A Question answering model for requirements elicitation in the context of software development

dc.contributor.advisorZapata Jaramillo, Carlos Mario
dc.contributor.authorCalle Gallego, Johnathan Mauricio
dc.contributor.researchgroupLenguajes Computacionalesspa
dc.date.accessioned2023-01-18T15:51:17Z
dc.date.available2023-01-18T15:51:17Z
dc.date.issued2022-04-04
dc.descriptionilustraciones, gráficosspa
dc.description.abstractRequirements Elicitation (RE) is focused on identifying and characterizing the stakeholders and their requirements. Such an activity may be challenging as the scope of the software product domain grows, generating errors and delays. Natural Language Processing (NLP) deals with automatically analyzing, understanding, and generating natural language. Software analysts use NLP-based approaches for improving RE, making it more efficient and reliable. However, domain scope and limitation for understanding the writing styles of requirements documents generate significant drawbacks for such approaches. In this Ph.D. Thesis we propose SQUARE (Scalable QUestion Answering for Requirements Elicitation), a novel approach for improving the NLP-based approaches for RE based on Question Answering Systems (QASs), comprising a meta-restricted domain for RE and a rule-based approach for generating RE-related questions and answers. QASs are used for extracting precise and concise answers to natural language questions. The SQUARE model represents a contribution for the NLP-based approaches for RE, allowing software analysts for identifying, extracting, and structuring key abstractions from requirements documents such as actors, actions, and concepts in a more natural way due to its proximity to a real-life RE domain. We validate our proposal by using an experimental process. The SQUARE model is included as a new work product for eliciting requirements. Therefore, the SQUARE model is intended to be an NLP-based approach to RE for software analysts.eng
dc.description.abstractLa Educción de Requisitos (ER) se enfoca en identificar y caracterizar a los interesados y sus requisitos. Esta actividad puede ser desafiante a medida que el alcance del dominio del producto de software crece, generando errores y retrasos. El Procesamiento de Lenguaje Natural (PLN) se usa para analizar, entender y generar lenguaje natural automáticamente. Los analistas de software usan enfoques basados en PLN para mejorar la ER, haciéndola más eficiente y confiable. Sin embargo, el alcance del dominio y la limitación para comprender los estilos de escritura de los documentos de requisitos generan inconvenientes importantes para estos enfoques. En esta Tesis Doctoral se presenta SQUARE (Scalable QUestion Answering for Requirements Elicitation por sus siglas en inglés), un enfoque novedoso para mejorar los enfoques basados en PLN para ER basado en Sistemas Pregunta-Respuesta (SPR), que comprende un dominio meta-restringido para ER y un enfoque basado en reglas para generar preguntas y respuestas relacionadas con la ER. Los SPR se usan para extraer respuestas precisas y concisas a preguntas en lenguaje natural. El modelo SQUARE representa una contribución a los enfoques basados en PLN para ER, permitiendo a los analistas de software identificar, extraer y estructurar abstracciones clave a partir de documentos de requisitos tales como actores, acciones y conceptos de una manera más natural debido a su proximidad con un dominio real de ER. Esta propuesta se valida usando un proceso experimental. El modelo SQUARE se incluye como un nuevo producto de trabajo para educir requisitos. Por lo tanto, el modelo SQUARE se espera que sea un enfoque de ER basado en PLN para analistas de software. (texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaIngeniería de requisitosspa
dc.description.researchareaProcesamiento de lenguaje naturalspa
dc.description.sponsorshipConvocatoria Doctorados nacionales 785 de 2017, Colcienciasspa
dc.format.extentxv, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83008
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbbott, R. J. (1983). Program Design by Informal English Descriptions. Commun. ACM, 26(11), 882–894. https://doi.org/10.1145/182.358441spa
dc.relation.referencesAdam, S. (2012). Providing software product line knowledge to requirements engineers - A template for elicitation instructions. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, B. Regnell, & D. Damian (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7195 LNCS (pp. 147–164). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28714-5_13spa
dc.relation.referencesAdikara, F., Hendradjaya, B., & Sitohang, B. (2016). Organization goal-oriented requirements elicitation process to enhance information system. International Journal of Electrical and Computer Engineering, 6(6), 3188–3195. https://doi.org/10.11591/ijece.v6i6.12802spa
dc.relation.referencesAguilar, C., & Sierra M., G. (2017). Tratamiento de información textual y generación de taxonomías (1st ed.). Instituto de Ingeniería, de la Universidad Autónoma de México.spa
dc.relation.referencesAguilera, C., & Berry, D. M. (1990). The use of a repeated phrase finder in requirements extraction. Journal of Systems and Software, 13(3), 209–230. https://doi.org/https://doi.org/10.1016/0164-1212(90)90097-6spa
dc.relation.referencesAl-Hroob, A., Imam, A. T., & Al-Heisa, R. (2018). The use of artificial neural networks for extracting actions and actors from requirements document. Information and Software Technology, 101, 1–15. https://doi.org/https://doi.org/10.1016/j.infsof.2018.04.010spa
dc.relation.referencesAlwadain, A., & Alshargi, M. (2019). Crowd-Generated Data Mining for Continuous Requirements Elicitation. International Journal of Advanced Computer Science and Applications, 10(9). https://doi.org/10.14569/IJACSA.2019.0100907spa
dc.relation.referencesApaza, R. D. G., Barrios, J. E. M., Becerra, D. A. I., & Quispe, J. A. H. (2018). ERS-TOOL: Hybrid Model for Software Requirements Elicitation in Spanish Language. Proceedings of the International Conference on Geoinformatics and Data Analysis, 27–30. https://doi.org/10.1145/3220228.3220255spa
dc.relation.referencesArruda, D., Marinho, M., Souza, E., & Wanderley, F. (2019). A Chatbot for Goal-Oriented Requirements Modeling. In S. Misra, O. Gervasi, B. Murgante, E. Stankova, V. Korkhov, C. Torre, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, & E. Tarantino (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11622 LNCS (pp. 506–519). Springer International Publishing. https://doi.org/10.1007/978-3-030-24305-0_38spa
dc.relation.referencesBakar, N. H., Kasirun, Z. M., Salleh, N., & A.Halim, A. H. (2017). Extracting Software Features From Online Reviews to Demonstrate Requirements Reuse in Software Engineering. 6th International Conference on Computing & Informatics, 49(157), 184–190.spa
dc.relation.referencesBecu, N., Bousquet, F., Barreteau, O., Perez, P., & Walker, A. (2003). A methodology for eliciting and modelling stakeholders’ representations with agent based modelling. In G. Goos, J. Hartmanis, J. van Leeuwen, D. Hales, B. Edmonds, E. Norling, & J. Rouchier (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2927, pp. 131–148). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24613-8_10spa
dc.relation.referencesBisong, E. (2019). Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (pp. 59–64). Apress. https://doi.org/10.1007/978-1-4842-4470-8_7spa
dc.relation.referencesBoquist, E. (2014). Automated Dialogue System for Requirements Elicitation Practice. Towson University.spa
dc.relation.referencesBouziane, A., Bouchiha, D., Doumi, N., & Malki, M. (2015). Question Answering Systems: Survey and Trends. Procedia Computer Science, 73(Awict), 366–375. https://doi.org/10.1016/j.procs.2015.12.005spa
dc.relation.referencesBurnay, C., Jureta, I., & Faulkner, S. (2012). Context-Driven Elicitation of Default Requirements: an Empirical Validation. ArXiv: Software Engineering, February 2014. http://arxiv.org/abs/1211.2620spa
dc.relation.referencesBurnay, C., Jureta, I. J., & Faulkner, S. (2014). What stakeholders will or will not say: A theoretical and empirical study of topic importance in Requirements Engineering elicitation interviews. Information Systems, 46, 61–81. https://doi.org/10.1016/j.is.2014.05.006spa
dc.relation.referencesCarvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., & Sampaio, A. (2015). NAT2TEST Tool: From Natural Language Requirements to Test Cases Based on CSP. In R. Calinescu & B. Rumpe (Eds.), Software Engineering and Formal Methods (pp. 283–290). Springer International Publishing.spa
dc.relation.referencesCarvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., & Blackburn, M. (2014). NAT2TESTSCR: Test case generation from natural language requirements based on SCR specifications. Science of Computer Programming, 95, 275–297. https://doi.org/https://doi.org/10.1016/j.scico.2014.06.007spa
dc.relation.referencesCasagrande, E., Woldeamlak, S., Woon, W. L., Zeineldin, H. H., & Svetinovic, D. (2014). NLP-KAOS for Systems Goal Elicitation: Smart Metering System Case Study. IEEE Transactions on Software Engineering, 40(10), 941–956. https://doi.org/10.1109/TSE.2014.2339811spa
dc.relation.referencesCasamayor, A., Godoy, D., & Campo, M. (2010). Identification of non-functional requirements in textual specifications: A semi-supervised learning approach. Information and Software Technology, 52(4), 436–445. https://doi.org/10.1016/j.infsof.2009.10.010spa
dc.relation.referencesChen, P. P.-S. (1983). English sentence structure and entity-relationship diagrams. Information Sciences, 29(2), 127–149. https://doi.org/https://doi.org/10.1016/0020-0255(83)90014-2spa
dc.relation.referencesChristel, M., & Kang, K. (1992). Issues in Requirements Elicitation (Issue CMU/SEI-92-TR-012). http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12553spa
dc.relation.referencesCleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2007). Automated classification of non-functional requirements. Requirements Engineering, 12(2), 103–120. https://doi.org/10.1007/s00766-007-0045-1spa
dc.relation.referencesCockburn, A. (1997). Structuring use cases with goals. Journal of Object-Oriented Programming, 10(5), 56–62.spa
dc.relation.referencesCoulin, C., & Zowghi, D. (2005). Requirements Elicitation: A Survey of Techniques, Approaches, and Tools Didar. Engineering and Managing Software Requirement, 1, 19–41.spa
dc.relation.referencesCysneiros, L. M., & Yu, E. (2003). Requirements engineering for large-scale multi-agent systems. In G. Goos, J. Hartmanis, J. van Leeuwen, A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, & J. Castro (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2603, pp. 39–56). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-35828-5_3spa
dc.relation.referencesDalpiaz, F., Ferrari, A., Franch, X., & Palomares, C. (2018). Natural Language Processing for Requirements Engineering: The Best Is Yet to Come. IEEE Software, 35(5), 115–119. https://doi.org/10.1109/MS.2018.3571242spa
dc.relation.referencesDardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20(1–2), 3–50. https://doi.org/10.1016/0167-6423(93)90021-Gspa
dc.relation.referencesDick, J., Hull, E., & Jackson, K. (2017). Requirements Engineering (4th ed.). Springer, Chan.spa
dc.relation.referencesDo Prado Leite, J. C. S., & Gilvaz, A. P. P. (1996). Requirements elicitation driven by interviews: The use of viewpoints. Proceedings of the 8th International Workshop on Software Specification and Design, IWSSD 1996, April 1996, 85–94. https://doi.org/10.1109/iwssd.1996.501150spa
dc.relation.referencesDubois, E., Hagelstein, J., Rifaut, A., Lahou, E., & Ponsaert, F. (1986). A Knowledge Representation Language for Requirements Engineering. Proceedings of the IEEE, 74(10), 1431–1444. https://doi.org/10.1109/PROC.1986.13644spa
dc.relation.referencesDüchting, M., Zimmermann, D., & Nebe, K. (2007). Incorporating user centered requirement engineering into agile software development. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, & J. A. Jacko (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 4550 LNCS (Issue PART 1, pp. 58–67). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73105-4_7spa
dc.relation.referencesDwitama, F., & Rusli, A. (2020). User stories collection via interactive chatbot to support requirements gathering. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18, 870. https://doi.org/10.12928/telkomnika.v18i2.14866spa
dc.relation.referencesEscalona, M. J., & Koch, N. (2006). Metamodeling the requirements of Web systems. WEBIST 2006 - 2nd International Conference on Web Information Systems and Technologies, Proceedings, IT(WIA/-), 310–317. https://doi.org/10.1007/978-3-540-74063-6_21spa
dc.relation.referencesFabbrini, F., Fusani, M., Gnesi, S., & Lami, G. (2001). An Automatic Quality Evaluation for Natural Language Requirements. In Proceedings of the Seventh International Workshop on RE: Foundation for Software Quality (REFSQ’2001, 4–5.spa
dc.relation.referencesFerrari, A., Spagnolo, G. O., & Gnesi, S. (2017). PURE: A Dataset of Public Requirements Documents. Proceedings - 2017 IEEE 25th International Requirements Engineering Conference, RE 2017, September, 502–505. https://doi.org/10.1109/RE.2017.29spa
dc.relation.referencesGacitua, R., Sawyer, P., & Gervasi, V. (2010). On the Effectiveness of Abstraction Identification in Requirements Engineering. 2010 18th IEEE International Requirements Engineering Conference, 5–14. https://doi.org/10.1109/RE.2010.12spa
dc.relation.referencesGarcía, M. (2018). Using NLP and Information Visualization to analyze app reviews. Universiteit Utrecht.spa
dc.relation.referencesGarzoli, F., Croce, D., Nardini, M., Ciambra, F., & Basili, R. (2013). Robust Requirements Analysis in Complex Systems through Machine Learning. Communications in Computer and Information Science, 379 CCIS, 44–58. https://doi.org/10.1007/978-3-642-45260-4_4spa
dc.relation.referencesGause, D. C., & Weinberg, G. M. (1989). Context-Free Questions. In Exploring Requirements: Quality before Design (1st ed., pp. 59–65). Dorset House.spa
dc.relation.referencesGelbukh, A. (2013). Natutal language processing: Perspective of CIC-IPN. 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2112–2121. https://doi.org/10.1109/ICACCI.2013.6637507spa
dc.relation.referencesGholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation.spa
dc.relation.referencesGhosh, S., Mukherjee, P., Chakraborty, B., & Bashar, R. (2018). Automated Generation of E-R Diagram from a Given Text in Natural Language. 2018 International Conference on Machine Learning and Data Engineering (ICMLDE), 91–96. https://doi.org/10.1109/iCMLDE.2018.00026spa
dc.relation.referencesGiannakopoulou, D., Pressburger, T., Mavridou, A., & Schumann, J. (2021). Automated formalization of structured natural language requirements. Information and Software Technology, 137, 10–12. https://doi.org/https://doi.org/10.1016/j.infsof.2021.106590spa
dc.relation.referencesGilvaz, A. P. P., & do Prado Leite, J. C. S. (1995). FAES: a case tool for information acquisition. Proceedings of the International Workshop on Computer-Aided Software Engineering, July 2014, 260–269. https://doi.org/10.1109/case.1995.465307spa
dc.relation.referencesGoldin, L., & Berry, D. (1994). AbstFinder, A Prototype Natural Language Text Abstraction Finder for Use in Requirements Elicitation. Automated Software Engineering, 4. https://doi.org/10.1023/A:1008617922496spa
dc.relation.referencesGorschek, T., & Wohlin, C. (2006). Requirements abstraction model. Requirements Engineering, 11(1), 79–101. https://doi.org/10.1007/s00766-005-0020-7spa
dc.relation.referencesGrigorious, R., & Symeonidis, A. (2014). Towards the Design of User Friendly Search Engines for Software Projects. In Natural Language Processing and Information Systems (pp. 164–167). Springer, Chan.spa
dc.relation.referencesHayes, J. H., Dekhtyar, A., & Osborne, J. (2003). Improving requirements tracing via information retrieval. Proceedings. 11th IEEE International Requirements Engineering Conference, 2003., 138–147. https://doi.org/10.1109/ICRE.2003.1232745spa
dc.relation.referencesHonnibal, M., & Montani, I. (2017). {spaCy 2}: Natural language understanding with {B}loom embeddings, convolutional neural networks and incremental parsing.spa
dc.relation.referencesHunt, J. (1997). The Object Modeling Technique. Smalltalk and Object Orientation, 184–195. https://doi.org/10.1007/978-1-4471-0961-7_19spa
dc.relation.referencesIqbal, S., Al-Azzoni, I., Allen, G., & Khan, H. U. (2020). Extending UML use case diagrams to represent non-interactive functional requirements. E-Informatica Software Engineering Journal, 14(1), 97–115. https://doi.org/10.37190/E-INF200104spa
dc.relation.referencesIyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., & Zettlemoyer, L. (2017). Learning a Neural Semantic Parser from User Feedback. 963–973. https://doi.org/10.18653/v1/P17-1089spa
dc.relation.referencesJacobson, I., Spence, I., & Kerr, B. (2016). Use-case 2.0: The hub of software development. Queue, 14(1), 94–123. https://doi.org/10.1145/2898442.2912151spa
dc.relation.referencesJanssens, D. (2019). Natural Language Processing in Requirements Elicitation and Analysis: A Systematic Literature Review. Universiteit Utrecht.spa
dc.relation.referencesJarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., & Horkoff, J. (2014). An Exploratory Study of Topic Importance in Requirements Elicitation Interviews. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8484 LNCS(October). https://doi.org/10.1007/978-3-319-07881-6spa
dc.relation.referencesJohann, T., Stanik, C., Alizadeh B., A. M., & Maalej, W. (2017). SAFE: A Simple Approach for Feature Extraction from App Descriptions and App Reviews. 2017 IEEE 25th International Requirements Engineering Conference (RE), 21–30. https://doi.org/10.1109/RE.2017.71spa
dc.relation.referencesJurafsky, D., & Martin, J. (2021). Speech and Language Processing. 3rd. (Draft). Prentice Hall.spa
dc.relation.referencesJurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2nd Edition). Prentice-Hall, Inc.spa
dc.relation.referencesJureta, I. J., Mylopoulos, J., & Faulkner, S. (2008). Revisiting the core ontology and problem in requirements engineering. Proceedings of the 16th IEEE International Requirements Engineering Conference, RE’08, December, 71–80. https://doi.org/10.1109/RE.2008.13spa
dc.relation.referencesKaiya, H., Shinbara, D., Kawano, J., & Saeki, M. (2005). Improving the detection of requirements discordances among stakeholders. Requirements Engineering, 10(4), 289–303. https://doi.org/10.1007/s00766-005-0017-2spa
dc.relation.referencesKarpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020). Dense Passage Retrieval for Open-Domain Question Answering. Conference on Empirical Methods in Natural Language Processing (EMNLP), 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550spa
dc.relation.referencesKitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic Literature Reviews in Software Engineering - A Systematic Literature Review. Inf. Softw. Technol., 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009spa
dc.relation.referencesKiyavitskaya, N., Zeni, N., Breaux, T. D., Antón, A. I., Cordy, J. R., Luisa, M., & Mylopoulos, J. (2008). Automating the Extraction of Rights and Obligations for Regulatory Compliance. International Conference on Conceptual Modeling, 5231, 154–168.spa
dc.relation.referencesKnublauch, H., Fergerson, R. W., Noy, N., & Musen, M. A. (2004). The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications. SEMWEB.spa
dc.relation.referencesKof, L. (2004). Natural Language Processing for Requirements Engineering: Applicability to Large Requirements Documents. Proceedings of the Workshops, 19th International Conference Conference on Automated Software Engineering, 1–11. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.61.5849&rep=rep1&type=pdfspa
dc.relation.referencesKörner, S. J., & Landhäußer, M. (2010). Semantic Enriching of Natural Language Texts with Automatic Thematic Role Annotation. In Springer-Verlag (Ed.), Proceedings of the Natural language processing and information systems, and 15th international conference on Applications of natural language to information systems (pp. 92–99). http://dl.acm.org/citation.cfm?id=1894525.1894537spa
dc.relation.referencesKrish, S. (2006). An Ontology Based Approach To Automated Domain-Specific SRS Development. National Conference on Recent Advances in Computing. Kücherer, C., & Paech, B. (2018). Task-oriented requirements engineering for personal decision support systems. In S. Hammoudi, M. Śmiałek, O. Camp, & J. Filipe (Eds.), Lecture Notes in Business Information Processing (Vol. 321, pp. 212–238). Springer International Publishing. https://doi.org/10.1007/978-3-319-93375-7_11spa
dc.relation.referencesLaiq, M., & Dieste, O. (2020). Chatbot-based Interview Simulator: A Feasible Approach to Train Novice Requirements Engineers. 2020 10th International Workshop on Requirements Engineering Education and Training (REET), 1–8. https://doi.org/10.1109/REET51203.2020.00007spa
dc.relation.referencesLapouchnian, A. (2005). Goal-Oriented Requirements Engineering : An Overview of the Current Research. Requirements Engineering, 8(3), 32. https://doi.org/10.1007/s00766-003-0178-9spa
dc.relation.referencesLedeneva, Y. (2010). Recent Advances in Computational Linguistics Levels of language and areas of computational linguistic research. Informatica, 34, 3–18.spa
dc.relation.referencesLi, M., Yang, Y., Shi, L., Wang, Q., Hu, J., Peng, X., Liao, W., & Pi, G. (2020). Automated Extraction of Requirement Entities by Leveraging LSTM-CRF and Transfer Learning. 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), 208–219. https://doi.org/10.1109/ICSME46990.2020.00029spa
dc.relation.referencesLian, X., Liu, W., & Zhang, L. (2020). Assisting engineers extracting requirements on components from domain documents. Information and Software Technology, 118, 106196. https://doi.org/https://doi.org/10.1016/j.infsof.2019.106196spa
dc.relation.referencesLim, S., Henriksson, A., & Zdravkovic, J. (2021). Data-Driven Requirements Elicitation: A Systematic Literature Review. SN Computer Science, 2(1), 16. https://doi.org/10.1007/s42979-020-00416-4spa
dc.relation.referencesMaalej, W., Kurtanović, Z., Nabil, H., & Stanik, C. (2016). On the automatic classification of app reviews. Requirements Engineering, 21(3), 311–331. https://doi.org/10.1007/s00766-016-0251-9spa
dc.relation.referencesMadala, K., Piparia, S., Blanco, E., Do, H., & Bryce, R. (2021). Model elements identification using neural networks: a comprehensive study. Requirements Engineering, 26(1), 67–96. https://doi.org/10.1007/s00766-020-00332-2spa
dc.relation.referencesMaiden, N., Lockerbie, J., Zachos, K., Bertolino, A., De Angelis, G., & Lonetti, F. (2014). A Requirements-Led Approach for Specifying QoS-Aware Service Choreographies: An Experience Report BT - Requirements Engineering: Foundation for Software Quality (C. Salinesi & I. van de Weerd (eds.); pp. 239–253). Springer International Publishing.spa
dc.relation.referencesManago, M., Conruyt, N., & Le Renard, J. (1992). Acquiring descriptive knowledge for classification and identification. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 599 LNAI (pp. 392–405). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_52spa
dc.relation.referencesManrique, B. (2014). A formalization for mapping discourses from business-based technical documents into controlled language texts for requirements elicitation [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/46419/spa
dc.relation.referencesMcZara, J., Sarkani, S., Holzer, T., & Eveleigh, T. (2015). Software requirements prioritization and selection using linguistic tools and constraint solvers—a controlled experiment. Empirical Software Engineering, 20(6), 1721–1761. https://doi.org/10.1007/s10664-014-9334-8spa
dc.relation.referencesMich, L. (1996). NL-OOPS: from natural language to object oriented requirements using the natural language processing system LOLITA. Natural Language Engineering, 2, 161–187. https://doi.org/10.1017/S1351324996001337spa
dc.relation.referencesMinock, M. (2005). Where are the ‘killer applications’ of restricted domain question answering. Proceedings of the IJCAI Workshop on Knowledge Reasoning in Question Answering, 4. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.5922&rep=rep1&type=pdfspa
dc.relation.referencesMohammadi, N. G., & Heisel, M. (2016). A framework for systematic analysis and modeling of trustworthiness requirements using i* and BPMN. In S. Katsikas, C. Lambrinoudakis, & S. Furnell (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 9830 LNCS (pp. 3–18). Springer International Publishing. https://doi.org/10.1007/978-3-319-44341-6_1spa
dc.relation.referencesMoitra, A., Siu, K., Crapo, A. W., Durling, M., Li, M., Manolios, P., Meiners, M., & McMillan, C. (2019). Automating requirements analysis and test case generation. Requirements Engineering, 24(3), 341–364. https://doi.org/10.1007/s00766-019-00316-xspa
dc.relation.referencesMontani, I., & Honnibal, M. (2018). Prodigy: A new annotation tool for radically efficient machine teaching. Artificial Intelligence, to appear.spa
dc.relation.referencesMorales-Ramirez, I., Kifetew, F. M., & Perini, A. (2019). Speech-acts based analysis for requirements discovery from online discussions. Information Systems, 86, 94–112. https://doi.org/https://doi.org/10.1016/j.is.2018.08.003spa
dc.relation.referencesMorales-Ramirez, I., Vergne, M., Morandini, M., Sabatucci, L., Perini, A., & Susi, A. (2012). Where did the requirements come from? A retrospective case study. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, S. Castano, P. Vassiliadis, L. V Lakshmanan, & M. L. Lee (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 7518 LNCS (pp. 185–194). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33999-8_23spa
dc.relation.referencesMurugesh, S., & Jaya, A. (2021). An integrated approach towards automated software requirements elicitation from unstructured documents. J. Ambient Intell. Humaniz. Comput., 12(3), 3763–3773. https://doi.org/10.1007/s12652-019-01667-7spa
dc.relation.referencesNath, R. (2007). Object Oriented Design and Modeling. www.ddegjust.ac.in/studymaterial/mca-5/mca-503.pdfspa
dc.relation.referencesNguyen, T. H., Grundy, J., & Almorsy, M. (2015). Rule-Based Extraction of Goal-Use Case Models from Text. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, 591–601. https://doi.org/10.1145/2786805.2786876spa
dc.relation.referencesNwana, H. S., Paton, R. C., Shave, M. J. R., & Bench-Capon, T. J. M. (1992). Domain-driven knowledge modelling: Mediating intermediate representations for knowledge acquisition. In J. Siekmann, G. Goos, J. Hartmanis, T. Wetter, K.-D. Althoff, J. Boose, B. R. Gaines, M. Linster, & F. Schmalhofer (Eds.), Lecture Notes in Computer Science: Vol. 599 LNAI (pp. 250–263). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-55546-3_44spa
dc.relation.referencesOchodek, M., & Nawrocki, J. (2008). Automatic transactions identification in use cases. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5082 LNCS (pp. 55–68). https://doi.org/10.1007/978-3-540-85279-7_5spa
dc.relation.referencesPacheco, C., García, I., & Reyes, M. (2018). Requirements elicitation techniques: a systematic literature review based on the maturity of the techniques. IET Software, 12(4), 365–378.spa
dc.relation.referencesPerepletchikov, M., & Padgham, L. (2005). Use case and actor driven requirements engineering: An evaluation of modifications to prometheus. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Pěchouček, P. Petta, & L. Z. Varga (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 3690 LNAI (pp. 203–212). Springer Berlin Heidelberg. https://doi.org/10.1007/11559221_21spa
dc.relation.referencesPrendergast, M. D. (2021). Automated Extraction and Classification of Slot Machine Requirements from Gaming Regulations. 2021 IEEE International Systems Conference (SysCon), 1–6. https://doi.org/10.1109/SysCon48628.2021.9447144spa
dc.relation.referencesRaharjana, I. K., Siahaan, D., & Fatichah, C. (2019). User Story Extraction from Online News for Software Requirements Elicitation: A Conceptual Model. JCSSE 2019 - 16th International Joint Conference on Computer Science and Software Engineering: Knowledge Evolution Towards Singularity of Man-Machine Intelligence, 342–347. https://doi.org/10.1109/JCSSE.2019.8864199spa
dc.relation.referencesRaharjana, I. K., Siahaan, D., & Fatichah, C. (2021). User Stories and Natural Language Processing: A Systematic Literature Review. IEEE Access, 9, 53811–53826. https://doi.org/10.1109/ACCESS.2021.3070606spa
dc.relation.referencesRajender Kumar Surana, C. S., Shriya, Gupta, Di. B., & Shankar, S. P. (2019). Intelligent Chatbot for Requirements Elicitation and Classification. 2019 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology, RTEICT 2019 - Proceedings, 866–870. https://doi.org/10.1109/RTEICT46194.2019.9016907spa
dc.relation.referencesRajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for Machine Comprehension of Text. Conference on Empirical Methods in Natural Language Processing, 2383–2392. https://doi.org/10.18653/v1/D16-1264spa
dc.relation.referencesRana, Y., & Tamara, A. (2015). An enhanced requirements elicitation framework based on business process models. Scientific Research and Essays, 10(7), 279–286. https://doi.org/10.5897/sre2014.6138spa
dc.relation.referencesReddy, A. C. O., & Madhavi, K. (2017). A Survey on Types of Question Answering System. 19(6), 19–23. https://doi.org/10.9790/0661-1906041923spa
dc.relation.referencesRizk, N. M., Nasr, E. S., & Gheith, M. H. (2019). Enhancing CREeLS the Crowdsourcing based Requirements Elicitation approach for eLearning Systems Using Bi-Gram Evaluation. 2019 15th International Computer Engineering Conference (ICENCO), 222–226. https://doi.org/10.1109/ICENCO48310.2019.9027371spa
dc.relation.referencesRobertson, S., & Robertson, J. (2012). Mastering the requirement process: getting requirements right (Third). Pearson Education.spa
dc.relation.referencesRolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke, M., Haumer, P., Pohl, K., Dubois, E., & Heymans, P. (1998). A proposal for a scenario classification framework. Requirements Engineering, 3(1), 23–47. https://doi.org/10.1007/bf02802919spa
dc.relation.referencesRolland, C., & Proix, C. (1992). A natural language approach for Requirements Engineering. In P. Loucopoulos (Ed.), Advanced Information Systems Engineering (pp. 257–277). Springer Berlin Heidelberg.spa
dc.relation.referencesRoss, D. T., & Schoman, K. E. (1977). Structured Analysis for Requirements Definition. IEEE Transactions on Software Engineering, SE-3(1), 6–15. https://doi.org/10.1109/TSE.1977.229899spa
dc.relation.referencesSalleh, N. M., & Nohuddin, P. N. E. (2019). Hybrid requirement elicitation techniques with lean six sigma methodology for an enhanced framework. In H. Badioze Zaman, A. F. Smeaton, T. K. Shih, S. Velastin, T. Terutoshi, N. Mohamad Ali, & M. N. Ahmad (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11870 LNCS (pp. 190–201). Springer International Publishing. https://doi.org/10.1007/978-3-030-34032-2_18spa
dc.relation.referencesSannier, N., Adedjouma, M., Sabetzadeh, M., & Briand, L. (2017). An automated framework for detection and resolution of cross references in legal texts. Requirements Engineering, 22(2), 215–237. https://doi.org/10.1007/s00766-015-0241-3spa
dc.relation.referencesShakeri Hossein Abad, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. 2018 5th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), 8–14. https://doi.org/10.1109/AIRE.2018.00007spa
dc.relation.referenceshakeri, Z., Gervasi, V., Zowghi, D., & Barker, K. (2018, July 20). ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information. IEEE 26th International Requirements Engineering Conference Workshops.spa
dc.relation.referencesShi, L., Chen, C., Wang, Q., & Boehm, B. W. (2021). Automatically detecting feature requests from development emails by leveraging semantic sequence mining. Requir. Eng., 26(2), 255–271. https://doi.org/10.1007/s00766-020-00344-yspa
dc.relation.referencesSleimi, A., Ceci, M., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2019). A Query System for Extracting Requirements-Related Information from Legal Texts. 2019 IEEE 27th International Requirements Engineering Conference (RE), 319–329. https://doi.org/10.1109/RE.2019.00041spa
dc.relation.referencesSleimi, A., Sannier, N., Sabetzadeh, M., Briand, L., & Dann, J. (2018). Automated Extraction of Semantic Legal Metadata using Natural Language Processing. 2018 IEEE 26th International Requirements Engineering Conference (RE), 124–135. https://doi.org/10.1109/RE.2018.00022spa
dc.relation.referencesSommerville, I. (2015). Software Engineering (10th ed.). Pearson.spa
dc.relation.referencesSouag, A., Salinesi, C., Mazo, R., & Comyn-Wattiau, I. (2015). A security ontology for security requirements elicitation. In F. Piessens, J. Caballero, & N. Bielova (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8978, pp. 157–177). Springer International Publishing. https://doi.org/10.1007/978-3-319-15618-7_13spa
dc.relation.referencesSpanoudakis, G., Zisman, A., Pérez-Miñana, E., & Krause, P. (2004). Rule-based generation of requirements traceability relations. Journal of Systems and Software, 72(2), 105–127. https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5spa
dc.relation.referencesSun, P., Yang, X., Zhao, X., & Wang, Z. (2019). An Overview of Named Entity Recognition. Proceedings of the 2018 International Conference on Asian Language Processing, IALP 2018, 273–278. https://doi.org/10.1109/IALP.2018.8629225spa
dc.relation.referencesSuryn, W. (2014). Software Engineering: A Practitioner’s Approach. In Software Quality Engineering: A Practitioner’s Approach (Vol. 9781118592). https://doi.org/10.1002/9781118830208spa
dc.relation.referencesSutcliffe, A., Thew, S., & Jarvis, P. (2011). Experience with user-centred requirements engineering. Requirements Engineering, 16(4), 267–280. https://doi.org/10.1007/s00766-011-0118-zspa
dc.relation.referencesVan Lamsweerde, A. (2000). Requirements Engineering in the Year 00: A Research Perspective. ICSE ’00 Proceedings of the 22nd International Conference on Software Engineering, 5–19. https://doi.org/10.1145/337180.337184spa
dc.relation.referencesVlas, R., & Robinson, W. N. (2011). A rule-based natural language technique for requirements discovery and classification in open-source software development projects. Proceedings of the Annual Hawaii International Conference on System Sciences, 1–10. https://doi.org/10.1109/HICSS.2011.28spa
dc.relation.referencesWang, M., & Zeng, Y. (2009). Asking the right questions to elicit product requirements. International Journal of Computer Integrated Manufacturing, 22(4), 283–298. https://doi.org/10.1080/09511920802232902spa
dc.relation.referencesWieringa, R. J. (2014). Design science methodology: For information systems and software engineering. In Design Science Methodology: For Information Systems and Software Engineering. https://doi.org/10.1007/978-3-662-43839-8spa
dc.relation.referencesWijers, G. M., & Heijes, H. (1990). Automated support of the modelling process: A view based on experiments with expert information engineers. In R. King (Ed.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 436 LNCS (pp. 88–108). Springer International Publishing. https://doi.org/10.1007/BFb0000588spa
dc.relation.referencesWohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering. In Experimentation in Software Engineering (Vol. 9783642290442). https://doi.org/10.1007/978-3-642-29044-2spa
dc.relation.referencesWolfson, T., Geva, M., Gupta, A., Gardner, M., Goldberg, Y., Deutch, D., & Berant, J. (2020). Break It Down: A Question Understanding Benchmark. Transactions of the Association for Computational Linguistics, 8, 183–198. https://doi.org/10.1162/tacl_a_00309spa
dc.relation.referencesXu, J. Y., & Wang, Y. (2020). Formal Software Requirement Elicitation based on Semantic Algebra and Cognitive Computing. 2020 IEEE 19th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), 187–194. https://doi.org/10.1109/ICCICC50026.2020.9450275spa
dc.relation.referencesYamanaka, T., Noguchi, H., Yato, S., & Komiya, S. (2010). Proposal of a method to navigate interview-driven software requirements elicitation work. Proceedings of the 9th WSEAS International Conference on Applications of Computer Engineering, ACE ’10, December 2010, 125–131.spa
dc.relation.referencesYoung, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.2840738spa
dc.relation.referencesZapata, Carlos M., Giraldo, G. L., & Mesa, J. E. (2010). Una propuesta de metaontología para la educción de requisitos. Ingeniare, 18(1), 26–37. https://doi.org/10.4067/s0718-33052010000100004spa
dc.relation.referencesZapata, Carlos Mario, & Carmona, N. (2010). Un Modelo De Dialogo Para Los Requisitos De Software. Dyna, 77(164), 209–219. http://www.scielo.org.co/pdf/dyna/v77n164/a21v77n164.pdf182301&partnerID=40&md5=bb027d0537c4a06b753bbcd1590e41easpa
dc.relation.referencesZapata, Carlos Mario, Chaverra, J., & Vill, H. (2012). Un caso de estudio para la generación automática de código a partir de esquemas preconceptuales A study case for automatic code generation based on pre-conceptual schemas. Cuaderno ACTIVA, Tecnológico de Antioquia, 4(4), 9–24.spa
dc.relation.referencesZelle, J. M., & Mooney, R. J. (1996). Learning to Parse Database Queries Using Inductive Logic Programming. Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2, 1050–1055.spa
dc.relation.referencesZeni, N., Kiyavitskaya, N., Mich, L., Cordy, J. R., & Mylopoulos, J. (2015). GaiusT: supporting the extraction of rights and obligations for regulatory compliance. Requirements Engineering, 20(1), 1–22. https://doi.org/10.1007/s00766-013-0181-8spa
dc.relation.referencesZhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E.-V., & Batista-Navarro, R. T. (2021). Natural Language Processing for Requirements Engineering: A Systematic Mapping Study. ACM Comput. Surv., 54(3). https://doi.org/10.1145/3444689spa
dc.relation.referencesZhong, H., Zhang, L., Xie, T., & Mei, H. (2009). Inferring Resource Specifications from Natural Language API Documentation. ASE2009 - 24th IEEE/ACM International Conference on Automated Software Engineering, 307–318. https://doi.org/10.1109/ASE.2009.94spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembIngeniería de software
dc.subject.lembDesarrollo del software
dc.subject.lembProcesamiento del lenguaje natural (Ciencia de computador)
dc.subject.proposalRequirements elicitationspa
dc.subject.proposalQuestion answering systemseng
dc.subject.proposalNatural language processingeng
dc.subject.proposalNamed entity recognitioneng
dc.subject.proposalMeta-ontologyeng
dc.subject.proposalEducción de requisitosspa
dc.subject.proposalSistemas pregunta respuestaspa
dc.subject.proposalProcesamiento de lenguaje naturalspa
dc.subject.proposalReconocimiento de entidades nombradasspa
dc.subject.proposalMeta-ontologíaspa
dc.titleA Question answering model for requirements elicitation in the context of software developmenteng
dc.title.translatedUn modelo preguta-respuesta para la educción de requisitos en el contexto del desarrollo de softwarespa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleA question answering model for eliciting requirements in the context of software developmentspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128443432.2022.pdf
Tamaño:
2.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería - Sistemas e Informática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: