(3), 316-319. ISSN : 0006-8071.spa
dc.relation.referencesLaverty, K.U., Stout, J.M., Sullivan, M.J., Shah, H., Gill, N., Holbrook, L., Deikus, G., Sebra, R., Hughes, T.R., Page, J.E., y van Bakel H. (2019). A Physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 29(1), 146-156. doi: 10.1101/gr.242594.118.spa
dc.relation.referencesLea, P., y Morot-Gaudry, J.-F. (eds) (2001). Plant Nitrogen. Berlin: Springer-Verlag.spa
dc.relation.referencesLefsrud, M., Bilodeau, S.E., Wu, B.-S., Rufyikiri, A.-S-, y MacPherson, S. (2019). An Update on Plant Photobiology and Implications for Cannabis Production. Frontiers in plant science. 10, 296. doi: 10.3389/fpls.2019.00296.spa
dc.relation.referencesLeith, H. (1974). Purposes of a phenology book. En: H. Leith (Ed.), Phenology and Seasonality Modeling, Springer-Verlag, pp. 3-19. doi: 10.1016/B978-044450891-1/50004-9.spa
dc.relation.referencesLiang, J., y He, J. (2018). Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications. 498(4), 946–953. doi:10.1016/j.bbrc.2018.03.087.spa
dc.relation.referencesLinger, P., Müssig, J., Fischer, H., y Kobert, J. (2002). Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: Fibre quality and phytoremediation potential. Ind. Crop. Prod. 16, 33–42. doi: 10.1016/S0926-6690(02)00005-5.spa
dc.relation.referencesLinnaeus, C. (1800). Species Plantarum, vol. 4. Impensis GC Nauk.spa
dc.relation.referencesLópez, M.A., Chaves, B., Flórez, V.J., y Salazar M.R. (2010). Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agron Colomb. 28(19), 47-54. ISSN 0120-9965.spa
dc.relation.referencesLópez-Astilleros, O., Vinay, J.C., Villegas-Aparicio, Y., López, I., y Lozano-Trejo, S. (2020). Dinámica de crecimiento y curvas de extracción de nutrientes de Pennisetum sp. (Maralfalfa). Rev Mex Cienc Pecu 2020. 11(1), 255-265. doi: 10.22319/rmcp.v11i1.4674.spa
dc.relation.referencesLuo, X., Reiter, M.A., d’Espaux, L., Wong, J., Denby, C., Lechner, A., Zhang, Y., Grzybowsky, A., Harth, S., Lin, W., Lee, H., Yu, C., Shin, J., Deng, K., Benites, V., Wang, G., Baidoo, E., Chen, Y., Dev, I., Petzold, C., y Keasling, J.D. (2019). Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126. doi: 10.1038/s41586-019-0978-9.spa
dc.relation.referencesLyu, D., Backer, R., y Smith, D.L. (2022). Three plant growth-promoting rhizobacteria alter morphological development, physiology, and flower yield of Cannabis sativa L. Industrial Crops & Products. 178, 114583. doi: 10.1016/j.indcrop.2022.114583.spa
dc.relation.referencesMaathuis, F.J. (2009). Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258. doi: 10.1016/j.pbi.2009.04.003.spa
dc.relation.referencesMagagnini, G., Grassi, G., y Kotiranta, S. (2018). The effect of light spectrum on the morphology and cannabinoid content of Cannabis sativa L. Medical Cannabis and Cannabinoids. 1, 19–27. doi: 10.1159/000489030.spa
dc.relation.referencesMaher, M., Prasad, M., y Raviv, M. (2008). Organic soilless media components. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, pp. 459–504. doi:10.1016/B978-044452975-6.50013-7.spa
dc.relation.referencesMańkowski, J., Kołodziej, J., Pudełko, K., y Kozłowski, R. M. (2020). Bast fibres. Handbook of Natural Fibres, 393–417. doi:10.1016/b978-0-12-818782-1.00011-0.spa
dc.relation.referencesMarschner, H. (2012). Mineral Nutrition of Higher Plants, ed. H. Marschner (Cambridge, MA: Academic Press), pp. 166-455.spa
dc.relation.referencesMcCauley, A., Jones, C., y Jacobsen, J. (2009). Plant nutrient functions and deficiency and toxicity symptoms. Nutr. Manage. Modul. 1–16.spa
dc.relation.referencesMcMaster, G., y Wilhem, W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology, 87(4), 291-300. doi: 10.1016/S0168-1923(97)00027-0.spa
dc.relation.referencesMediavilla, V., Jonquera, M., Schmid-Slembrouck, I., y Soldati, A. (1998). Decimal code for growth stages of hemp (Cannabis sativa L.). Journal of the international hemp association. 2(65), 68-74.spa
dc.relation.referencesMeier U. (ed.). 2001. Growth Stages of Mono- and Dicotyledonous Plants: BBCH-Monograph. 158 p.spa
dc.relation.referencesMeier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heb, M., Lancanshire, P., Schnock, U., Staub, R., Van der Boom, T., Weberand, E., y Zwerger, P. (2009). The BBCH system to coding the phenological growth stages of plants – history and publications. Journal für kulturpflanzen. 61(2), 41-52. ISSN 0027-7479.spa
dc.relation.referencesMendoza M.R., Aguilar L.A., Castillo S.F. (2004). Guayaba (Psidium guajava L.) su cultivo en el oriente de Michoacan. Centro de Investigaciones del Pacífico Centro. Campo experimental Uruapan. Folleto técnico No. 4. Uruapan, Michoacan, p. 49.spa
dc.relation.referencesMenezes, I., Nascimento, P., Yamamoto, C., y Oliveira, A. (2022). Evaluation of trace elements in Cannabis products. Journal of Food Composition and Analysis. 113, 104721. doi: 10.1016/j.jfca.2022.104721.spa
dc.relation.referencesMia, M., Shamsuddin, Z., Wahab, Z., y Marziah, M. (2010). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-culture Musa plantlets under nitrogen free hydroponics condition. Australian Journal of Crop Science. 4.spa
dc.relation.referencesMishchenko, S., Mokher, S., Laiko, I., Burbulis, N., Kyrychenko, H., y Dudukova, S. (2017). Phenological growth stages of hemp (Cannabis sativa L.): codification and description according to the BBCH scale. Žemės ūkio mokslai. 24(2), 31-36. doi: 10.6001/zemesukiomokslai.v24i2.3496.spa
dc.relation.referencesMishra, S. R. (2004). Photosynthesis in plants. New Delhi, India: Discovery Publishing House.spa
dc.relation.referencesMoher, M., Jones, M., y Zheng, Y. (2021). Photoperiodic Response of In Vitro Cannabis sativa Plants. Hortscience. 56(1),108-113. doi: 10.21273/HORTSCI15452-20.spa
dc.relation.referencesMoher, M., Llewellyn, D., Jones, M., y Zheng, Y. (2022). Light intensity can be used to modify the growth and morphological characteristics of Cannabis during the vegetative stage of indoor production. Industrial Crops & Products. 183, 114909. doi: 10.1016/j.indcrop.2022.114909.spa
dc.relation.referencesMonclus, R., Dreyer, E., Villar, M., Delmotte, F. M., Delay, D., Petit, J.-M., Barbaroux, C., Le Thiec, B., Bréchet, C., y Brignolas, F. (2006). Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytologist, 169(4), 765–777. doi:10.1111/j.1469-8137.2005.01630.x.spa
dc.relation.referencesMonsees, H., Kloas, W., Wuertz, S. (2017). Decoupled systems on trial: eliminating bottlenecks to improve aquaponic processes. PLoS One 12, 1–18. doi: 10.1371/journal.pone.0183056.spa
dc.relation.referencesMorales, J., Gómez, M., Velázquez, C., y Ambriz, E. (2016). Variación de la distribución de carbono entre la raíz y la parte aérea en tres especies de pino. Revista mexicana de ciencias forestales, 7(38), 59-66.spa
dc.relation.referencesMullard A. (2019). 2018 FDA drug approvals. Nat Rev Drug Discov. 18(2), 85-89. doi: 10.1038/d41573-019-00014-x.spa
dc.relation.referencesMurchie, E.K., y Ruban A.V. (2020). Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. The Plant Journal. 101, 885–896. doi: 10.1111/tpj.14601.spa
dc.relation.referencesMurray, J.D., Lea-Cox, J.D., y Ross, D. (2004). Time domain reflectometry accurately monitors and controls irrigation water applications in soilless substrates. Acta Hort. (ISHS), 633, 75–82. doi:10.17660/ActaHortic.2004.633.8.spa
dc.relation.referencesMuscolo, A., Marra, F., Canino, F., Maffia, A., Mallamaci, C., y Russo, Mt. (2022). Growth, nutritional quality and antioxidant capacity of lettuce grown on two different soils with sulphur-based fertilizer, organic and chemical fertilizers. Scientia Horticulturae. 305, 111421. doi: 10.1016/j.scienta.2022.111421.spa
dc.relation.referencesNelson, P.V. (2003). Greenhouse Operation & Mangement; Prentice Hall: Upper Saddle River, NJ, USA.spa
dc.relation.referencesNemati, R., Fortin, J.-P., Craig, J., y Donald, S. (2021). Growing Mediums for Medical Cannabis Production in North America. Agronomy.11, 1366. doi: 10.3390/agronomy11071366.spa
dc.relation.referencesOhyama, T. (2010). Nitrogen as a major essential element of plants. In: Ohyama, T., Sueyoshi, K. (Eds.), Nitrogen Assimilation in Plants. Research Signpost, Kerala, pp. 1–17.spa
dc.relation.referencesPacifico, D., Miselli, F., Carboni, A., Moschella, A., y Mandolino, G. (2008). Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica. 160, 231-240. doi: 10.1007/s10681-007-9543-y.spa
dc.relation.referencesPacula, R.L., y Smart, R.J. (2017). Medical marijuana and marijuana legalization. Annu Rev Clin Psychol. 13, 397–419. doi: 10.1146/annurev-clinpsy-032816-045128.spa
dc.relation.referencesPapastylianou, P., Kakabouki, I., y Travlos, I. (2018). Effect of Nitrogen Fertilization on Growth and Yield of Industrial Hemp (Cannabis sativa L.). Not. Bot. Horti Agrobot. Cluj-Napoca. 46, 197–201. doi: /10.15835/nbha46110862.spa
dc.relation.referencesPark S. J., Eshed Y., y Lippman Z.B. (2014). Meristem maturation and inflorescence architecture–lessons from the Solanaceae. Curr. Opin. Plant Biol. 17, 70–77. doi: 10.1016/j.pbi.2013.11.006.spa
dc.relation.referencesPark, Y., y Runkle, E. S. (2018). Far-red radiation and photosynthetic photon flux density independently regulate seedling growth but interactively regulate flowering. Environ. Exp. Bot. 155, 206–216. doi: 10.1016/j.envexpbot.2018.06.033spa
dc.relation.referencesParra-Coronado, A., Fischer, G., y Chaves-Cordoba, B. (2014). Thermal time for reproductive phenological stages of pineapple guava (Acca sellowiana (O. Berg) Burret). Acta Biologica Colombiana. 20(1), 163-173. doi: 10.15446/abc.v20n1.43390.spa
dc.relation.referencesPérez-Asseff, J. M., Peña E.J., y Torres, C. (2007) Efecto del nitrógeno y la irradianza en la eficiencia fotosintética del anamú Petiveria alliacea (Phytolaccaceae). Rev. Acad. Colomb. Cienc. 31(118), 49-55. ISSN 0370-3908.spa
dc.relation.referencesPettigrew, W.T. (2008). Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681. doi: 10.1111/j.1399-3054.2008.01073.x.spa
dc.relation.referencesPhadnawis, N.B. y Saini, A.D. (1992). Yield models in wheat based on sowing time and phenological development. Annals of Plant Physiology. 6, 52-59.spa
dc.relation.referencesPinnola A, y Bassi R. (2018). Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans. 46(2), 467-482. doi: 10.1042/BST20170307.spa
dc.relation.referencesPino, E., Montalván, I., Vera, A., y Ramos, L. (2019). La conductancia estomática y su relación con la temperatura foliar y humedad del suelo en el cultivo del olivo (Olea europaea L.), en periodo de maduración de frutos, en zonas áridas. La Yarada, Tacna, Perú. Idesia (Arica). 37(4), 55-64. doi: 10.4067/S0718-34292019000400055.spa
dc.relation.referencesPlacido, D.F., y Lee, C.C. (2022). Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants. 11, 595. doi: 10.3390/plants11050595spa
dc.relation.referencesPlecas, D., y Diplock, J. (2007). Marihuana growing operations in Alberta 1997–2003. Centre for Criminal Justice Research (University College of the Fraser Valley).spa
dc.relation.referencesPotter, D.J. (2014). A review of the cultivation and processing of Cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test. Anal. 6(1-2), 31–38 doi: 10.1002/dta.1531.spa
dc.relation.referencesPoulter, R. (2014). Quantifying differences between treated and untreated coir substrate. Acta Hortic. 1018, 557-564. doi: 10.17660/ActaHortic.2014.1018.61.spa
dc.relation.referencesPrenner, G., Vergara-Silva, F., y Rudall, P. J. (2009). The key role of morphology in modelling inflorescence architecture. Trends Plant Sci. 14, 302–309. doi: 10.1016/j.tplants.2009.03.004.spa
dc.relation.referencesQadir, G., Ahmad, S., Hassan, F., y Cheema, M.A. (2006). Oil and fatty acid accumulation in sunflower as influenced by temperature variation. Pakistan Journal of Botany. 38(4), 1137-1147.spa
dc.relation.referencesQuesada-Roldán, G., y Bertsch-Hernández, F. (2013). Obtaining of theAbsorption Curve for the FB-17Tomato Hybrid. Terra Latinoamericana. 31(1), 1-7. ISSN 2395-8030.spa
dc.relation.referencesRaviv, M., Lieth, J.H., y Bar-Tal, A. (2019). Growing plants in soilless culture: operational conclusions. In: Raviv, M., Lieth, J.H., Bar-Tal, A. (Eds.), Soilless Culture. Elsevier B.V., pp. 637-669. doi: 10.1016/B978-044452975-6.50015-0.spa
dc.relation.referencesRaviv, M., Wallach, R., Silber, A., y Bar-Tal, A. (2002). Substrates and their Analysis. En Hydroponic Prod. Veg. Ornam. Sawas, D., Passam, H., Eds.; Embryo Publications: Atenas, Grecia, pp. 25-105.spa
dc.relation.referencesRaviv, M., y Blom, T.J. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Sci. Hortic. (Amsterdam), 88, 257–276. doi: 10.1016/S0304-4238(00)00239-9.spa
dc.relation.referencesReed, J. (1914). Morphology of Cannabis sativa L. Tesis de maestría. (Iowa: State University of Iowa).spa
dc.relation.referencesRen, G., Zhang, X., Li, Y., Ridout, K., Serrano-Serrano, M.L., Yang, Y., Liu, A., Ravikanth, G., Nawaz, M.A., y Mumtaz, A.S. (2021). Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 7, eabg2286. doi: 10.1126/sciadv.abg2286.spa
dc.relation.referencesRimon, V., Lata, H., Chandra, S., Khan, I. A., y ElSohly, M. A. (2017). Chapter 5: Morpho-anatomy of marijuana (Cannabis sativa L.) en Cannabis sativa L. – Botany and biotechnology. ed. S. Chandra (New York, NY: Springer), 123-136. doi: 10.1007/978-3-319-54564-6_5.spa
dc.relation.referencesRioba, N. B., Itulya, F. M., Saidi, M., Dudai, N., y Bernstein, N. (2015). Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Med. Aromat. Plants 2, 21–29. doi: 10.1016/j.jarmap.2015.01.003.spa
dc.relation.referencesRodríguez-Yzquierdo, G., Patiño, M., y Betancourt, M. (2021). Physiological characterization in medicinal Cannabis plants during different phenological stages under biotic stress. Agron. Mesoam. 32(3), 823-840. doi:10.15517/am.v32i3.44443.spa
dc.relation.referencesRuiz-Corral, J., Flores-López, H., Ramírez-Díaz. J., González- Equiarte, D. (2002) Temperaturas cardinales y duración del ciclo de madurez del híbrido de maíz H-311 en condiciones de temporal. Agrociencia. 36, 569-577. ISSN: 1405-3195.spa
dc.relation.referencesSakaguchi, S, Horie, K, Ishikawa, N. Nishio, S., Woth, J.R.P., Fukushima, K., Yamasaki, M., y Ito, M. (2019). Maintenance of soil ecotypes of Solidago virgaurea in close parapatry via divergent flowering time and selection against immigrants. J Ecol, 107, 418–35. doi: 10.1111/1365-2745.13034.spa
dc.relation.referencesSalas, R.E., y Vega, E.V. (2012). Curvas de absorción de nutrientes bajo dos métodos de fertilización en sandia, en Guanacaste, Costa Rica. InterSedes: Revista de las Sedes Regionales. XIII(26),19-44. ISSN: 2215-2458.spa
dc.relation.referencesSalazar-Gutierrez, M.R., Johnson, J., Chaves-Cordoba, B., y Hoogenboom, G. (2013) Relationship of base temperature to development of winter wheat. Int J Plant Prod. 7(4), 741-762. doi: 10.22069/IJPP.2013.1267.spa
dc.relation.referencesSaloner, A., Sacks, M.M., y Bernstein, N. (2019). Response of medical Cannabis (Cannabis sativa L.) genotypes to K supply under long photoperiod. Front. Plant Sci. 10, 1–16. doi: 10.3389/fpls.2019.01369spa
dc.relation.referencesSaloner, A., y Bernstein, N. (2021). Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Industrial Crops & Products. 167, 113516. doi: 10.1016/j.indcrop.2021.113516.spa
dc.relation.referencesSaloner, A., y N. Bernstein. (2020) Response of Medical Cannabis (Cannabis sativa L.) to Nitrogen Supply Under Long Photoperiod. Front. Plant Sci. 11:572293. doi: 10.3389/fpls.2020.572293.spa
dc.relation.referencesSánchez-de-Miguel, P., Junquera, P., Jimenez, L., y Lissarrague, J.R. (2009). Efectos de la temperatura foliar y de la humedad relativa en la respuesta fotosintética a la luz de las hojas de vid de los cvs. Cabernet Sauvignon y Tempranillo, en el período de maduración. Revista Enología. 6. 1-8.spa
dc.relation.referencesSander, M., Fogliatto, R., Scorsatto, R., Tiecher, T., y Anastácio de Oliveira, F. (2021). The use of vegetal tissue multi-element content as an indicator of soil or substrate type employed to cultivate Cannabis sativa L. (marijuana). Forensic Chemistry, 23, 100319. doi:10.1016/j.forc.2021.100319.spa
dc.relation.referencesSandoval, M., Sánchez, P., y Alcántar, G. (2007). Principios de la hidroponía y del fertirriego. pp. 373-438. In: G. Alcántar y Trejo, L. (eds.). Nutrición de cultivos. Mundi Prensa y Colegio de Postgraduados. México, D. F.spa
dc.relation.referencesSawler, J., Stout, J.M., Gardner, K.M., Hudson, D., Vidmar, J., Butler, L., Page, J.E. (2015). The Genetic Structure of Marijuana and Hemp. PLoS ONE. 10(8), e0133292. doi: 10.1371/journal.pone.0133292.spa
dc.relation.referencesSchachtman, D.P., Reid, R.J., y Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453. doi: 10.1104/pp.116.2.447.spa
dc.relation.referencesSharma, A., Deepa, R., Sankar, S., Pryor, M., Stewart, B., Johnson, E., y Anandhi, A. (2021). Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida. Ecological Indicators. 124, 107383. doi:10.1016/j.ecolind.2021.107383.spa
dc.relation.referencesShi, G., Liu, C., Cui, M., Ma, Y.,y Cai, Q. (2012). Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl. Biochem. Biotechnol. 168, 163–173. doi: 10.1007/s12010-011-9382-0.spa
dc.relation.referencesShi, J., Wang, Y., Li, Z., Huang, X., Shen, T., y Zou, T. (2021). Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Byosistems engineering. 212, 458-467. doi: 10.1016/j.biosystemseng.2021.11.001spa
dc.relation.referencesShiponi, S., y Bernstein, N. (2021). The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front. Plant Sci. 12, 657323. doi: 10.3389/fpls.2021.657323.spa
dc.relation.referencesSirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y., y Taura, F. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J. Biol. Chem. 279, 39767–39774. doi: 10.1074/jbc.M403693200.spa
dc.relation.referencesSlafer, G.A., y Savin R. (1991) Developmental base temperature in different phonological phases of wheat (Triticum aestivum). J Exp Bot. 42,1077-1082. doi: 10.1093/jxb/42.8.1077.spa
dc.relation.referencesSmall, E. (1975). American law and the species problem in Cannabis: science and semantics. Bull. Narcot. 27 (3), 1–20. doi: 10.3109/15563657508988067.spa
dc.relation.referencesSmall, E., y Marcus, D. (2003). Tetrahydrocannabinol levels in hemp (Cannabis sativa) germplasm resources. Econ. Bot. 57(4), 545–558. https://www.jstor.org/stable/4256739.spa
dc.relation.referencesSpitzer-Rimon, B., Duchin, S., Bernstein, N., y Kamenetsky, R. (2019). Architecture and Florogenesis in Female Cannabis sativa Plants. Front. Plant Sci. 10:350. doi: 10.3389/fpls.2019.00350.spa
dc.relation.referencesStirbet, A., Lázar, D., Kromdijk, J., y Govindjee (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 56(1), 86-104. doi: 10.1007/s11099-018-0770-3spa
dc.relation.referencesTakahashi, S., y Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 16, 53–60. doi: 10.1016/j.tplants.2010.10.001.spa
dc.relation.referencesTambussi, E.A. (2011). Fotosíntesis, fotoprotección, productividad y estreses abióticos: casos de estudio (Tesis Doctoral, Universidad de Barcelona). Depósito Digital de la Universidad de Barcelona. http://diposit.ub.edu/dspace/handle/2445/36093.spa
dc.relation.referencesTang, K., Struik, P.C., Amaducci, S., Stomph, T.-J., y Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bioeconomically sustainable crop. GCB Bioenergy. 9, 1573–1587. doi: 10.1111/gcbb.12451.spa
dc.relation.referencesTang, K., Struik, P.C., Yin, X., Thouminot, C., Bjelková, M., Stramkale, V., y Amaducci, S. (2016). Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Industrial Crops and Products, 87, 33–44. doi: 10.1016/j.indcrop.2016.04.026.spa
dc.relation.referencesTang, Y., Bao, Q., Tian, G., Fu, K., y Cheng, H. (2015). Heavy metal cadmium tolerance on the growth characteristics of industrial hemp (Cannabis sativa L.) in China. In S. Chen, & S. Zhou (Eds.), Proceedings of the International Conference on Advances in Energy, Environment and Chemical Engineering (pp. 289–295). Atlantis Press. doi: 10.2991/aeece-15.2015.58.spa
dc.relation.referencesTarqui-Delgado, M., Mena-Herrera, F.C., Quino-Luna, J.J., Gutiérrez-Villalobos, S., y Coela-Poma, R.R. (2017). Leaflet temperature of lettuce (Lactuca sativa) and air influenced by the vapor pressure deficit. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 4(1), 60–66.spa
dc.relation.referencesTaura, F., Morimoto, S., y Shoyama, Y. (1996). Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.: biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 271, 17411–17416. doi: 10.1074/jbc.271.29.17411.spa
dc.relation.referencesTedesco, D., de Oliveira, M. F., dos Santos, A. F., Costa Silva, E. H., de Souza Rolim, G., y da Silva, R. P. (2021). Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons. European Journal of Agronomy, 129, 126337. doi:10.1016/j.eja.2021.126337.spa
dc.relation.referencesTeichmann, T., y Muhr, M. (2015). Shaping plant architecture. Front. Plant Sci. 6:233. doi: 10.3389/fpls.2015.00233.spa
dc.relation.referencesTrancoso, I., de Souza, G.A.R., dos Santos, P.R., dos Santos, K.D., de Miranda, R.M.d.S.N., da Silva, A.L.P.M., Santos, D.Z., García-Tejero, I.F., y Campostrini, E. (2022). Cannabis sativa L.: Crop Management and Abiotic Factors That Affect Phytocannabinoid Production. Agronomy. 12, 1492. doi: 10.3390/agronomy12071492.spa
dc.relation.referencesUchida, R., 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant Nutr. Manage. Hawaii’s soils. 31–55.spa
dc.relation.referencesUnited Nations (2006). Bulletin on Narcotics - Review of the World Cannabis Situation. United Nations Off. Drugs Crime LVIII, pp. 1–113.spa
dc.relation.referencesUnited Nations Office on Drugs and Crime (2013). Recommended methods for the identification and analysis of Cannabis and Cannabis products, Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products. Vienna, Austria. 50 pp. doi: 10.18356/1e8e4f16-en.spa
dc.relation.referencesUpton, R., Craker, L., ElSohly, M., Romm, A., Russo, E., Sexton, M., Marcu, J., y Swisher, D. (2014). Cannabis Inflorescence: Standards of Identity, Analysis, and Quality Control. En: American Herbal Pharmacopoeia and therapeutic compendium Scott’s Valley, CA.spa
dc.relation.referencesVan Os, E., Gieling, T.H., y Lieth, J.H. (2019). Technical equipment in soilless production systems. In: Raviv, M., Lieth, J.H., Bar-Tal, A. (Eds.), Soilless Culture: Theory and Practice. Elsevier B.V., pp. 587–635. doi: 10.1016/B978-044452975-6.spa
dc.relation.referencesVyrovets V. H., Kyrychenko H. I., Laiko I. M., Myhal M. D., Shcherban I. I., Bohuslavskyi R. L. (2012). Classification of Signs in Hemp Plants – Cannabis sativa L. Sumy. 27 p. (in Ukrainian).spa
dc.relation.referencesWalker, D. I., Olesen, B., y Phillips, R.C. (2001). Reproduction and phenology in seagrasses. Global Seagrass Research Methods, 59–78. doi:10.1016/b978-044450891-1/50004-9.spa
dc.relation.referencesWei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., y Zemla, J. (2017). R package “corrplot”: Visualization of a Correlation Matrix. 56, 316-324.spa
dc.relation.referencesWelling, M.T., Liu, L., Shapter, T., Raymond, C., y King G.J. (2016). Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica. 208, 463–475. doi: 10.1007/s10681-015-1585-y.spa
dc.relation.referencesWogiatzi, E, Gougoulias, N., Giannoulis, K., y Kamvoukou, C.-A. 2019. Effect of irrigation and fertilization levels on mineral composition of Cannabis sativa L. leaves. Not Bor Hortu Agrobo. 47(4), 1073-1080. doi: 10.15835/nbha47411527.spa
dc.relation.referencesWungrampha, S., Joshi, R., Singla-Pareek, S.L., y Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica. 56, 366–381. doi: 10.1007/s11099-017-0763-7.spa
dc.relation.referencesYep, B., Gale, N.V., y Zheng Y. (2020). Comparing hydroponic and aquaponic rootzones on the growth of two drugtype Cannabis sativa L. cultivars during the flowering stage. Industrial Crops & Products. 157, 112881. doi: 10.1016/j.indcrop.2020.112881.spa
dc.relation.referencesZheng, Y. (2016). Root zone environment management in container crop production. Proc. for the Veg., potato, greenhouse, small fruit & Gen. session, Mid-Atlantic Fruit & Veg. Convention, Hershey, PA.spa
dc.relation.referencesZheng, Y. (2018). Current nutrient management practices and technologies used in North American greenhouse and nursery industries. Acta Hortic. 1227, 435–442. doi: 10.17660/ActaHortic.2018.1227.54.spa
dc.relation.referencesZheng, Y. (2019). Developments in growing substrates for soilless cultivation. En: Marcelis, L., Heuvelink, E. (Eds.), Achieving Sustainable Greenhouse Cultivation. Burleigh Dodds Science Publishing, Cambridge, UK, pp. 1–16. doi: 10.19103/AS.2019.0052.11.spa
dc.relation.referencesZheng, Y. (2020). Integrated root-zone management for successful soilless culture. Acta Hortic. 1273, 1–8. doi: 10.17660/ActaHortic.2020.1273.1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocFisiología vegetalspa
dc.subject.agrovocplant physiologyeng
dc.subject.agrovocNutrición de las plantasspa
dc.subject.agrovocplant nutritioneng
dc.subject.agrovocCannabis sativaspa
dc.subject.agrovocCannabis sativaeng
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.proposalCannabinoidesspa
dc.subject.proposalFisiología del cannabisspa
dc.subject.proposalRendimiento flor secaspa
dc.subject.proposalCurva de extracción de nutrientesspa
dc.subject.proposalSoileng
dc.subject.proposalCoconut fibereng
dc.subject.proposalCannabinoidseng
dc.subject.proposalPhenological scaleeng
dc.subject.proposalCannabis physiologyeng
dc.subject.proposalDry flower yieldeng
dc.subject.proposalNutrient extraction curveeng
dc.subject.proposalFibra de cocospa
dc.subject.proposalSuelospa
dc.subject.proposalEscala fenológicaspa
dc.titleParámetros fisiológicos, curva de extracción de nutrientes y rendimiento de tres variedades de cannabis sativa L. cultivadas en suelo y sustratospa
dc.title.translatedPhysiological parameters, nutrient extraction curve and yield of three varieties of cannabis sativa L. cultivated in soil and substrateeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMedcolcanna S.A.S.spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024544174.2023.pdf
Tamaño:
3.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: