Determinación de la cinética de molienda SAG considerando la influencia reológica de finos en pulpa
dc.contributor.advisor | Bustamante Rúa, Moisés Oswaldo | |
dc.contributor.author | Valencia Guaricela, Fernando Tulio | |
dc.contributor.orcid | Valencia Guaricela, Fernando Tulio [0000000202078341] | spa |
dc.contributor.researchgroup | Ciencia y Tecnología de Materiales | spa |
dc.date.accessioned | 2025-03-20T19:09:56Z | |
dc.date.available | 2025-03-20T19:09:56Z | |
dc.date.issued | 2025-03-20 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Determinación de la cinética de molienda SAG considerando la influencia reológica de finos en pulpa En este estudio se presentan los resultados experimentales obtenidos a escala de laboratorio, donde bajo condiciones de molienda semiautógena SAG controlada, se procedió a la molienda de un monotamaño de mena silícea de 1.25 cm a la que se le añadió una pulpa preparada del mismo material con diferentes concentraciones de fino por debajo de malla 200, considerada ésta una fase contaminante. La investigación determinó la influencia en la cinética de fractura de las partículas gruesas bajo la premisa de que la presencia de finos en una pulpa modifica el comportamiento reológico de un fluido inicialmente de tipo newtoniano como el agua a otro no newtoniano como han mostrado las pulpas minerales. Los resultados obtenidos muestran una relación inversamente proporcional entre la presencia de finos y las velocidades específicas de fractura de las partículas gruesas. Esto permitió desarrollar modelos de función de fractura considerando diferentes escenarios de viscosidad aparente en la pulpa contaminante. (Texto tomado de la fuente) | spa |
dc.description.abstract | Determination of Sag Grinding Kinetics Considering the Rheological Influence of Fines in Slurry The experimental results obtained in the laboratory are presented, where, under conditions of controlled SAG semi-autogenous grinding, a monosize of siliceous ore of 2.54 cm was milled to which a pulp prepared of the same material was added with different concentrations of fine below mesh 200. The objective of the investigation aims to determine the influence on the fracture kinetics of the coarse particles under the premise that the presence of fines in a pulp modifies the rheological behavior of an initially type fluid Newtonian as water to another not Newtonian as mineral pulps have shown. The results obtained show an inversely proportional relationship between the presence of fines and the specific breakeage rate of the coarse particles. | eng |
dc.description.curriculararea | Área Curricular de Materiales y Nanotecnología | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.format.extent | 109 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87707 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales | spa |
dc.relation.references | Altun, O., Toprak, A., Altun, D., & Bilgili, E. (2024). Assessment of different energy-based breakage distribution functions in population balance model of an industrial scale continuously operated wet stirred media mill. Minerals Engineering, 218, 109054. https://doi.org/https://doi.org/10.1016/j.mineng.2024.109054 | spa |
dc.relation.references | Asghari, M., Vandghorbany, O., & Nakhaei, F. (2019). Relationship among operational parameters , ore characteristics , and product shape properties in an industrial SAG mill. Particulate Science and Technology, 38(4), 482–493. https://doi.org/10.1080/02726351.2018.1482977 | spa |
dc.relation.references | Austin, L., & Concha, F. (1994). Diseño y Simulación de Circuitos de Molienda y Clasificación (Programa Iberoamericano de Ciencia y Tecnología (ed.); 1st ed.). | spa |
dc.relation.references | Baldassarre, G., Baietto, O., & Marini, P. (2020). Comminution effects on mineral-grade distribution: The case of an mvt lead-zinc ore deposit. Minerals, 10(10), 1–18. https://doi.org/10.3390/min10100893 | spa |
dc.relation.references | Barrientos, A., Concha, F., & J.L, L. (1994). A mathematical model of solid-liquid suspensions. IV Meeting of the Southern Hemisphere on Mineral Technology, 189–202. | spa |
dc.relation.references | Becerra, M., & Magne, L. (2020). Semi-autogenous grinding model based on effective grinding rate and three stages internal classification – Part i. Minerals Engineering, 157, 106543. https://doi.org/https://doi.org/10.1016/j.mineng.2020.106543 | spa |
dc.relation.references | Beloglazov, I., & Plaschinsky, V. (2024). Development MPC for the Grinding Process in SAG Mills Using DEM Investigations on Liner Wear. Materials (Basel, Switzerland), 17(4). https://doi.org/10.3390/ma17040795 | spa |
dc.relation.references | Benretem, A., Benidir, M., & Chaib, R. (2010). Factors influencing slurry rheology. World Pumps, 2010(7), 30–32. https://doi.org/https://doi.org/10.1016/S0262-1762(10)70199-1 | spa |
dc.relation.references | Bueno, M. P., Kojovic, T., Powell, M. S., & Shi, F. (2013). Multi-component AG/SAG mill model. Minerals Engineering, 43–44, 12–21. https://doi.org/https://doi.org/10.1016/j.mineng.2012.06.011 | spa |
dc.relation.references | Bustamante-Rua, M. O., Rojas-Reyes, N. R., & Quitian-Chila, G. R. (2016). Efecto del material fino en la reología de suspensiones de caolín. DYNA (Colombia), 83(195), 105–111. https://doi.org/10.15446/dyna.v83n195.48855 | spa |
dc.relation.references | Bustamante, M. O. (1999). Reología de suspensiones: Viscosidad de suspensiones minerales bajo una aproximación termodinámica. https://repositorio.unal.edu.co/handle/unal/21766 | spa |
dc.relation.references | Bustamante, M. O. (2002). Modelación matemática del tensor de esfuerzo y de la viscosidad de una suspensión mineral. Universidad de Concepción, Chile. | spa |
dc.relation.references | Bustamante, M. O., Rojas, N. R., & Quitian, G. R. (2016). Fine material effect on kaolin suspensions rheology. In DYNA (Vol. 83, pp. 105–111). scieloco. | spa |
dc.relation.references | Chitalov, L. (2018). Different ways of the ball Bond work index determining. Scientific Reports on Resource Issues, 10(03), 172–181. | spa |
dc.relation.references | Cleary, P. W., Delaney, G. W., Sinnott, M. D., & Morrison, R. D. (2018). Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Minerals Engineering, 128, 92–105. https://doi.org/https://doi.org/10.1016/j.mineng.2018.08.026 | spa |
dc.relation.references | Cleary, P. W., & Morrison, R. D. (2012). Prediction of 3D slurry flow within the grinding chamber and discharge from a pilot scale SAG mill. Minerals Engineering, 39, 184–195. https://doi.org/10.1016/j.mineng.2012.05.019 | spa |
dc.relation.references | Cleary, P. W., Morrison, R. D., & Sinnott, M. D. (2020). Prediction of slurry grinding due to media and coarse rock interactions in a 3D pilot SAG mill using a coupled DEM + SPH model. Minerals Engineering, 159. https://doi.org/10.1016/j.mineng.2020.106614 | spa |
dc.relation.references | Cleary, P. W., & Owen, P. (2019). Effect of operating condition changes on the collisional environment in a SAG mill. Minerals Engineering, 132, 297–315. https://doi.org/https://doi.org/10.1016/j.mineng.2018.06.027 | spa |
dc.relation.references | Cleary, P. W., Sinnott, M. D., & Morrison, R. D. (2023). Scale-Up Investigation of a Pilot and Industrial Scale Semi-Autogenous Mill Using a Particle Scale Model. Minerals, 13(12). https://doi.org/10.3390/min13121490 | spa |
dc.relation.references | COCHILCO. (2016). Informe de actualización del consumo energético de la minería del cobre al año 2015. In Informe de actualización del consumo energético de la minería del cobre al año 2015. https://www.cochilco.cl/Mercado de Metales/Informe de Consumo de Energía 2015 RBA versión final.pdf | spa |
dc.relation.references | Delaney, G. W., Cleary, P. W., Morrison, R. D., Cummins, S., & Loveday, B. (2013). Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Minerals Engineering, 50–51, 132–139. https://doi.org/https://doi.org/10.1016/j.mineng.2013.01.007 | spa |
dc.relation.references | Fuerstenau, D. W., & Abouzeid, A. Z. M. (1991). Effect of fine particles on the kinetics and energetics of grinding coarse particles. International Journal of Mineral Processing, 31(3–4), 151–162. https://doi.org/10.1016/0301-7516(91)90024-D | spa |
dc.relation.references | Garrido, C. (2004). Control Predictivo con Restricciones para una Planta de Molienda SAG. IFAC Proceedings Volumes (IFAC-PapersOnline), 88. | spa |
dc.relation.references | Ghasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). A Hybrid Intelligent Framework for Maximising SAG Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation. Ml, 1–21. https://ssrn.com/abstract=4735140 | spa |
dc.relation.references | Ghasemi, Z., Neumann, F., Zanin, M., Karageorgos, J., & Chen, L. (2024). A comparative study of prediction methods for semi-autogenous grinding mill throughput. Minerals Engineering, 205, 108458. https://doi.org/https://doi.org/10.1016/j.mineng.2023.108458 | spa |
dc.relation.references | Gong, D., Nadolski, S., Sun, C., Klein, B., & Kou, J. (2018). Optimization of the energy distribution of SABC circuits. Physicochemical Problems of Mineral Processing, 54(4), 1245–1252. https://doi.org/10.5277/ppmp18177 | spa |
dc.relation.references | Góralczyk, M., Krot, P., Zimroz, R., & Ogonowski, S. (2020). Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview. Energies, 13(24). https://doi.org/10.3390/en13246735 | spa |
dc.relation.references | He, M., & Forssberg, E. (2007). Influence of slurry rheology on stirred media milling of quartzite. Int. J. Miner. Process, 240–251. | spa |
dc.relation.references | Jiang, R., Wang, G., Li, J., Sun, K. K., & Hou, Y. (2021). PARAMETER OPTIMIZATION OF LARGE SAG MILL LINER BASED ON DEM AND KRIGING MODEL. Journal of Mining Science, 57(1), 32–44. https://doi.org/10.1134/S1062739121010051 | spa |
dc.relation.references | Kawatra, S. K., & Kawatra, S. K. (1997). Comminution Practices. Society of Mining, Metallurgy, and Exploration. https://books.google.com.ec/books?id=EYYQAQAAMAAJ | spa |
dc.relation.references | King, R. P. (Ronald P. (2001). Modeling and simulation of mineral processing systems. Butterworth-Heinemann. | spa |
dc.relation.references | Latchireddi, S. R., & Morrell, S. (1997). A laboratory study of the performance characteristics of mill pulp lifters. Minerals Engineering, 10(11), 1233–1244. https://doi.org/10.1016/S0892-6875(97)00109-X | spa |
dc.relation.references | Lowrinson, G. . (1974). Crushing and Grinding. In Butterworths. | spa |
dc.relation.references | Lynch, A. J. (1977). Mineral Crushing and Grinding Circuits. Developments in Mineral Processing, 1, 195–225. | spa |
dc.relation.references | Lynch, A. J., & Rowland, C. A. (2005). The History of Grinding. https://api.semanticscholar.org/CorpusID:136546412 | spa |
dc.relation.references | Maestro, A. (2002). DEPARTAMENT D ’ ENGINYERIA QUÍMICA I METAL · LÚRGIA TESIS DOCTORAL REOLOGÍA DE ESPESANTES CELULÓSICOS PARA PINTURAS AL AGUA : MODELIZACIÓN Y MECANISMO DE ESPESAMIENTO ASOCIATIVO Alicia Maestro Garriga Barcelona , Diciembre de 2002. Macromolecules. | spa |
dc.relation.references | Magne, L., Amestica, R., Barría, J., & Menacho, J. (1992). Evaluación de variables de operación en molienda semiautógena. REMETALLICA, II, 34–42. https://revistas.usach.cl/ojs/index.php/remetallica/article/download/1701/1581/ | spa |
dc.relation.references | Magne, L., Amestica, R., Barría, J., & Menacho, J. (1995). Modelización dinámica de molienda semiautógena basada en un modelo fenomenológico simplificado. Revista de Metalurgia, 31(2), 97–105. | spa |
dc.relation.references | Makgoale, D. M. (2019). EFFECTS OF MILL ROTATIONAL SPEED ON THE BATCH GRINDING KINETICS OF A UG2 PLATINUM ORE. file:///C:/Users/Lenovo/Downloads/EFFECTS OF MILL ROTATIONAL SPEED ON THE BATCH GRINDING OF A UG2 PLATINUM ORE.pdf | spa |
dc.relation.references | Maugin, G. A. (2006). On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Archive of Applied Mechanics, 75(10), 723–738. https://doi.org/10.1007/s00419-006-0062-4 | spa |
dc.relation.references | Mezger, T. G. (2006). The Rheology Handbook. In C. Compendia (Ed.), The Rheology Handbook (2nd ed.). https://doi.org/10.1515/9783748600367-009 | spa |
dc.relation.references | Morell, S. (2008). A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency. Minerals Engineering, 21(3), 224–233. https://doi.org/10.1016/J.MINENG.2007.10.001 | spa |
dc.relation.references | Morrell, S. (2008). A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency. Minerals Engineering, 21(3), 224–233. https://doi.org/10.1016/j.mineng.2007.10.001 | spa |
dc.relation.references | Morrell, S. (2016). Modelling the influence on power draw of the slurry phase in Autogenous (AG), Semi-autogenous (SAG) and ball mills. Minerals Engineering, 89, 148–156. https://doi.org/https://doi.org/10.1016/j.mineng.2016.01.015 | spa |
dc.relation.references | Morrell, S., & Valery, W. (2001). Influence of Feed Size on AG/SAG Mill Performance. Sag 2001, 203–214. | spa |
dc.relation.references | Napier-Munn, T., & Wills, B. A. (2005). Wills’ Mineral Processing Technology. In Wills’ Mineral Processing Technology (Issue October). https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0 | spa |
dc.relation.references | Osorio, A. (2015). Efecto del escenario reológico en la cámara de molienda sobre la cinética de fractura en un Molino de bolas. Universidad de Antioquia Medellín. | spa |
dc.relation.references | Osorio, A., Bustamante, O., Marin, J. M., & Restrepo, G. (2014). EVALUACIÓN DEL USO DE POLIACRILAMIDA COMO MODIFICADOR REOLÓGICO EN LA MOLIENDA DE PULPAS DE CUARZO. Revista Colombiana De Materiales, 5, 244–249. | spa |
dc.relation.references | Owusu, K. B., Skinner, W., & Asamoah, R. (2022). Feed hardness and acoustic emissions of autogenous/semi-autogenous (AG/SAG) mills. Minerals Engineering, 187, 107781. https://doi.org/https://doi.org/10.1016/j.mineng.2022.107781 | spa |
dc.relation.references | Pal, R. (2023). Recent Progress in the Viscosity Modeling of Concentrated Suspensions of Unimodal Hard Spheres. ChemEngineering, 7(4). https://doi.org/10.3390/chemengineering7040070 | spa |
dc.relation.references | Porras, M. (2016). ESTUDIO DEL CONSUMO DE ENERGÍA EN MOLIENDA HUMEDA DE UN MINERAL CONSIDERANDO REOLOGÍA DE SUSPENSIONES. https://repositorio.unal.edu.co/handle/unal/58344 | spa |
dc.relation.references | Quintanilla, P., Fernández, F., Mancilla, C., Rojas, M., Estrada, M., & Navia, D. (2024). Digital twin with automatic disturbance detection for real-time optimization of a semi-autogenous grinding (SAG) mill. https://arxiv.org/abs/2407.06216 | spa |
dc.relation.references | Salazar, J. L., Valdés-González, H., Vyhmesiter, E., & Cubillos, F. (2014). Model predictive control of semiautogenous mills (sag). Minerals Engineering, 64, 92–96. https://doi.org/10.1016/j.mineng.2014.03.029 | spa |
dc.relation.references | Shi, F. N., & Napier-Munn, T. J. (1999). Estimation of shear rates inside a ball mill. International Journal of Mineral Processing, 57(3), 167–183. https://doi.org/https://doi.org/10.1016/S0301-7516(99)00016-2 | spa |
dc.relation.references | Shi, F. N., & Napier-Munn, T. J. (2002). Effects of slurry rheology on industrial grinding performance. 65, 125–140. | spa |
dc.relation.references | Shi, F., & Napier-Munn, T. J. (1996). A model for slurry rheology. International Journal of Mineral Processing, 47(1), 103–123. https://doi.org/https://doi.org/10.1016/0301-7516(95)00101-8 | spa |
dc.relation.references | Shi, F., & Xie, W. (2015). A specific energy-based size reduction model for batch grinding ball mill. Minerals Engineering, 70, 130–140. https://doi.org/https://doi.org/10.1016/j.mineng.2014.09.006 | spa |
dc.relation.references | Silva, M., & Casali, A. (2015). Modelling SAG milling power and specific energy consumption including the feed percentage of intermediate size particles. Minerals Engineering, 70, 156–161. https://doi.org/10.1016/j.mineng.2014.09.013 | spa |
dc.relation.references | Tavares, L. M., & de Carvalho, R. M. (2009). Modeling breakage rates of coarse particles in ball mills. Minerals Engineering, 22(7), 650–659. https://doi.org/https://doi.org/10.1016/j.mineng.2009.03.015 | spa |
dc.relation.references | Xie, C., Ma, H., Song, T., & Zhao, Y. (2021). DEM investigation of SAG mill with spherical grinding media and non-spherical ore based on polyhedron-sphere contact model. Powder Technology, 386, 154–165. https://doi.org/https://doi.org/10.1016/j.powtec.2021.03.042 | spa |
dc.relation.references | Xie, C., Zhao, Y., Song, T., & Zhao, Y. (2022). Investigation of the effect of filling level on the wear and vibration of a SAG mill by DEM. Particuology, 63, 24–34. https://doi.org/https://doi.org/10.1016/j.partic.2021.04.009 | spa |
dc.relation.references | Xu, L., Luo, K., & Zhao, Y. (2018). Numerical prediction of wear in SAG mills based on DEM simulations. Powder Technology, 329, 353–363. https://doi.org/https://doi.org/10.1016/j.powtec.2018.02.004 | spa |
dc.relation.references | Zeng, G., Zhu, Y., & Chen, W. (2023). A Brief Review of Micro-Particle Slurry Rheological Behavior in Grinding and Flotation for Enhancing Fine Mineral Processing Efficiency. Minerals, 13(6). https://doi.org/10.3390/min13060792 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.armarc | Trituradoras | |
dc.subject.armarc | Fractura de solidos | |
dc.subject.ddc | 670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primarios | spa |
dc.subject.lemb | Reología | |
dc.subject.proposal | Molienda SAG | spa |
dc.subject.proposal | Reología | spa |
dc.subject.proposal | Pulpa | spa |
dc.subject.proposal | Velocidad específica de fractura | spa |
dc.subject.proposal | SAG grinding | eng |
dc.subject.proposal | Rheology | eng |
dc.title | Determinación de la cinética de molienda SAG considerando la influencia reológica de finos en pulpa | spa |
dc.title.translated | Determination of sag grinding kinetics considering the rheological influence of fines in slurry | |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 545900.2025.pdf
- Tamaño:
- 3.54 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: