Estimación de estados no centralizada para sistemas eléctricos de potencia con validación e integración de mediciones sincronizadas y no sincronizadas

dc.contributor.advisorPérez González, Ernesto
dc.contributor.authorGarzón Hidalgo, Juan David
dc.contributor.orcid0000-0003-1602-8780spa
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2024-01-24T21:25:35Z
dc.date.available2024-01-24T21:25:35Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractEn este documento se plantea la implementación de un estimador de estados lineal distribuido, con integración de mediciones sincronizadas (unidades de medición fasorial) y mediciones no sincronizadas (convencionales). Inicialmente se abordan aspectos relevantes de la validación y acondicionamiento de datos sincrofasoriales, identificando las principales causas de errores y de qué manera afectan el proceso de comunicación de la información. Luego se introduce el modelo común de información CIM, describiendo el modelo de datos de una base de datos basada en modelo CIM y el diseño de la herramienta CIMreader para el almacenamiento de parámetros de red en base de datos a partir del modelo CIM de la red. Posteriormente se definen las reglas y consideraciones para la delimitación de áreas y pseudomedidas para el planteamiento del estimador lineal distribuido. Finalmente, se presenta el desarrollo de la metodología de estimación lineal y conciliación de estimadores locales sobre un sistema de prueba IEEE 39 Nodos. Los resultados obtenidos demuestran la efectividad de la metodología en la reducción del tiempo de estimación y la integración de mediciones sincronizadas y no sincronizadas, así como la articulación con el modelo CIM de la red. (texto tomado de la fuente)spa
dc.description.abstractThis document proposes the implementation of a distributed linear state estimator with integration of synchronized measurements (phasor measurement units) and unsynchronized (conventional) measurements. Initially, relevant aspects of synchrophasor data validation and conditioning are addressed, identifying the main causes of errors and how they affect the information communication process. Then, the common information model CIM is introduced, describing the data model of a database based on the CIM model and the design of the CIMreader tool, for storing network parameters extracted from the CIM model of the network into a database. Subsequently, the rules and considerations for the delimitation of areas and pseudo-measurments for the approach of the distributed linear estimator are defined. Finally, the development of the linear estimation methodology and reconciliation of local estimators on an IEEE 39 Node test system is presented. The obtained results demonstrate the effectiveness of the methodology in reducing the estimation time and a satisfactory integration of synchronized and non-synchronized measurements, as well as the articulation with the CIM model of the network.
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.format.extent108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85433
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesA. J. Wood, B. Wollenberg, and G. B. Sheblé, Power generation, operation, and controlspa
dc.relation.referencesA. Dubey, S. Chakrabarti, and V. Terzija, “SCADA and PMU Measurement Based Methods for Robust Hybrid State Estimation,” Electr. Power Components Syst., vol. 47, no. 9–10, pp. 849–860, 2019, doi: 10.1080/15325008.2019.1627606spa
dc.relation.referencesH. Wu and Giri, “PMU Impact on State Estimation Reliability for Improved Grid Security,” in 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, 2006, pp. 1349–1351, doi: 10.1109/TDC.2006.1668709spa
dc.relation.referencesM. Rostami and S. Lotfifard, “Distributed dynamic state estimation of power systems,” IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3395–3404, 2018, doi: 10.1109/TII.2017.2777495spa
dc.relation.referencesY. Sun, M. Fu, and H. Zhang, “Performance comparison of distributed state estimation algorithms for power systems,” J. Syst. Sci. Complex., vol. 30, no. 3, pp. 595–615, 2017, doi: 10.1007/s11424-017-6062-3spa
dc.relation.referencesJ. Zhao et al., “Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3188–3198, 2019, doi: 10.1109/TPWRS.2019.2894769spa
dc.relation.referencesA. McMorran, “Common Information Model Primer, First Edition,” 2011.spa
dc.relation.referencesK. Martin and C. Sun, “Synchro-Phasor Data Conditioning and Validation Project Phase 1 , Task 1 Report Review of existing infrastructure systems , administrative processes , and data validation schemes , methods and,” 2013spa
dc.relation.referencesK. Martin and J. Mo, “Synchro-‐Phasor Data Conditioning and Validation Project Phase 1, Task 3 Report Algorithms and Methods for,” 2014.spa
dc.relation.referencesK. Martin and C. Sun, “Synchro-Phasor Data Conditioning and Validation Project Phase 1 , Task 2 Report Best Practice Recommendations for Synchrophasor Systems : Administration , Planning and Implementation , and Operation and Maintenance,” 2013.spa
dc.relation.referencesK. D. Jones, A. Pal, and J. S. Thorp, “Methodology for Performing Synchrophasor Data Conditioning and Validation,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1121–1130, 2015, doi: 10.1109/TPWRS.2014.2347047spa
dc.relation.referencesM. Wu and L. Xie, “Online Detection of Low-Quality Synchrophasor Measurements: A Data-Driven Approach,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2817–2827, 2017, doi: 10.1109/TPWRS.2016.2633462spa
dc.relation.referencesY. Hao, M. Wang, J. H. Chow, E. Farantatos, and M. Patel, “Modelless data quality improvement of streaming synchrophasor measurements by exploiting the low-rank hankel structure,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6966–6977, 2018, doi: 10.1109/TPWRS.2018.2850708spa
dc.relation.referencesY. Wu, Y. Xiao, F. Hohn, L. Nordstrom, J. Wang, and W. Zhao, “Bad Data Detection Using Linear WLS and Sampled Values in Digital Substations,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 150–157, 2018, doi: 10.1109/TPWRD.2017.2669110spa
dc.relation.referencesA. W. McMorran, “An Introduction to IEC 61970-301 & 61968-11 : The Common Information Model,” Power, vol. 1, no. January, pp. 1–42, 2007, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:An+Introduction+to+IEC+61970-301+&+61968-11+:+The+Common+Information+Model#0spa
dc.relation.referencesA. W. McMorran, R. W. Lincoln, G. A. Taylor, and E. M. Stewart, “Addressing misconceptions about the Common Information Model (CIM),” IEEE Power Energy Soc. Gen. Meet., no. Cim, pp. 1–4, 2011, doi: 10.1109/PES.2011.6039391spa
dc.relation.referencesR. Khare, M. Khadem, S. Moorty, K. Methaprayoon, and J. Zhu, “Patterns and practices for CIM applications,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011, doi: 10.1109/PES.2011.6039268spa
dc.relation.referencesK. D. Jones, V. A. Centeno, J. S. Thorp, and K. D. Jones, “Three-Phase Linear State Estimation with Phasor Measurements by,” 2011spa
dc.relation.referencesR. Ebrahimian and R. Baldick, “State estimation distributed processing,” IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1240–1246, 2000, doi: 10.1109/59.898096spa
dc.relation.referencesB. Ozsoy and M. Gol, “A Hybrid State Estimation Strategy with Optimal Use of Pseudo-Measurements,” Proc. - 2018 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-Europe 2018, 2018, doi: 10.1109/ISGTEurope.2018.8571513spa
dc.relation.referencesB. Dönmez and A. Abur, “A Computationally Efficient Method to Place Critical Measurements,” Power, vol. 26, no. 2, pp. 924–931, 2011spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembDistribución de energía eléctrica
dc.subject.proposalEstimación de estados distribuidospa
dc.subject.proposalEstimación de estados linealspa
dc.subject.proposalModelo CIMspa
dc.subject.proposalPseudomedidasspa
dc.titleEstimación de estados no centralizada para sistemas eléctricos de potencia con validación e integración de mediciones sincronizadas y no sincronizadasspa
dc.title.translatedNon-centralized state estimation for electrical power systems with validation and integration of synchronized and non-synchronized measurementseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039448231.2023.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: