Evaluación de las propiedades mecánicas de un biomaterial compuesto por gelatina e hidroxiapatita obtenidos a partir de residuos de la piscicultura

dc.contributor.advisorVelásquez Lozano, Mario Enrique
dc.contributor.authorTriana Jiménez, Kelly Marcela
dc.contributor.cvlacTriana Jiménez, Kelly Marcela [0001697075]
dc.contributor.researchgateTriana Jiménez, Kelly Marcela [Kelly-Triana-Jimenez]
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.date.accessioned2026-02-11T15:24:45Z
dc.date.available2026-02-11T15:24:45Z
dc.date.issued2025
dc.descriptionIlustraciones, fotografías, gráficosspa
dc.description.abstractLa demanda de soluciones efectivas y económicas para la reparación de defectos óseos ha aumentado a través del tiempo, impulsando a la comunidad científica al desarrollo de biomateriales que posean propiedades físicas y biológicas capaces de responder a las necesidades del tejido. En esta investigación se diseñó un biomaterial compuesto por gelatina e hidroxiapatita que se han obtenido a partir de los residuos del beneficio de tilapia plateada (Orechromis niloticus). Se estableció en primer lugar una metodología para la extracción de gelatina e hidroxiapatita, se observó la mezcla de estos dos componentes y cómo su interacción permitía diferentes presentaciones de biomaterial y se propuso el diseño de un proceso integral que usa las escamas como fuente para la obtención de una estructura tridimensional liofilizada (scaffold) buscando obtener propiedades mecánicas deseables para su potencial aplicación como implante óseo. Dentro del diseño se incorporó el uso de alginato de sodio como estrategia para mejorar la homogeneidad de las mezclas considerando el reto que representó la dispersión de hidroxiapatita en la gelatina y se reforzó la estructura entrecruzando la gelatina con glutaraldehído. Las caracterizaciones de las materias primas obtenidas y del scaffold liofilizado incluyeron la evaluación de propiedades térmicas (DSC, TGA), observaciones con métodos ópticos (DLS, microscopía óptica y 3D), difracción de rayos X, densidad, porosidad y resistencia a la compresión. Se obtuvieron valores comparables con los de la literatura en la mayoría de casos y se identificaron propiedades interesantes en las materias primas aplicables a otras áreas del conocimiento. Además, se evaluó la viabilidad celular de las materias primas (gelatina e hidroxiapatita) y prototipos finales. Como retos importantes para esta última etapa, se identificaron el control de la contaminación biológica, la concentración del agente entrecruzante y el pH. (Texto tomado de la fuente)spa
dc.description.abstractThe scientific community has been driven to develop biomaterials to repair bone defects due to the increasing demand over time. These biomaterials should possess physical and biological properties, able to respond to the needs of the tissue. This research proposed the design of a biomaterial composed by fish gelatin and hydroxyapatite from residues of tilapia, trying to reach desirable specifications for applying as bone implant. In that way, raw materials were obtained from bones and scales of Nile tilapia (Orechromis niloticus); then, interaction and capability of mixtured components for obtaining an homogeneus biomaterial in different presentations were observed and, consequently, the design a freeze - dried composite scaffold was carried out. As reinforcement strategy, sodium alginate were included and fish gelatin was crosslinked by glutaraldehyde solutions. Some characterizations included thermal properties (DSC and TGA), observation through optical techniques (DLS, conventional microscopy and 3D microscopy), XRD, density, porosity and compressive strength. Cell viability assays allowed to identify improvement opportunities to control biological contamination, crosslinking techniques and pH.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctora en Ingeniería - Ingeniería Química
dc.description.researchareaBioprocesos
dc.description.sponsorshipEste trabajo se desarrolló gracias a la financiación dada por el Ministerio de Ciencia, Tecnología e Investigación - Minciencias, mediante el Programa de Becas de Excelencia Doctoral del Bicentenario, con el apoyo del Grupo de Investigación de Procesos Químicos y Bioquímicos de la Universidad Nacional de Colombia, de la Universidad de Salamanca en España con los proyectos PID2022-140599OB-I00, Grant PTA2024-024840-I y la División de Investigación sede Bogotá –DIB-, con el proyecto 60377.
dc.description.technicalinfoLa caracterización de la gelatina obtenida en la investigación fue cargada a la base de datos internacional ProteomeXchange Consortium vía Pride, bajo el número identificador PXD071911.
dc.format.extentxix, 115 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89495
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.relation.referencesAbifarin, J., Obada, D., Dauda, E., and Dodoo-Arhin, D. (2019). Experimental data on the characterization of hydroxyapatite synthesized from biowastes. Data in Brief, 26:104485.
dc.relation.referencesAfshari, M. (2017). 1 - introduction. In Afshari, M., editor, Electrospun Nano bers, Woodhead Publishing Series in Textiles, pages 1-8. Woodhead Publishing.
dc.relation.referencesAgbeboh, N. I., Oladele, I. O., Daramola, O. O., Adediran, A. A., Olasukanmi, O., and Tanimola, M. O. (2020). Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon (Londen), 6(4):e03765.
dc.relation.referencesAhmad, M. I., Li, Y., Pan, J., Liu, F., Dai, H., Fu, Y., Huang, T., Farooq, S., and Zhang, H. (2023). Collagen and gelatin: Structure, properties, and applications in food industry. International Journal of Biological Macromolecules, 254:128037.
dc.relation.referencesAlavarse, A. C., Frachini, E. C. G., Da Silva, R. L. C. G., Lima, V. H., Shavandi, A., and Petri, D. F. S. (2022). Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking effciency, a review. International Journal of Biological Macromolecules, 202:558-596.
dc.relation.referencesAlonzo, M., Alvarez-Primo, F., Kumar, S., Mudlo , J. A., Dominguez, E., Fregoso, G., Ortiz, N., Weiss, W., and Joddar, B. (2021). Bone tissue engineering techniques, advances, and scaffolds for treatment of bone defects. Current Opinion in Biomedical Engineering, 17:100248.
dc.relation.referencesAnanth, K. P., Guo, B., Zhang, C., Wang, W., Zhou, P., and Bai, J. (2020). Investigation of biphasic calcium phosphate (BCp)/polyvinylpyrrolidone (PVp) /graphene oxide (GO) composite for biomedical implants. Ceramics International, 46(15):24413-24423.
dc.relation.referencesAndi Lolo, J., Ambali, D., Jefriyanto, W., Handayani, D., Afridah, W., Wikurendra, E., Amalia, R., and Sya uddin, A. (2022). Synthesis and characterization of hydroxyapatite derived from milk fish bone by simple heat treatments. Biointerface Research in Applied Chemistry, 12:2440-2449.
dc.relation.referencesArellano, F. M., Bual, R., Bantilan, Z. C., Alimasag, J., Aron, J., Baclayon, L., Nisperos, M. J., Valle, K. D. D., Ducao, P. G., Lumancas, G., Pague, J. J., Labares, M. J., and Bacosa, H. (2024). Upcycling waste tilapia (oreochromis niloticus) scales through a decellularization process for extracellular matrix extraction. Materials Research Express, 11(2):025101.
dc.relation.referencesAsociación Nacional de Acuicultura y Pesca AUNAP, A. N. (2025). Exportación de pescado crece en colombia: en enero de 2025 se enviaron más de 4.000 toneladas.
dc.relation.referencesASTM International (2021). Standard test method for rubber property durometer hardness. Technical Report D2240, ASTM International. Accessed: 2025-12-21.
dc.relation.referencesAtma, Y., Fitriani, D., and Mustopa, A. (2020). Radical-Scavenging Activity of Fish Gelatin Hydrolysates from Bone of Pangasius catfish (Pangasius sutchi) by Microbial Proteases Hydrolysis. Biointerface Research in Applied Chemistry, 11(1):7903-7911.
dc.relation.referencesAyala-Barajas, D., Gonzalez-Velez, V., Velez-Tirado, M., and Aguilar, J. (2020). Hydroxyapatite extraction from fish scales of tilapia. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 2020, pages 2206-2208. IEEE Engineering in Medicine and Biology Society.
dc.relation.referencesAzami, M., Rabiee, M., and Moztarzadeh, F. (2010). Glutaraldehyde crosslinked gelatin/ hydroxyapatite nanocomposite scaffold, engineered via compound techniques. Polymer Composites, 31(12):2112-2120.
dc.relation.referencesAzmi, N. S., Basha, R. K., Ari n, N. N. T., Othman, S. H., and Mohammed, M. A. P. (2020). Functional properties of Tilapia's fish scale gelatin lm: Effects of different type of plasticizers. Sains Malaysiana, 49(09):2221-2229.
dc.relation.referencesBadii, F. and Howell, N. (2005). Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids, 20(5):630-640.
dc.relation.referencesBano, N., Jikan, S. S., Basri, H., Adzila, S., and Zago, D. M. (2019). XRD and FTIR study of A and B type carbonated hydroxyapatite extracted from bovine bone. AIP conference proceedings.
dc.relation.referencesBasak, P., Pahari, P., Das, P., Das, N., Samanta, S., and Roy, S. (2018). Synthesis and characterisation of gelatin-pva/hydroxyapetite(hap) composite for medical applications. IOP Conference Series: Materials Science and Engineering, 410:012021.
dc.relation.referencesBernabéu Martínez, E., L opez-Oliva Mu~noz, F., Larena Pellejero, A., Tur Gil, A., de la Piedra Gordo, M., and M, Montero Escobar, M. (2006). Estudio de la composición ósea para su apropiada regeneración con materiales implantados.
dc.relation.referencesBharadwaz, A. and Jayasuriya, A. C. (2020). Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Materials Science and Engineering: C, 110:110698.
dc.relation.referencesBoran, G. and Regenstein, J. M. (2010). Fish gelatin. Advances in food and nutrition research, pages 119-143.
dc.relation.referencesCarrera-Quintana, S. C., Gentile, P., and Girón-Hernández, J. (2022). An overview on the aquaculture development in colombia: Current status, opportunities and challenges. Aquaculture, 561:738583.
dc.relation.referencesChakraborty, R. and RoyChowdhury, D. (2013). Fish bone derived natural hydroxyapatitesupported copper acid catalyst: Taguchi optimization of semibatch oleic acid esteri cation. Chemical Engineering Journal, 215-216:491-499.
dc.relation.referencesChao, S. C.,Wang, M.-J., Pai, N.-S., and Yen, S.-K. (2015). Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair. Materials Science and Engineering: C, 57:113-122.
dc.relation.referencesChasqui, L. (2024). Oreochromis niloticus. en: Especies marinas y costeras introducidas en colombia. Accedido el 08 11 2025.
dc.relation.referencesChung, D. (2020). Chapter 3 - Fish gelatin: Molecular interactions and applications. In Pal, K., Banerjee, I., Sarkar, P., Kim, D., Deng, W.-P., Dubey, N. K., and Majumder, K., editors, Biopolymer-Based Formulations, pages 67-85. Elsevier.
dc.relation.referencesCopete, H., López, E., and Baudin, C. (2023). Synthesis and characterization of B-type carbonated hydroxyapatite materials: Effect of carbonate content on mechanical strength and in vitro degradation. Boletín de la Sociedad Española de Cerámica y Vidrio, 63(4):255-267.
dc.relation.referencesDamiri, F., Fatimi, A., Musuc, A. M., Paiva-Santos, A. C., Paszkiewicz, S., Idumah, C. I., Singh, S., Varma, R. S., and Berrada, M. S. (2024). Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications. Journal of Drug Delivery Science and Technology, page 105601.
dc.relation.referencesDerkach, S., Kolotova, D., Kuchina, Y., and Shumskaya, N. (2022). Characterization of Fish Gelatin Obtained from Atlantic Cod Skin Using Enzymatic Treatment. Polymers, 14(4):751.
dc.relation.referencesDerkach, S. R., Voron'ko, N. G., Kuchina, Y. A., and Kolotova, D. S. (2020). Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers, 12(12):3051.
dc.relation.referencesDerkach, S. R., Voron'ko, N. G., Sokolan, N. I., Kolotova, D. S., and Kuchina, Y. A. (2019). Interactions between gelatin and sodium alginate: UV and FTIR studies. Journal of Dispersion Science and Technology, 41(5):690-698.
dc.relation.referencesDeutsches Institut f ur Normung (2000). Din 53505:2000-08 testing of rubber - shore a and shore D hardness test. Standard, DIN, Berlin, Germany. Superseded by DIN ISO 7619-1.
dc.relation.referencesDuconseille, A., Wien, F., Audonnet, F., Traore, A., Refregiers, M., Astruc, T., and Santé- Lhoutellier, V. (2017). The effect of origin of the gelatine and ageing on the secondary structure and water dissolution. Food Hydrocolloids, 66:378-388.
dc.relation.referencesEdwin, N. and Wilson, P. (2018). Investigations on sonofragmentation of hydroxyapatite crystals as a function of strontium incorporation. Ultrasonics Sonochemistry, 50:188-199.
dc.relation.referencesEknapakul, T., Jiamprasertboon, A., Amonpattaratkit, P., Pimsawat, A., Daengsakul, S., Tanapongpisit, N., Saenrang, W., Bootchanont, A., Wannapraphai, P., Phetrattanarangsi, T., Boonchuduang, T., Khamkongkaeo, A., and Yimnirun, R. (2024). Unraveling the structural complexity of and the effect of calcination temperature on calcium phosphates derived from Oreochromis niloticus bones. Heliyon, 10(8):e29665.
dc.relation.referencesEnrione, J., Char, C., Pepczynska, M., Padilla, C., González-Muñoz, A., Olguín, Y., Quinzio, C., Iturriaga, L., and Díaz-Calderón, P. (2020). Rheological and Structural Study of Salmon Gelatin with Controlled Molecular Weight. Polymers, 12(7):1587.
dc.relation.referencesEnrione, J., Díaz Calderón, P.,Weinstein-Oppenheimer, C., Sanchez, E., Fuentes, M., Brown, D., Herrera, H., and Acevedo, C. (2013). Designing a gelatin/chitosan/hyaluronic acid biopolymer using a thermophysical approach for use in tissue engineering. Bioprocess and biosystems engineering, 36.
dc.relation.referencesEzzati, P., Ghasemi, I., Karrabi, M., Azizi, H., and Forteln y, I. (2014). Preparation of porous plla/pcl blend by a combination of peo phase and nacl particulate leaching in plla/pcl/peo/nacl blend. Iranian Polymer Journal, 23:757-766.
dc.relation.referencesFarzadi, A., Solati-Hashjin, M., Bakhshi, F., and Aminian, A. (2011). Synthesis and characterization of hydroxyapatite/beta-tricalcium phosphate nanocomposites using microwave irradiation. Ceramics International, 37(1):65-71.
dc.relation.referencesFayyazbakhsh, F., Khayat, M., and Leu, C. (2022). 3d-printed gelatin-alginate hydrogel dressings for burn wound healing: A comprehensive study. International Journal of Bioprinting, 8.
dc.relation.referencesFayyazbakhsh, F., Solati-Hashjin, M., Keshtkar, A., Shokrgozar, M. A., Dehghan, M. M., and Larijani, B. (2017). Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering sca old: An in vitro evaluation. Colloids and Surfaces B Biointerfaces, 158:697-708.
dc.relation.referencesFellows, C., Gauthaman, K., Pushparaj, P. N., Abbas, M., Matta, C., Lewis, R., Buhrmann, C., Shakibaei, M., and Mobasheri, A. (2016). Stem Cells in Bone and Articular Cartilage Tissue Regeneration, pages 177-204. Springer International Publishing.
dc.relation.referencesFernández-ávila, D. G., Bernal-Macías, S., Parra, M. J., Rincón, D. N., Gutiérrez, J. M., and Rosselli, D. (2021). Prevalence of osteoporosis in Colombia: Data from the National Health Registry from 2012 to 2018. Reumatología Clínica (English Edition), 17(10):570-574.
dc.relation.referencesFernández-Yagüe, M. A., Abbah, S. A., McNamara, L. M., Zeugolis, D. I., Pandit, A., and Biggs, M. (2015). Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 84:1-29.ndez-Yag ue, M. A., Abbah, S. A., McNamara, L. M., Zeugolis, D. I., Pandit, A., and Biggs, M. (2015). Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 84:1-29.
dc.relation.referencesFilipović, V. V., Babić Radić, M. M., Vuković, J. S., Vukomanović, M., Rubert, M., Hofmann, S., Müller, R., and Tomić, S. L. (2022). Biodegradable hydrogel scaffolds based on 2-hydroxyethyl methacrylate, gelatin, poly(beta-amino esters), and hydroxyapatite. Polymers, 14(1).
dc.relation.referencesFreeman, F. E., Burdis, R., and Kelly, D. J. (2021). Printing new bones: From Printand- Implant devices to bioprinted bone organ precursors. Trends in Molecular Medicine, 27(7):700-711.
dc.relation.referencesFrushour, B. G. and Koenig, J. L. (1975). Raman scattering of collagen, gelatin, and elastin. Biopolymers, 14(2):379-391.
dc.relation.referencesGallego, C., Rodil, E., Rodríguez, H., and Soto, A. (2024). Extraction and characterisation of gelatine from yellowfin tuna skin pretreated with a eutectic solvent. Food Hydrocolloids, page 110652.
dc.relation.referencesGillett, G. T., Fox, M. F., Rowe, P. S. N., Casimir, C. M., and Povey, S. (1996). Mapping of human non-muscle type cofilin (c 1) to chromosome 11q13 and muscle-type cofilin (c 2) to chromosome 14. Annals of Human Genetics, 60(3):201-211.
dc.relation.referencesGómez, M. I. O. (2021). Síntesis y caracterización de polvos de hidroxiapatita carbonatada tipo B con diferentes contenidos de carbonato. Revista Colombiana de Materiales, 11(17):22-32.
dc.relation.referencesGomes, S., Rodrigues, G., Martins, G., Henriques, C., and Silva, J. (2012). In vitro evaluation of crosslinked electrospun sh gelatin scaffolds. Materials Science and Engineering C, 33(3):1219-1227.
dc.relation.referencesGomez-Guillen, M., Turnay, J., Fernandez-Diaz, M., Ulmo, N., Lizarbe, M., and Montero, P. (2002). Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 16(1):25-34.
dc.relation.referencesGoto, T. and Sasaki, K. (2014). Effects of trace elements in sh bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceramics international, 40(7):10777-10785.
dc.relation.referencesGoudie, K. J., McCreath, S. J., Parkinson, J. A., Davidson, C. M., and Liggat, J. J. (2023). Investigation of the influence of pH on the properties and morphology of gelatin hydrogels. Journal of Polymer Science, 61(19):2316-2332.
dc.relation.referencesGrid, E. (2025). Bone repair materials market size, AI tech, smart innovations trends 2026-2033.
dc.relation.referencesGuo, W., Li, B., Feng, S., Liu, C., Wang, E., Li, P., Ye, X., Huang, Y., Liu, B., Wang, S., Mai, H., You, H., and Long, Y. (2025). Zinc Oxide Whisker-Loaded Antibacterial 3D Printed Polylactic Acid Based Composite Bone Scaffolds with Enhanced Biological and Mechanical Performance. Composites Communications, page 102398.
dc.relation.referencesGurumurthy, B. M. and Janorkar, A. V. (2021). Improvements in mechanical properties of collagen-based sca olds for tissue engineering. Current Opinion in Biomedical Engineering, 17:100253.
dc.relation.referencesHaghbin Nazarpak, M., Shahabi, S., Naja , F., Majdabadi, A., Hooshmand, T., Karimi, B., and Fatemi, S. M. (2014). Effect of gamma irradiation on structural and biological properties of a plga-peg-hydroxyapatite composite. The Scienti c World Journal, 2014.
dc.relation.referencesHamada, M., Nagai, T., Kai, N., Tanoue, Y., Mae, H., Hashimoto, M., Miyoshi, K., Kumagai, H., and Saeki, K. (1995). Inorganic constituents of bone of fish. Fisheries Science, 61:517-520.
dc.relation.referencesHao, S., Li, L., Yang, X., Cen, J., Shi, H., Bo, Q., and He, J. (2009). The characteristics of gelatin extracted from sturgeon (acipenser baeri) skin using various pretreatments. Food Chemistry, 115:124-128.
dc.relation.referencesHarguindeguy, M., Antonelli, C., Belleville, M.-P., Sanchez Marcano, J., and Pochat- Bohatier, C. (2020). Gelatin supports with immobilized laccase as sustainable biocatalysts for water treatment. Journal of Applied Polymer Science, 138:49669.
dc.relation.referencesHasdar, M., Nalinanon, S., and Sriket, C. (2024). Impact of pretreatment with acid and ultrasound on the production and characteristics of goat skin gelatin. Current Research in Nutrition and Food Science Journal, 12(2):887-907.
dc.relation.referencesHaug, I. and Draget, K. (2009). 6 - Gelatin. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, second edition edition.
dc.relation.referencesHe, X., Fan, X., Wei, F., Chen, Y., Guo, T., Wang, F., Liu, J., and Tang, K. (2018). Incorporation of micro brillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 115:385-392.
dc.relation.referencesHernlund, E., Svedbom, A., Ivergard, M., Compston, J., Cooper, C., Stenmark, J., McCloskey, E., Jönsson, B., and Kanis, J. . (2013). Osteoporosis in the European Union: medical management, epidemiology and economic burden. Archives of Osteoporosis, 8(1-2).
dc.relation.referencesHossan, M., Gafur, M., Karim, M., and Rana, A. (2015). Mechanical properties of GelatinHydroxyapatite composite for bone tissue engineering. Bangladesh Journal of Scientific and Industrial Research, 50(1):15{-0.
dc.relation.referencesHuang, T., Tu, Z.-C., Wang, H., Shangguan, X., Zhang, L., Zhang, N.-H., and Bansal, N. (2016). Pectin and enzyme complex modi ed sh scales gelatin: Rheological behavior, gel properties and nanostructure. Carbohydrate Polymers, 156:294-302.
dc.relation.referencesHussin, M. S. F., Abdulah, H. Z., Idris, M. I., and Wahap, M. A. A. (2022). Extraction of natural hydroxyapatite for biomedical applications|A review. Heliyon (Londen), 8(8):e10356.
dc.relation.referencesHwang, G.-L., Azizur Rahman, M., Abdul Razak, S., Sohm, F., Farahmand, H., Smith, A., Brooks, C., and Maclean, N. (2003). Isolation and characterisation of tilapia beta-actin promoter and comparison of its activity with carp beta-actin promoter. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1625(1):11-18.
dc.relation.referencesiHealthcareAnalyst, I. H. M. R. (2025). Global Bone Repair Materials Market 12;1billionby2033.
dc.relation.referencesIkoma, T., Kobayashi, H., Tanaka, J., Walsh, D., and Mann, S. (2003). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 32(3-5):199-204.
dc.relation.referencesIngwattanapok, N., Sakunrak, Y., and Tangboriboon, N. (2023). Bio composite of porous hydroxyapatite and collagen extracted from eggshell membrane and Oreochromis niloticus fish skin for bone tissue applications. Journal of Applied Polymer Science, 140(41).
dc.relation.referencesInsights, F. M. (2024). Fish Gelatin Market Size, Trends and Forecast 2024 to 2034.
dc.relation.referencesInternational Organization for Standardization (2003). Plastics and ebonite - determination of indentation hardness by means of a durometer (shore hardness) (iso 868:2003). Technical Report ISO 868:2003, International Organization for Standardization. Accessed: 2025-11- 10.
dc.relation.referencesISO 10993-5 (2009). ISO 10993-5: Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. International Organization for Standardization. Versión vigente (UNE-EN ISO 10993-5:2009).
dc.relation.referencesJia, W., Gungor-Ozkerim, P. S., Zhang, Y. S., Yue, K., Zhu, K., Liu, W., Pi, Q., Byambaa, B., Dokmeci, M. R., Shin, S. R., and Khademhosseini, A. (2016). Direct 3d bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials, 106:58-68.
dc.relation.referencesKatti, K. S., Jasuja, H., Kar, S., and Katti, D. R. (2021). Nanostructured biomaterials for in vitro models of bone metastasis cancer. Current Opinion in Biomedical Engineering, 17:100254.
dc.relation.referencesKim, H. N. and Suslick, K. S. (2021). Sonofragmentation of Organic Molecular Crystals vs Strength of Materials. The Journal of Organic Chemistry, 86(20):13997-14003.
dc.relation.referencesKim, K.-D., Jang, J. W., Kim, K., Lee, B., Hur, S. W., and Han, H. (2018). Tuna by-product meal as a dietary protein source replacing shmeal in juvenile Korean rock fish Sebastes schlegeli. Fisheries and Aquatic Sciences, 21(1).
dc.relation.referencesKolmas, J., Krukowski, S., Laskus, A., and Jurkitewicz, M. (2016). Synthetic hydroxyapatite in pharmaceutical applications. Ceramics International, 42(2, Part A):2472-2487.
dc.relation.referencesKolotova, D. S., Borovinskaya, E. V., Bordiyan, V. V., Zuev, Y. F., Salnikov, V. V., Zueva, O. S., and Derkach, S. R. (2023). Phase Behavior of Aqueous Mixtures of Sodium Alginate with Fish Gelatin: Effects of pH and Ionic Strength. Polymers, 15(10):2253.
dc.relation.referencesKundu, J., Pati, F., Shim, J.-H., and Cho, D.-W. (2014). 12 - rapid prototyping technology for bone regeneration. In Narayan, R., editor, Rapid Prototyping of Biomaterials (Second Edition), Woodhead Publishing Series in Biomaterials, pages 289{314. Woodhead Publishing, second edition edition.
dc.relation.referencesLandi, E., Valentini, F., and Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6):1620-1626.
dc.relation.referencesLe Ho, K. H., Dao, V. H., Pham, X. K., Nguyen, P. A., Phan, B. V., Doan, T. T., and Tran, X. V. (2025). Characterization, cytotoxicity and cell proliferation of two hydroxyapatite products from lates calcarifer sh bones via thermal calcination. Materials Research Express, 12(2):025402.
dc.relation.referencesLee, S. S., Du, X., Kim, I., and Ferguson, S. J. (2022a). Scaffolds for bone-tissue engineering. Matter, 5(9):2722-2759.
dc.relation.referencesLee, T., Mohd Pu'ad, N., Alipal, J., Muhamad, M., Basri, H., Idris, M., and Abdullah, H. (2022b). Tilapia wastes to valuable materials: A brief review of biomedical, wastewater treatment, and biofuel applications. Materials Today: Proceedings, 57:1389{1395. International Symposium of Reaction Engineering, Catalysis and Sustainable Energy (RECaSE 2021).
dc.relation.referencesLi, N., Guo, R., and Zhang, Z. (2021). Bioink formulations for bone tissue regeneration. Frontiers in Bioengineering and Biotechnology, 9.
dc.relation.referencesLiu, H., Chen, H., Han, Q., Sun, B., Liu, Y., Zhang, A., Fan, D., Xia, P., and Wang, J. (2023). Recent advancement in vascularized tissue engineered bone based on materials design and modification. Materials Today Bio, 23:100858.
dc.relation.referencesLiu, J., Li, H., Wan Mustapha, W. A., and Zhang, X. (2024). Ultrasound-assisted alkaline hydrolysis of fish (cyprinus carpio l.) scale gelatin: A possible curcumin delivery system with increased water solubility and sustained release. LWT, 191:115589.
dc.relation.referencesLiu, J., Tagami, T., and Ozeki, T. (2020). Fabrication of 3D-Printed Fish-Gelatin-Based polymer hydrogel patches for local delivery of PEGylated liposomal doxorubicin. Marine Drugs, 18(6):325.
dc.relation.referencesLopianiak, I. and Butruk-Raszeja, B. A. (2020). Evaluation of sterilization/disinfection methods of brous polyurethane scaffolds designed for tissue engineering applications. International Journal of Molecular Sciences, 21(21).
dc.relation.referencesLoth, T., H otzel, R., Kascholke, C., Anderegg, U., Schulz-Siegmund, M., and Hacker, M. C. (2014). Gelatin-Based Biomaterial Engineering with Anhydride-Containing Oligomeric Cross-Linkers. Biomacromolecules, 15(6):2104-2118.
dc.relation.referencesLópez, J., Imperial, S., Valderrama, R., and Navarro, S. (1993). An improved bradford protein assay for collagen proteins. Clinica Chimica Acta, 220(1):91-100.
dc.relation.referencesLueyot, A., Wonganu, B., Rungsardthong, V., Vatanyoopaisarn, S., Hutangura, P., Wongsa- Ngasri, P., Roytrakul, S., Charoenlappanit, S., Wu, T., and Thumthanaruk, B. (2022). Improved jelly fish gelatin quality through ultrasound-assisted salt removal and an extraction process. PLoS ONE, 17(11):e0276080.
dc.relation.referencesLuo, M., Lu, G., Yin, H., Wang, L.-m., and Dong, Z. (2021). Fish pigmentation and coloration: Molecular mechanisms and aquaculture perspectives. Reviews in Aquaculture.
dc.relation.referencesLv, L.-C., Huang, Q.-Y., Ding, W., Xiao, X., Zhang, H., and Xiong, L. (2019). Fish gelatin: The novel potential applications. Journal of Functional Foods, 63:103581.
dc.relation.referencesMartinez Alvarez, O., Chamorro, S., and Brenes, A. (2015). Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73.
dc.relation.referencesMartins, M. E. O., Sousa, J. R., Claudino, R. L., Lino, S. C. O., Vale, D. A. D., Silva, A. L. C., Morais, J. P. S., De S a M De Souza Filho, M., and De Souza, B. W. S. (2018). Thermal and Chemical Properties of Gelatin from Tilapia (Oreochromis niloticus) Scale. Journal of Aquatic Food Product Technology, 27(10):1120-1133.
dc.relation.referencesMauffrey, C., Barlow, B. T., and Smith, W. (2015). Management of segmental bone defects. Journal of the American Academy of Orthopaedic Surgeons, 23(3):143-153.
dc.relation.referencesMondal, S. and Pal, U. (2019). 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. Journal of Drug Delivery Science and Technology, 53:101131.
dc.relation.referencesMoniruzzaman, S. M., Takahashi, K., Nesa, N. U., Keratimanoch, S., Okazaki, E., and Osako, K. (2019). Characterization of acid- and pepsin-soluble collagens extracted from scales of carp and lizard fish caught in japan, bangladesh and vietnam with a focus on thermostability. Food Science and Technology Research, 25(2):331-340.
dc.relation.referencesMontalbano, G., Borciani, G., Cerqueni, G., Licini, C., Banche-Niclot, F., Janner, D., Sola, S., Fiorilli, S., Mattioli-Belmonte, M., Ciapetti, G., and Vitale-Brovarone, C. (2020). Collagen Hybrid formulations for the 3D printing of nanostructured bone sca olds: an optimized Genipin-Crosslinking strategy. Nanomaterials, 10(9):1681.
dc.relation.referencesMontesissa, M., Sassoni, E., Boi, M., Borciani, G., Boanini, E., and Graziani, G. (2024). Synthetic or natural (bio-based) hydroxyapatite? a systematic comparison between biomimetic nanostructured coatings produced by ionized jet deposition. Nanomaterials, 14(16).
dc.relation.referencesMorgan, E. F., Unnikrisnan, G. U., and Hussein, A. I. (2018). Bone mechanical properties in healthy and diseased states. Annual Review of Biomedical Engineering, 20(Volume 20, 2018):119-143.
dc.relation.referencesMoufaddel, A., Bougrin, K., El Monfalouti, H., and Kartah, B. E. (2024). Unlocking the potential of shery waste: Acid-soluble ultrasound extraction of marine collagen from sardine fish scales. Chemistry Proceedings, 16(1).
dc.relation.referencesMoukbil, Y., Isindag, B., Gayir, V., Ozbek, B., Hask oyl u, M. E., Oner, E. T., Oktar, F. N., Ikram, F., S eng or, M., and G und uz, O. (2020). 3D printed bioactive composite scaffolds for bone tissue engineering. Bioprinting, 17:e00064.
dc.relation.referencesMukherjee, I. and Rosolen, M. (2013). Thermal transitions of gelatin evaluated using DSC sample pans of various seal integrities. Journal of Thermal Analysis and Calorimetry, 114(3):1161-1166.
dc.relation.referencesMuñoz, Y. O., Pérez, B. C., and Domínguez, Y. C. (2020). La aplicación de factores de crecimiento en el desarrollo de la ingeniería de tejidos óseos. Medicentro Electrónica, 24(4).
dc.relation.referencesMurcia, J. D. (2023). En 2022, la acuicultura creci o 20mercado de EE.UU. Agronegocios.
dc.relation.referencesNagai, N., Yunoki, S., Suzuki, T., Sakata, M., Tajima, K., and Munekata, M. (2004). Application of cross-linked salmon atelocollagen to the scaffold of human periodontal ligament cells. Journal of Bioscience and Bioengineering, 97(6):389-394.
dc.relation.referencesNarbat, M., Solati Hashtjin, M., and Pazouki, M. (2003). Fabrication of porous hydroxyapatite-gelatin scaffolds crosslinked by glutaraldehyde for bone tissue engineering. Iranian Journal of Biotechnology, 4(1):54-60.
dc.relation.referencesNetto, H., Olate, S., Chaves, M., Barbosa, J. R. D., and Mazzonetto, R. (2009). Análisis histológico del proceso de reparación en defectos óseos: Reconocimiento de defectos críticos. International Journal of Morphology, 27.
dc.relation.referencesNg, W. L., Chua, C. K., and Shen, Y.-F. (2019). Print me an organ! Why we are not there yet. Progress in Polymer Science, 97:101145.
dc.relation.referencesNitti, P., Kunjalukkal Padmanabhan, S., Cortazzi, S., Stanca, E., Siculella, L., Licciulli, A., and Demitri, C. (2021). Enhancing bioactivity of hydroxyapatite scaffolds using brous type i collagen. Frontiers in Bioengineering and Biotechnology, Volume 9 - 2021.
dc.relation.referencesNuvoli, L., Conte, P., Fadda, C., Ruiz, J. A. R., Garc a, J. M., Baldino, S., and Mannu, A. (2020). Structural, thermal, and mechanical properties of gelatin-based films integrated with tara gum. Polymer, 214:123244.
dc.relation.referencesOberbek, P., Bolek, T., Chlanda, A., Hirano, S., Kusnieruk, S., Rogowska-Tylman, J., Nechyporenko, G., Zinchenko, V., Swieszkowski, W., and Puzyn, T. (2018). Characterization and influence of hydroxyapatite nanopowders on living cells. Beilstein Journal of Nanotechnology, 9:3079-3094.
dc.relation.referencesOktavia, N., Triastuti, J., and Nirmala, D. (2022). E ect of acid, base and mixed treatment towards characteristics gelatin of bader bang (barbonymus balleroides) skin. IOP Conference Series: Earth and Environmental Science, 1036:012100.
dc.relation.referencesOtwey, R. Y., Atter, A., Galley, C., Nketia, S., Lee, Y., Koivula, H. M., and Agyakwah, S. K. (2024). Assessment of waste generated from fresh nile tilapia oreochromis niloticus in accra, ghana. Aquaculture, Fish and Fisheries, 4(3):e188.
dc.relation.referencesOuyang, L., Yao, R., Zhao, Y., and Sun, W. (2016). E ect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3):035020.
dc.relation.referencesOzbolat, I. T., Moncal, K. K., and Gudapati, H. (2017). Evaluation of bioprinter technologies. Additive Manufacturing, 13:179-200.
dc.relation.referencesÖzkaya, N. and Nordin, M. (1999). Mechanical Properties of Biological Tissues, pages 195{ 218. Springer New York, New York, NY.
dc.relation.referencesPal, G. K. and Suresh, P. K. (2017). Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science and Engineering: C, 70:32-40.
dc.relation.referencesPéan, C. A., Lajam, C. M., Zuckerman, J. D., and Bosco, J. (2019). Policy and ethical considerations for widespread utilization of generic orthopedic implants. Arthroplasty Today, 5(2):256-259.
dc.relation.referencesPanda, N. N., Jonnalagadda, S., and Pramanik, K. (2013). Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering. Journal of Biomaterials Science Polymer Edition, 24(18):2031-2044.
dc.relation.referencesPerkasa, D., Erizal, Darmawan, and Akhmad, R. (2013). Effect of gamma irradiation on mechanical and thermal properties of fish gelatin lm isolated from lates calcarifer scales. Indonesian Journal of Chemistry, 13:28-35.
dc.relation.referencesPetiti, J., Revel, L., and Divieto, C. (2024). Standard operating procedure to optimize resazurin-based viability assays. Biosensors, 14(4).
dc.relation.referencesPhawaphuthanon, N., Yu, D., Ngamnikom, P., Shin, I.-S., and Chung, D. (2018). Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocolloids, 88:119-126.
dc.relation.referencesPottathara, Y. B., Vuherer, T., Maver, U., and Kokol, V. (2021). Morphological, mechanical, and in-vitro bioactivity of gelatine/collagen/hydroxyapatite based scaffolds prepared by unidirectional freeze-casting. Polymer Testing, 102:107308.
dc.relation.referencesPu'ad, N. M., Koshy, P., Abdullah, H. Z., Idris, M. I., and Lee, T. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5):e01588.
dc.relation.referencesRashid, F., Soshi, S. S., and Gafur, M. A. (2024). Studies of XRD and FTIR on Synthesized Novel Hybrid Thin Film Made of Hydroxyapatite, Poly Vinyl Alcohol and Gelatin for Biomedical Application. Materials Sciences and Applications, 15(09):336-349.
dc.relation.referencesRefat, M. K. H., Nishi, F., Shubhro, K., Jony, M. A., Ahmed, A., Islam, M., Islam, M. N., Islam, K. M. D., and Billah, M. M. (2024). Effects of ultrasound-assisted extraction on physicochemical and functional properties of gelatin derived from hilsha (tenualosa ilisha) scales. Food Biophysics, 20.
dc.relation.referencesRyan, E. and Yin, S. (2022). Compressive strength of beta-tcp scaffolds fabricated via lithography-based manufacturing for bone tissue engineering. Ceramics International, 48(11):15516-15524.
dc.relation.referencesSadat-Shojai, M., Khorasani, M. T., Dinpanah-Khoshdargi, E., and Ahmad, J. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9(8):7591-7621.
dc.relation.referencesSaeed, G. K., Essa, A. F., and Said, S. A.-A. (2021). A Study of Preparing Samples of Hydroxyapatite with Different Densities Using Charcoal Powder. Journal of Physics Conference Series, 1818(1):012096.
dc.relation.referencesSalvatore, L., Gallo, N., Natali, M. L., Campa, L., Lunetti, P., Madaghiele, M., Blasi, F. S., Corallo, A., Capobianco, L., and Sannino, A. (2020). Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering: C, 113:110963.
dc.relation.referencesSarkar, M. S. I., Hasan, M. M., Hossain, M. S., Khan, M., Islam, A. A., Paul, S. K., Rasul, M. G., and Kamal, M. (2023). Exploring fish in a new way: A review on non-food industrial applications of sh. Heliyon, 9(12):e22673.
dc.relation.referencesSemba, J. A., Mieloch, A. A., and Rybka, J. D. (2020). Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. Bioprinting, 18:e00070.
dc.relation.referencesSerrano-Gaona, J. C. (2011). Estandarización de un proceso de extracción de colágeno a partir de los residuos de fileteo de tilapia (oreochromis sp) y cachama (piaractus brachypomus).
dc.relation.referencesShahabipour, F., Ashammakhi, N., Oskuee, R. K., Bonakdar, S., Hoffman, T., Shokrgozar, M. A., and Khademhosseini, A. (2020). Key components of engineering vascularized 3- dimensional bioprinted bone constructs. Translational Research, 216:57-76.
dc.relation.referencesShalaby, M., Agwa, M. M., Saeed, H., Khedr, S. M., Morsy, O., and El-Demellawy, M. (2019). Fish Scale Collagen preparation, characterization and its application in wound healing. Journal of Polymers and the Environment, 28(1):166-178.
dc.relation.referencesSinthusamran, S., Benjakul, S., and Kishimura, H. (2014). Characteristics and gel properties of gelatin from skin of seabass (lates calcarifer) as in uenced by extraction conditions. Food Chemistry, 152:276-284.
dc.relation.referencesSoleymani, S. and Naghib, S. M. (2023). 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon, 9(9):e19363.
dc.relation.referencesSreeja, S., Satya, J., Tamilarutselvi, K., Rajajeyasekar, R., Tamilselvi, A., Nandhakumari, P., and Sarojini, K. (2023). Isolation of gelatin from fish scale and evaluation of chemical composition and bioactive potential. Biomass Conversion and Biore nery, 14:22161-22170.
dc.relation.referencesTalebian, A., Salahshoor Kordestani, S., Rashidi, A., Dadashian, F., and Montazer, M. (2007). The effect of glutaraldehyde on the properties of gelatin films. Kemija u Industriji, 56:537{541.
dc.relation.referencesTanzi, M. C., Farè, S., and Candiani, G. (2019). Chapter 8 - advanced applications. In Tanzi, M. C., Farè, S., and Candiani, G., editors, Foundations of Biomaterials Engineering, pages 471-545. Academic Press.
dc.relation.referencesTeng, S., Shi, J., Peng, B., and Chen, L. (2006). The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Composites Science and Technology, 66(11):1532-1538.
dc.relation.referencesTithito, T., Sillapaprayoon, S., Pimtong, W., Thongbunchoo, J., Charoenphandhu, N., Krishnamra, N., Lert-Itthiporn, A., Maneeprakorn, W., and Pon-On, W. (2023). Development of biomaterials based on biomimetic trace elements Co-Doped hydroxyapatite: physical, in vitro osteoblast-like cell growth and in vivo cytotoxicity in zebra sh studies. Nanomaterials, 13(2):255.
dc.relation.referencesTomić, S. L., Nikodinović-Runić, J., Vukomanović, M., Babić, M. M., and Vuković, J. S. (2021). Novel Hydrogel Scaffolds Based on Alginate, Gelatin, 2-Hydroxyethyl Methacrylate, and Hydroxyapatite. Polymers, 13(6):932.
dc.relation.referencesTortora, G. and Derrickson, B. (2006). Principios de Anatomía y Fisiología. Editorial Médica Panamericana S.A.
dc.relation.referencesTouaiher, I., Saadaoui, M., Reynaud, P., Reveron, H., and Chevalier, J. (2023). Mechanical properties of additive-manufactured hydroxyapatite porous scaffolds and follow-up of damage process under compression loading. Open Ceramics, 16:100498.
dc.relation.referencesTriyono, J., Al ansyah, R., Sukanto, H., Ariawan, D., and Nugroho, Y. (2020). Fabrication and characterization of porous bone scaffold of bovine hydroxyapatite-glycerin by 3D printing technology. Bioprinting, 18:e00078.
dc.relation.referencesTruc, T. T., Van Thom, N., Ha, N. T. N., Thuan, N. H. D., and Thuy, L. T. M. (2022). Properties of gelatin extracted from snakehead fish (Chitala striata) by-products at various temperatures and times. Food Science and Technology, 42.
dc.relation.referencesTu, Z.-C., Huang, T., Wang, H., Sha, X.-M., Shi, Y., Huang, X.-Q., Man, Z.-Z., and Li, D.-J. (2013). Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. Journal of Food Science and Technology, 52(4):2166-2174.
dc.relation.referencesValido, D. P., Júnior, W. D. G., De Andrade, M. E., Rezende, A. A., De Andrade De Carvalho, F. M., De Lima, R., Trindade, G. D. G. G., De Alcántara Campos, C., Oliveira, A. M. S., De Souza, E. P. B. S. S., Frank, L. A., Guterres, S. S., Sussuchi, E. M., Matos, C. R. S., Polloni, A., De Souza Ara ujo, A. A., Padilha, F. F., Severino, P., Souto, E. B., and De Albuquerque Júnior, R. L. C. (2020). Otoliths-composed gelatin/sodium alginate scaffolds for bone regeneration. Drug Delivery and Translational Research, 10(6):1716-1728.
dc.relation.referencesVargas-Becerril, N., Sánchez-Téllez, D., Zarazúa-Villalobos, L., González-García, D., Álvarez Pérez, M., De León-Escobedo, C., and Téllez-Jurado, L. (2020). Structure of biomimetic apatite grown on hydroxyapatite (HA). Ceramics International, 46(18):28806-28813.
dc.relation.referencesVenupriya, V., Krishnaveni, V., and Ramya, M. (2022). Effect of acidic and alkaline pretreatment on functional, structural and thermal properties of gelatin from waste fish scales. Polymer Bulletin, 80(9):10533-10567.
dc.relation.referencesVillatte, G., Erivan, R., Cueff, R., Wittrant, Y., Boisgard, S., and Descamps, S. (2022). Evaluation of the biomechanical and structural properties of bone allografts treated with a new cleaning process. World Journal of Advanced Research and Reviews, 14(3):608-616.
dc.relation.referencesWang, Z., Tian, Z., Menard, F., and Kim, K. (2017). Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication, 9(4):044101.
dc.relation.referencesWei, S., Ma, J.-X., Xu, L., Gu, X.-S., and Ma, X.-L. (2020). Biodegradable materials for bone defect repair. Military Medical Research, 7(1):54.
dc.relation.referencesXie, H., Ruan, S., Zhao, M., Long, J., Ma, X., Guo, J., and Lin, X. (2023). Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2. RSC Advances, 13(33):23010-23020.
dc.relation.referencesYadav, N. and Srivastava, P. (2019). In vitro studies on gelatin/hydroxyapatite composite modi ed with osteoblast for bone bioengineering. Heliyon, 5(5):e01633.
dc.relation.referencesYang, H., Wang, Y., Zhou, P., and Regenstein, J. M. (2007). Effects of alkaline and acid pretreatment on the physical properties and nanostructures of the gelatin from channel catfish skins. Food Hydrocolloids, 22(8):1541-1550.
dc.relation.referencesYilmaz, M. T., Kesmen, Z., Baykal, B., Sagdic, O., Kulen, O., Kacar, O., Yetim, H., and Baykal, A. T. (2013). A novel method to differentiate bovine and porcine gelatins in food products: Nanouplc-esi-q-tof-mse based data independent acquisition technique to detect marker peptides in gelatin. Food Chemistry, 141(3):2450-2458.
dc.relation.referencesYoruç, A. B. H. and Aydinoglu, A. (2015). Synthesis of Hydroxyapatite/Collagen (HA/COL) composite powder using a novel precipitation technique. Acta Physica Polonica A, 127(4):1264-1267.
dc.relation.referencesYuan, Z., Ye, X., Hou, Z., and Chen, S. (2024). Sustainable utilization of proteins from fish processing by-products: Extraction, biological activities and applications. Trends in Food Science and Technology, 143:104276.
dc.relation.referencesZadeh, F. B. and Zamanian, A. (2022). Glutaraldehyde: introducing optimum condition for cross-linking the Chitosan/Gelatin scaffolds for bone tissue engineering. International Journal of Engineering, 35(10):1967-1980.
dc.relation.referencesZainol, I., Adenan, N., Rahim, N., and Jaafar, C. A. (2019). Extraction of natural hydroxyapatite from tilapia fish scales using alkaline treatment. Materials Today Proceedings, 16:1942-1948.
dc.relation.referencesZeng, Y., Yan, Y., Yan, H., Liu, C., Li, P., Dong, P., Zhao, Y., and Chen, J. (2018). 3D printing of hydroxyapatite scaffolds with good mechanical and biocompatible properties by digital light processing. Journal of Materials Science, 53(9):6291-6301.
dc.relation.referencesZhang, Q.,Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, J. M., and Lin, L. (2016). Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel cat fish (Ictalurus punctatus). Food Bioscience, 13:41-48.
dc.relation.referencesZhu, M., Xiao, J., Lv, Y., Li, X., Zhou, Y., Liu, M., and Wang, C. (2024). Preparation, characterization, and evaluation of enzyme Co-Modi ed Fish Gelatin-Based Antibacterial derivatives. Polymers, 16(7):895.
dc.relation.referencesZubieta-Otero, L. F. and Rodríguez-García, M. E. (2023). Obtention and characterization of nano bio-hydroxyapatite particles by combined hydrothermal alkaline and ultrasonic wet milling methods. Next materials, 1(3):100019.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.blaaHidroxiapatitaspa
dc.subject.blaaGelatinaspa
dc.subject.blaaIngeniería de tejidosspa
dc.subject.ddc660 - Ingeniería química
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.subject.ddc610 - Medicina y salud
dc.subject.lembMateriales biomédicosspa
dc.subject.lembBiomedical materialseng
dc.subject.proposalHidroxiapatitaspa
dc.subject.proposalColágeno marinospa
dc.subject.proposalGelatinaspa
dc.subject.proposalIngeniería de tejidosspa
dc.subject.proposalBiomaterialesspa
dc.subject.proposalTilapiaspa
dc.subject.proposalImplantes para reparación ósea
dc.subject.proposalHydroxyapatite
dc.subject.proposalMarine collagen
dc.subject.proposalFish gelatin
dc.subject.proposalTissue engineering
dc.subject.proposalBiomaterials
dc.subject.proposalBone implants
dc.subject.proposalOreochromis niloticus
dc.titleEvaluación de las propiedades mecánicas de un biomaterial compuesto por gelatina e hidroxiapatita obtenidos a partir de residuos de la pisciculturaspa
dc.title.translatedMechanical evaluation of a biomaterial composed of gelatin and hydroxyapatite obtained from fish wasteeng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEspecializada
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitlePrograma de Becas de Excelencia Doctoral del Bicentenario
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo Final de Doctorado en Ingeniería.pdf
Tamaño:
60.84 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: