Determinación de la cinética de molienda SAG considerando la influencia reológica de finos en pulpa

dc.contributor.advisorBustamante Rúa, Moisés Oswaldo
dc.contributor.authorValencia Guaricela, Fernando Tulio
dc.contributor.orcidValencia Guaricela, Fernando Tulio [0000000202078341]spa
dc.contributor.researchgroupCiencia y Tecnología de Materialesspa
dc.date.accessioned2025-03-20T19:09:56Z
dc.date.available2025-03-20T19:09:56Z
dc.date.issued2025-03-20
dc.descriptionIlustracionesspa
dc.description.abstractDeterminación de la cinética de molienda SAG considerando la influencia reológica de finos en pulpa En este estudio se presentan los resultados experimentales obtenidos a escala de laboratorio, donde bajo condiciones de molienda semiautógena SAG controlada, se procedió a la molienda de un monotamaño de mena silícea de 1.25 cm a la que se le añadió una pulpa preparada del mismo material con diferentes concentraciones de fino por debajo de malla 200, considerada ésta una fase contaminante. La investigación determinó la influencia en la cinética de fractura de las partículas gruesas bajo la premisa de que la presencia de finos en una pulpa modifica el comportamiento reológico de un fluido inicialmente de tipo newtoniano como el agua a otro no newtoniano como han mostrado las pulpas minerales. Los resultados obtenidos muestran una relación inversamente proporcional entre la presencia de finos y las velocidades específicas de fractura de las partículas gruesas. Esto permitió desarrollar modelos de función de fractura considerando diferentes escenarios de viscosidad aparente en la pulpa contaminante. (Texto tomado de la fuente)spa
dc.description.abstractDetermination of Sag Grinding Kinetics Considering the Rheological Influence of Fines in Slurry The experimental results obtained in the laboratory are presented, where, under conditions of controlled SAG semi-autogenous grinding, a monosize of siliceous ore of 2.54 cm was milled to which a pulp prepared of the same material was added with different concentrations of fine below mesh 200. The objective of the investigation aims to determine the influence on the fracture kinetics of the coarse particles under the premise that the presence of fines in a pulp modifies the rheological behavior of an initially type fluid Newtonian as water to another not Newtonian as mineral pulps have shown. The results obtained show an inversely proportional relationship between the presence of fines and the specific breakeage rate of the coarse particles.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extent109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87707
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.referencesAltun, O., Toprak, A., Altun, D., & Bilgili, E. (2024). Assessment of different energy-based breakage distribution functions in population balance model of an industrial scale continuously operated wet stirred media mill. Minerals Engineering, 218, 109054. https://doi.org/https://doi.org/10.1016/j.mineng.2024.109054spa
dc.relation.referencesAsghari, M., Vandghorbany, O., & Nakhaei, F. (2019). Relationship among operational parameters , ore characteristics , and product shape properties in an industrial SAG mill. Particulate Science and Technology, 38(4), 482–493. https://doi.org/10.1080/02726351.2018.1482977spa
dc.relation.referencesAustin, L., & Concha, F. (1994). Diseño y Simulación de Circuitos de Molienda y Clasificación (Programa Iberoamericano de Ciencia y Tecnología (ed.); 1st ed.).spa
dc.relation.referencesBaldassarre, G., Baietto, O., & Marini, P. (2020). Comminution effects on mineral-grade distribution: The case of an mvt lead-zinc ore deposit. Minerals, 10(10), 1–18. https://doi.org/10.3390/min10100893spa
dc.relation.referencesBarrientos, A., Concha, F., & J.L, L. (1994). A mathematical model of solid-liquid suspensions. IV Meeting of the Southern Hemisphere on Mineral Technology, 189–202.spa
dc.relation.referencesBecerra, M., & Magne, L. (2020). Semi-autogenous grinding model based on effective grinding rate and three stages internal classification – Part i. Minerals Engineering, 157, 106543. https://doi.org/https://doi.org/10.1016/j.mineng.2020.106543spa
dc.relation.referencesBeloglazov, I., & Plaschinsky, V. (2024). Development MPC for the Grinding Process in SAG Mills Using DEM Investigations on Liner Wear. Materials (Basel, Switzerland), 17(4). https://doi.org/10.3390/ma17040795spa
dc.relation.referencesBenretem, A., Benidir, M., & Chaib, R. (2010). Factors influencing slurry rheology. World Pumps, 2010(7), 30–32. https://doi.org/https://doi.org/10.1016/S0262-1762(10)70199-1spa
dc.relation.referencesBueno, M. P., Kojovic, T., Powell, M. S., & Shi, F. (2013). Multi-component AG/SAG mill model. Minerals Engineering, 43–44, 12–21. https://doi.org/https://doi.org/10.1016/j.mineng.2012.06.011spa
dc.relation.referencesBustamante-Rua, M. O., Rojas-Reyes, N. R., & Quitian-Chila, G. R. (2016). Efecto del material fino en la reología de suspensiones de caolín. DYNA (Colombia), 83(195), 105–111. https://doi.org/10.15446/dyna.v83n195.48855spa
dc.relation.referencesBustamante, M. O. (1999). Reología de suspensiones: Viscosidad de suspensiones minerales bajo una aproximación termodinámica. https://repositorio.unal.edu.co/handle/unal/21766spa
dc.relation.referencesBustamante, M. O. (2002). Modelación matemática del tensor de esfuerzo y de la viscosidad de una suspensión mineral. Universidad de Concepción, Chile.spa
dc.relation.referencesBustamante, M. O., Rojas, N. R., & Quitian, G. R. (2016). Fine material effect on kaolin suspensions rheology. In DYNA (Vol. 83, pp. 105–111). scieloco.spa
dc.relation.referencesChitalov, L. (2018). Different ways of the ball Bond work index determining. Scientific Reports on Resource Issues, 10(03), 172–181.spa
dc.relation.referencesCleary, P. W., Delaney, G. W., Sinnott, M. D., & Morrison, R. D. (2018). Inclusion of incremental damage breakage of particles and slurry rheology into a particle scale multiphase model of a SAG mill. Minerals Engineering, 128, 92–105. https://doi.org/https://doi.org/10.1016/j.mineng.2018.08.026spa
dc.relation.referencesCleary, P. W., & Morrison, R. D. (2012). Prediction of 3D slurry flow within the grinding chamber and discharge from a pilot scale SAG mill. Minerals Engineering, 39, 184–195. https://doi.org/10.1016/j.mineng.2012.05.019spa
dc.relation.referencesCleary, P. W., Morrison, R. D., & Sinnott, M. D. (2020). Prediction of slurry grinding due to media and coarse rock interactions in a 3D pilot SAG mill using a coupled DEM + SPH model. Minerals Engineering, 159. https://doi.org/10.1016/j.mineng.2020.106614spa
dc.relation.referencesCleary, P. W., & Owen, P. (2019). Effect of operating condition changes on the collisional environment in a SAG mill. Minerals Engineering, 132, 297–315. https://doi.org/https://doi.org/10.1016/j.mineng.2018.06.027spa
dc.relation.referencesCleary, P. W., Sinnott, M. D., & Morrison, R. D. (2023). Scale-Up Investigation of a Pilot and Industrial Scale Semi-Autogenous Mill Using a Particle Scale Model. Minerals, 13(12). https://doi.org/10.3390/min13121490spa
dc.relation.referencesCOCHILCO. (2016). Informe de actualización del consumo energético de la minería del cobre al año 2015. In Informe de actualización del consumo energético de la minería del cobre al año 2015. https://www.cochilco.cl/Mercado de Metales/Informe de Consumo de Energía 2015 RBA versión final.pdfspa
dc.relation.referencesDelaney, G. W., Cleary, P. W., Morrison, R. D., Cummins, S., & Loveday, B. (2013). Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Minerals Engineering, 50–51, 132–139. https://doi.org/https://doi.org/10.1016/j.mineng.2013.01.007spa
dc.relation.referencesFuerstenau, D. W., & Abouzeid, A. Z. M. (1991). Effect of fine particles on the kinetics and energetics of grinding coarse particles. International Journal of Mineral Processing, 31(3–4), 151–162. https://doi.org/10.1016/0301-7516(91)90024-Dspa
dc.relation.referencesGarrido, C. (2004). Control Predictivo con Restricciones para una Planta de Molienda SAG. IFAC Proceedings Volumes (IFAC-PapersOnline), 88.spa
dc.relation.referencesGhasemi, Z., Neshat, M., Aldrich, C., Karageorgos, J., Zanin, M., Neumann, F., & Chen, L. (2024). A Hybrid Intelligent Framework for Maximising SAG Mill Throughput: An Integration of Expert Knowledge, Machine Learning and Evolutionary Algorithms for Parameter Optimisation. Ml, 1–21. https://ssrn.com/abstract=4735140spa
dc.relation.referencesGhasemi, Z., Neumann, F., Zanin, M., Karageorgos, J., & Chen, L. (2024). A comparative study of prediction methods for semi-autogenous grinding mill throughput. Minerals Engineering, 205, 108458. https://doi.org/https://doi.org/10.1016/j.mineng.2023.108458spa
dc.relation.referencesGong, D., Nadolski, S., Sun, C., Klein, B., & Kou, J. (2018). Optimization of the energy distribution of SABC circuits. Physicochemical Problems of Mineral Processing, 54(4), 1245–1252. https://doi.org/10.5277/ppmp18177spa
dc.relation.referencesGóralczyk, M., Krot, P., Zimroz, R., & Ogonowski, S. (2020). Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview. Energies, 13(24). https://doi.org/10.3390/en13246735spa
dc.relation.referencesHe, M., & Forssberg, E. (2007). Influence of slurry rheology on stirred media milling of quartzite. Int. J. Miner. Process, 240–251.spa
dc.relation.referencesJiang, R., Wang, G., Li, J., Sun, K. K., & Hou, Y. (2021). PARAMETER OPTIMIZATION OF LARGE SAG MILL LINER BASED ON DEM AND KRIGING MODEL. Journal of Mining Science, 57(1), 32–44. https://doi.org/10.1134/S1062739121010051spa
dc.relation.referencesKawatra, S. K., & Kawatra, S. K. (1997). Comminution Practices. Society of Mining, Metallurgy, and Exploration. https://books.google.com.ec/books?id=EYYQAQAAMAAJspa
dc.relation.referencesKing, R. P. (Ronald P. (2001). Modeling and simulation of mineral processing systems. Butterworth-Heinemann.spa
dc.relation.referencesLatchireddi, S. R., & Morrell, S. (1997). A laboratory study of the performance characteristics of mill pulp lifters. Minerals Engineering, 10(11), 1233–1244. https://doi.org/10.1016/S0892-6875(97)00109-Xspa
dc.relation.referencesLowrinson, G. . (1974). Crushing and Grinding. In Butterworths.spa
dc.relation.referencesLynch, A. J. (1977). Mineral Crushing and Grinding Circuits. Developments in Mineral Processing, 1, 195–225.spa
dc.relation.referencesLynch, A. J., & Rowland, C. A. (2005). The History of Grinding. https://api.semanticscholar.org/CorpusID:136546412spa
dc.relation.referencesMaestro, A. (2002). DEPARTAMENT D ’ ENGINYERIA QUÍMICA I METAL · LÚRGIA TESIS DOCTORAL REOLOGÍA DE ESPESANTES CELULÓSICOS PARA PINTURAS AL AGUA : MODELIZACIÓN Y MECANISMO DE ESPESAMIENTO ASOCIATIVO Alicia Maestro Garriga Barcelona , Diciembre de 2002. Macromolecules.spa
dc.relation.referencesMagne, L., Amestica, R., Barría, J., & Menacho, J. (1992). Evaluación de variables de operación en molienda semiautógena. REMETALLICA, II, 34–42. https://revistas.usach.cl/ojs/index.php/remetallica/article/download/1701/1581/spa
dc.relation.referencesMagne, L., Amestica, R., Barría, J., & Menacho, J. (1995). Modelización dinámica de molienda semiautógena basada en un modelo fenomenológico simplificado. Revista de Metalurgia, 31(2), 97–105.spa
dc.relation.referencesMakgoale, D. M. (2019). EFFECTS OF MILL ROTATIONAL SPEED ON THE BATCH GRINDING KINETICS OF A UG2 PLATINUM ORE. file:///C:/Users/Lenovo/Downloads/EFFECTS OF MILL ROTATIONAL SPEED ON THE BATCH GRINDING OF A UG2 PLATINUM ORE.pdfspa
dc.relation.referencesMaugin, G. A. (2006). On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Archive of Applied Mechanics, 75(10), 723–738. https://doi.org/10.1007/s00419-006-0062-4spa
dc.relation.referencesMezger, T. G. (2006). The Rheology Handbook. In C. Compendia (Ed.), The Rheology Handbook (2nd ed.). https://doi.org/10.1515/9783748600367-009spa
dc.relation.referencesMorell, S. (2008). A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency. Minerals Engineering, 21(3), 224–233. https://doi.org/10.1016/J.MINENG.2007.10.001spa
dc.relation.referencesMorrell, S. (2008). A method for predicting the specific energy requirement of comminution circuits and assessing their energy utilisation efficiency. Minerals Engineering, 21(3), 224–233. https://doi.org/10.1016/j.mineng.2007.10.001spa
dc.relation.referencesMorrell, S. (2016). Modelling the influence on power draw of the slurry phase in Autogenous (AG), Semi-autogenous (SAG) and ball mills. Minerals Engineering, 89, 148–156. https://doi.org/https://doi.org/10.1016/j.mineng.2016.01.015spa
dc.relation.referencesMorrell, S., & Valery, W. (2001). Influence of Feed Size on AG/SAG Mill Performance. Sag 2001, 203–214.spa
dc.relation.referencesNapier-Munn, T., & Wills, B. A. (2005). Wills’ Mineral Processing Technology. In Wills’ Mineral Processing Technology (Issue October). https://doi.org/10.1016/B978-0-7506-4450-1.X5000-0spa
dc.relation.referencesOsorio, A. (2015). Efecto del escenario reológico en la cámara de molienda sobre la cinética de fractura en un Molino de bolas. Universidad de Antioquia Medellín.spa
dc.relation.referencesOsorio, A., Bustamante, O., Marin, J. M., & Restrepo, G. (2014). EVALUACIÓN DEL USO DE POLIACRILAMIDA COMO MODIFICADOR REOLÓGICO EN LA MOLIENDA DE PULPAS DE CUARZO. Revista Colombiana De Materiales, 5, 244–249.spa
dc.relation.referencesOwusu, K. B., Skinner, W., & Asamoah, R. (2022). Feed hardness and acoustic emissions of autogenous/semi-autogenous (AG/SAG) mills. Minerals Engineering, 187, 107781. https://doi.org/https://doi.org/10.1016/j.mineng.2022.107781spa
dc.relation.referencesPal, R. (2023). Recent Progress in the Viscosity Modeling of Concentrated Suspensions of Unimodal Hard Spheres. ChemEngineering, 7(4). https://doi.org/10.3390/chemengineering7040070spa
dc.relation.referencesPorras, M. (2016). ESTUDIO DEL CONSUMO DE ENERGÍA EN MOLIENDA HUMEDA DE UN MINERAL CONSIDERANDO REOLOGÍA DE SUSPENSIONES. https://repositorio.unal.edu.co/handle/unal/58344spa
dc.relation.referencesQuintanilla, P., Fernández, F., Mancilla, C., Rojas, M., Estrada, M., & Navia, D. (2024). Digital twin with automatic disturbance detection for real-time optimization of a semi-autogenous grinding (SAG) mill. https://arxiv.org/abs/2407.06216spa
dc.relation.referencesSalazar, J. L., Valdés-González, H., Vyhmesiter, E., & Cubillos, F. (2014). Model predictive control of semiautogenous mills (sag). Minerals Engineering, 64, 92–96. https://doi.org/10.1016/j.mineng.2014.03.029spa
dc.relation.referencesShi, F. N., & Napier-Munn, T. J. (1999). Estimation of shear rates inside a ball mill. International Journal of Mineral Processing, 57(3), 167–183. https://doi.org/https://doi.org/10.1016/S0301-7516(99)00016-2spa
dc.relation.referencesShi, F. N., & Napier-Munn, T. J. (2002). Effects of slurry rheology on industrial grinding performance. 65, 125–140.spa
dc.relation.referencesShi, F., & Napier-Munn, T. J. (1996). A model for slurry rheology. International Journal of Mineral Processing, 47(1), 103–123. https://doi.org/https://doi.org/10.1016/0301-7516(95)00101-8spa
dc.relation.referencesShi, F., & Xie, W. (2015). A specific energy-based size reduction model for batch grinding ball mill. Minerals Engineering, 70, 130–140. https://doi.org/https://doi.org/10.1016/j.mineng.2014.09.006spa
dc.relation.referencesSilva, M., & Casali, A. (2015). Modelling SAG milling power and specific energy consumption including the feed percentage of intermediate size particles. Minerals Engineering, 70, 156–161. https://doi.org/10.1016/j.mineng.2014.09.013spa
dc.relation.referencesTavares, L. M., & de Carvalho, R. M. (2009). Modeling breakage rates of coarse particles in ball mills. Minerals Engineering, 22(7), 650–659. https://doi.org/https://doi.org/10.1016/j.mineng.2009.03.015spa
dc.relation.referencesXie, C., Ma, H., Song, T., & Zhao, Y. (2021). DEM investigation of SAG mill with spherical grinding media and non-spherical ore based on polyhedron-sphere contact model. Powder Technology, 386, 154–165. https://doi.org/https://doi.org/10.1016/j.powtec.2021.03.042spa
dc.relation.referencesXie, C., Zhao, Y., Song, T., & Zhao, Y. (2022). Investigation of the effect of filling level on the wear and vibration of a SAG mill by DEM. Particuology, 63, 24–34. https://doi.org/https://doi.org/10.1016/j.partic.2021.04.009spa
dc.relation.referencesXu, L., Luo, K., & Zhao, Y. (2018). Numerical prediction of wear in SAG mills based on DEM simulations. Powder Technology, 329, 353–363. https://doi.org/https://doi.org/10.1016/j.powtec.2018.02.004spa
dc.relation.referencesZeng, G., Zhu, Y., & Chen, W. (2023). A Brief Review of Micro-Particle Slurry Rheological Behavior in Grinding and Flotation for Enhancing Fine Mineral Processing Efficiency. Minerals, 13(6). https://doi.org/10.3390/min13060792spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcTrituradoras
dc.subject.armarcFractura de solidos
dc.subject.ddc670 - Manufactura::671 - Proceso de metalurgia y productos metálicos primariosspa
dc.subject.lembReología
dc.subject.proposalMolienda SAGspa
dc.subject.proposalReologíaspa
dc.subject.proposalPulpaspa
dc.subject.proposalVelocidad específica de fracturaspa
dc.subject.proposalSAG grindingeng
dc.subject.proposalRheologyeng
dc.titleDeterminación de la cinética de molienda SAG considerando la influencia reológica de finos en pulpaspa
dc.title.translatedDetermination of sag grinding kinetics considering the rheological influence of fines in slurry
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
545900.2025.pdf
Tamaño:
3.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: