Tratamiento de un agua residual textil contaminada con colorante negro ácido 194 mediante un proceso Electro-Fenton
dc.contributor.advisor | Dobrosz-Gómez, Izabela | |
dc.contributor.advisor | Quintero Arias, Jesús David | |
dc.contributor.author | Castaño Sánchez, Juan Camilo | |
dc.contributor.cvlac | Castaño Sánchez, Juan Camilo [0001887259] | spa |
dc.contributor.googlescholar | Castaño Sánchez, Juan Camilo [9XaaeJwAAAAJ] | spa |
dc.contributor.orcid | Castaño Sánchez, Juan Camilo [000900076418299X] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma) | spa |
dc.date.accessioned | 2025-04-22T14:02:38Z | |
dc.date.available | 2025-04-22T14:02:38Z | |
dc.date.issued | 2024 | |
dc.description | graficas, ilustraciones, tablas | spa |
dc.description.abstract | La industria textil en Colombia ha sido crucial para la economía y la sociedad, aportando cerca del 8% del PIB manufacturero y el 0.9% del PIB nacional. Si bien el papel de esta industria es relevante para la economía, esta genera diferentes tipos de residuos durante el proceso de transformación textil, en donde se destacan los efluentes líquidos generados en la etapa de teñido. Estos efluentes presentan una alta carga contaminante (DQO > 400 mg/L y 41330 unidades Pt-Co), principalmente por la presencia de colorante no fijado a la fibra textil y algunos compuestos asociados a este (cromo y cloruros). El tratamiento y disposición final de este tipo de efluentes sobre cuerpos de agua genera un desafío ambiental (dado que dichos efluentes presentan características tóxicas, carcinógenas, mutagénicas y genotóxicas para diversos organismos) y económico notable. Esta tesis de Maestría en Ingeniería – Ingeniería Química evaluó la capacidad del esquema secuencial coagulación-floculación Electro-Fenton en términos de la degradación de la materia orgánica (cuantificada como DQO y COT) contenida en un agua residual industrial proveniente de la etapa de teñido con el colorante negro ácido 194. A partir de las características fisicoquímicas del efluente coagulado floculado bajo condiciones óptimas se realizó una: (i) identificación de los intervalos de operación para tres procesos Electro-Fenton de celda no dividida; (ii) la selección del proceso Electro-Fenton de mejor desempeño económico y ambiental; y (iii) la optimización de las condiciones de operación mediante la metodología de superficie de respuesta y una optimización multiobjetivo. El proceso Electro-Fenton operado bajo las condiciones óptimas de operación identificadas (j = 8.67 mA/cm2, FH2O2 = 4.89 mg/min, y σ = 5.8 mS/cm) durante un tiempo de 75 minutos permitieron alcanzar una remoción de DQO y COT del 87.0% y 74.2%, respectivamente, con un costo operacional de 4.4 UDSD/m3. De esta forma, la implementación del esquema secuencial coagulación-floculación Electro-Fenton para el tratamiento de un efluente residual industrial contaminado con colorante negro ácido 194 permitió lograr una remoción del 94.9% del DQO, 90.7% del COT, 99.7% de la coloración, disminuir completamente la toxicidad del efluente, a un costo total de operación de 10.4 USD/m3, cumpliendo con los limites estipulados por la normativa ambiental nacional vigente (Texto tomado de la fuente). | spa |
dc.description.abstract | The textile industry in Colombia has been crucial for the economy and society, contributing around 8% of the manufacturing GDP and 0.9% of the national GDP. While the role of this industry is relevant to the economy, it generates different types of waste during the textile transformation process, with liquid effluents generated during the dyeing stage standing out. These effluents present a high pollutant load (COD > 400 mg/L and 41330 Pt-Co units), mainly due to the presence of dye not fixed to the textile fiber and some compounds associated with it (chromium and chlorides). The treatment and final disposal of this type of effluent into water bodies pose a significant environmental challenge (since these effluents have toxic, carcinogenic, mutagenic, and genotoxic characteristics for various organisms) and a notable economic burden. This Master's thesis in Engineering – Chemical Engineering evaluated the capacity of the sequential coagulation-flocculation Electro-Fenton scheme in terms of the degradation of organic matter (quantified as COD and TOC) contained in an industrial wastewater originating from the dyeing stage using acid black 194 dye. Based on the physicochemical characteristics of the coagulated flocculated effluent under optimal conditions, the following were performed: (i) identification of the operating ranges for three non-divided cell Electro-Fenton processes; (ii) selection of the Electro-Fenton process with the best economic and environmental performance; and (iii) optimization of the operating conditions using response surface methodology and multi-objective optimization. The Electro-Fenton process operated under the identified optimal operating conditions (j = 8.67 mA/cm², FH2O2 = 4.89 mg/min, and σ = 5.8 mS/cm) for 75 minutes achieved COD and TOC removal rates of 87.0% and 74.2%, respectively, with an operational cost of 4.4 USD/m³. Thus, the implementation of the sequential coagulation-flocculation Electro-Fenton scheme for treating industrial wastewater contaminated with acid black 194 dye achieved a 94.9% COD removal, 90.7% TOC removal, 99.7% color removal, eliminated the effluent’s toxicity, and had a total operational cost of 10.4 USD/m³, meeting the limits stipulated by the current national environmental regulations. | eng |
dc.description.curriculararea | Química Y Procesos.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.researcharea | Procesos Avanzados de Oxidación | spa |
dc.description.researcharea | Tratamiento de Aguas Residuales Industriales | spa |
dc.format.extent | xxix, 214 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88032 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.references | Abbas, Z. I., & Abbas, A. S. (2019). Oxidative Degradation of Phenolic Wastewater by Electro-Fenton Process Using MnO2-graphite Electrode. Journal of Environmental Chemical Engineering, 103108. https://doi.org/10.1016/j.jece.2019.103108 | spa |
dc.relation.references | Abdessalem, A. K., Oturan, M. A., Oturan, N., Bellakhal, N., & Dachraoui, M. (2010). Treatment of an aqueous pesticides mixture solution by direct and indirect electrochemical advanced oxidation processes. International Journal of Environmental Analytical Chemistry, 90(3-6), 468–477. https://doi.org/10.1080/03067310902999132 | spa |
dc.relation.references | Abo-Farha, S. A. (2010). Comparative study of oxidation of some azo dyes by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton and photo-Fenton-like. Journal of American Science, 6(10), 128-142. | spa |
dc.relation.references | Afanga, H., Zazou, H., Titchou, F. E., Rakhila, Y., Akbour, R. A., Elmchaouri, A., Ghanbaja, J., & Hamdani, M. (2020). Integrated electrochemical processes for textile industry wastewater treatment: system performances and sludge settling characteristics. Sustainable Environment Research, 30(2), 1-11. https://doi.org/10.1186/s42834-019-0043-2 | spa |
dc.relation.references | Ahmad, I., & Basu, D. (2024). Experimental Study and Response Surface Methodology Optimization of Electro-Fenton Process Reactive Orange 16 Dye Treatment. Iranian Journal of Science Technology, Transactions of Civil Engineering, 48, 1715–1729. https://doi.org/10.1007/s40996-024-01442-5 | spa |
dc.relation.references | Ahmadzadeh, S. & Dolatabadi, M. (2018). Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment. Journal of Molecular Liquids, 254, 76-82. https://doi.org/10.1016/j.molliq.2018.01.080 | spa |
dc.relation.references | Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., Inayat, A., Mahlia, T. M. I., Ong, H. C., Chia, W. Y., & Show, P. L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 416, 125912. https://doi.org/10.1016/j.jhazmat.2021.125912 | spa |
dc.relation.references | Al-Ghouti, M. A., Li, J., Salamh, Y., Al-Laqtah, N., Walker, G., & Ahmad, M. N. M. (2010). Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. Journal of Hazardous Materials, 176(1-3), 510–520. https://doi.org/10.1016/j.jhazmat.2009.11.059 | spa |
dc.relation.references | Ali, Y. A. E. H., Hejji, L., Seddik, N. B., Azzouz, A., Pérez-Villarejo, L., Stitou, M., & Sonne, C. (2024). Remediation of malachite-green dye from textile wastewater using biosorbent almond shell-based cellulose. Journal of Molecular Liquids, 399, 124435. https://doi.org/10.1016/j.molliq.2024.124435 | spa |
dc.relation.references | Almomani, F., & Baranova, E. A. (2012). Electro-oxidation of two reactive azo dyes on boron-doped diamond electrode. Water Science and Technology, 66(3), 465–471. https://doi.org/10.2166/wst.2012.180 | spa |
dc.relation.references | Almomani, F., & Baranova, E. A. (2013). Kinetic study of electro-Fenton oxidation of azo dyes on boron-doped diamond electrode. Environmental Technology, 34(11), 1473–1479. https://doi.org/10.1080/09593330.2012.758644 | spa |
dc.relation.references | Amor, C., de Torres-Socías, E. D., Peres, J. A., Maldonado, M. I., Oller, I., Malato, S., & Lucas, M. S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. Journal of Hazardous Materials, 286, 261-268. https://doi.org/10.1016/j.jhazmat.2014.12.036 | spa |
dc.relation.references | Anderson-Cook, C. M., and Lu, L. (2015). Much-Needed Structure: A New 5-Step Decision-Making Process Helps You Evaluate, Balance Competing Objectives. Quality Progress. 48(10), 42–50. | spa |
dc.relation.references | Anh, N. T., Khoi, T. T., Huy, N. N., Mai, H. T. N., & Linh, N. H. N. (2020). Treatment of Wastewater Containing Reactive Dyes by electro-Fenton Method. 5th International Conference on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam. 340-343. https://doi.org/10.1109/GTSD50082.2020.9303141 | spa |
dc.relation.references | APHA - American Public Health Association, AWWA - American Water Works Association, WEF - Water Environment Federation, Bridgewater, L. L.; Baird, R. B.; Eaton, A. D.; Rice, E. W. (Eds.). (2017). Standard methods for the examination of water and wastewater (23rd edition, Vol. 1). American Public Health Association. ISSN 55-1979. | spa |
dc.relation.references | Aragaw, T. A. (2020). Recovery of iron hydroxides from electro-coagulated sludge for adsorption removals of dye wastewater: Adsorption capacity and adsorbent characteristics. Surfaces and Interfaces, 18, 100439. https://doi.org/10.1016/j.surfin.2020.100439 | spa |
dc.relation.references | Araújo, K. C. F., dos Santos, E. V., Nidheesh, P. V., & Martínez-Huitle, C. A. (2022). Fundamentals and advances on the mechanisms of electrochemical generation of persulfate and sulfate radicals in aqueous medium. Current Opinion in Chemical Engineering, 38, 100870. https://doi.org/10.1016/j.coche.2022.100870 | spa |
dc.relation.references | Ariza-Pineda, F. J., Macías-Quiroga, I. F., Hinojosa-Zambrano, D. F., Rivera-Giraldo, J. D., Ocampo-Serna, D. M., Sanabria-González, N. R. (2024). Corrigendum to “Treatment of Textile Wastewater using the Co(II)/NaHCO2/H2O2 Oxidation System”. Heliyon, 10(7), e28354. https://doi.org/10.1016/j.heliyon.2024.e28354 | spa |
dc.relation.references | Arques, A., Amat, A. M., García-Ripoll, A., & Vicente, R. (2007). Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. Journal of Hazardous Materials, 146(3), 447–452. https://doi.org/10.1016/j.jhazmat.2007.04.046 | spa |
dc.relation.references | ASTM International. (2008). Standard Test Method for Active Oxygen in Bleaching Compounds (D2180-89). https://doi.org/10.1520/D2180-89R08 | spa |
dc.relation.references | ASTM International. (2019). Practice for Coagulation-Flocculation Jar Test of Water (D2035-19). https://doi.org/10.1520/D2035-19 | spa |
dc.relation.references | Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials, 163(1), 109–114. https://doi.org/10.1016/j.jhazmat.2008.06.067 | spa |
dc.relation.references | Austin, G. T. (1984). Shreve’s Chemical Process Industries (5th ed). McGraw-Hill. | spa |
dc.relation.references | Aziz, A. A. R., Asaithambi, P., & Wan Daud, W. M. A. B. (2016). Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent. Process Safety and Environmental Protection, 99, 227-235. https://doi.org/10.1016/j.psep.2015.11.010 | spa |
dc.relation.references | Babu Ponnusami, A., Sinha, S., Ashokan, H., Paul, M. V., Hariharan, S. P., Arun, J., Gopinath, K. P., Hoang Le, Q. N., & Pugazhendhi, A. (2023). Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environmental Research, 237 (1), 116944. https://doi.org/10.1016/j.envres.2023.116944 | spa |
dc.relation.references | Bañuelos, J. A., El-Ghenymy, A., Rodríguez, F. J., Manríquez, J., Bustos, E., Rodríguez, A., Brillas, E., & Godínez, L. A. (2014). Study of an Air Diffusion Activated Carbon Packed Electrode for an Electro-Fenton Wastewater Treatment. Electrochimica Acta, 140, 412-418. https://doi.org/10.1016/j.electacta.2014.05.078 | spa |
dc.relation.references | Baraoidan, W. A., Tun, L. L., Gaspillo, P. D., & Suzuki, M., (2007). A Study on the Relative Performance of Different Coagulants and the Kinetics of COD in the Treatment of a Textile Bleaching and Dyeing Industrial Wastewater. ASEAN Journal of Chemical Engineering, 7(1), 49-60. https://doi.org/10.22146/ajche.50127 | spa |
dc.relation.references | Barhoumi, N., Oturan, N., Olvera-Vargas, H., Brillas, E., Gadri, A., Ammar, S., & Oturan, M. A. (2016). Pyrite as a sustainable catalyst in electro-Fenton process for improving oxidation of sulfamethazine. Kinetics, mechanism and toxicity assessment. Water Research, 94, 52–61. https://doi.org/10.1016/j.watres.2016.02.042 | spa |
dc.relation.references | Barrenechea Martel, A. (2004). Capítulo 4: COAGULACIÓN. En de Vargas, L. (coordinadora) Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I: Teoría. Tomo I. Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. | spa |
dc.relation.references | Bashir, M. J. K., Lim, J. H., Amr, S. S. A., Wong, L. P., & Sim, Y. L. (2019). Post treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. Journal of Cleaner Production, 208, 716-727. https://doi.org/10.1016/j.jclepro.2018.10.073 | spa |
dc.relation.references | Behfar, R., Davarnejad, R. & Heydari, R. (2019). Pharmaceutical Wastewater Chemical Oxygen Demand Reduction: Electro-Fenton, UV-enhanced Electro-Fenton and Activated Sludge. International Journal of Engineering, 32(12). 1710-1715. https://doi.org/10.5829/ije.2019.32.12c.03 | spa |
dc.relation.references | Behnajady, M. A., Modirshahla, N., & Ghanbary, F. (2007). A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148(1-2), 98–102. https://doi.org/10.1016/j.jhazmat.2007.02.003 | spa |
dc.relation.references | Belfiore, L. A. (2003). 15. Diffusion and Heterogeneous Chemical Reaction in Isothermal Catalytic Pellets en Transport Phenomena for Chemical Reactor Design (1st ed., pp. 453–457). John Wiley & Sons, Inc. | spa |
dc.relation.references | Ben Ayed, S., Mansour, L., Vaiano, V., Halim Harrath, A., Ayari, F., Rizzo, L. (2023). Magnetic Fe3O4-natural iron ore/calcium alginate beads as heterogeneous catalyst for Novacron blue dye degradation in water by (photo)Fenton process. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114566. https://doi.org/10.1016/j.jphotochem.2023.114566 | spa |
dc.relation.references | Bidhendi, G. R. N., Torabian, A., Ehsani, H., Razmkhah, N. (2007). Evaluation of Industrial Dyeing Wastewater Treatment with Coagulants and Polyelectrolyte as a Coagulant Aid. Iranian Journal of Environmental Health, Science and Engineering, 4(1), 29-36. https://ijehse.tums.ac.ir/index.php/jehse/article/view/107/106 | spa |
dc.relation.references | BIR - Bureau of International Recycling (2022). Textil - Bureau of International Recycling. https://archive.bir.org/industry-es-es/textiles-es-es/ | spa |
dc.relation.references | Boye, B., Brillas, E., Buso A., Farnia, G., Flox, C., Giomo, M., Sandonà, G. (2006). Electrochemical removal of gallic acid from aqueous solutions. Electrochimica Acta, 52(1), 256-262. https://doi.org/10.1016/j.electacta.2006.04.062 | spa |
dc.relation.references | Brdarić, T. P., Aćimović, D. D., Švorc, Ľ., & Vasić Anićijević, D. D. (2024). Bibliometric study of electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. Coatings, 14(8), 1060. https://doi.org/10.3390/coatings14081060 | spa |
dc.relation.references | Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016 | spa |
dc.relation.references | Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570–6631. https://doi.org/10.1021/cr900136g | spa |
dc.relation.references | Bueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., de Pauli, A. R., & Modenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. https://doi.org/10.1016/j.jece.2018.04.033 | spa |
dc.relation.references | Caicedo Pereira, C. A. & Sarzosa Moreno, N. (2021). Retos y Oportunidades Comerciales en Términos de Competitividad para el Sector Textil-Confección desde la Perspectiva del Tratado de Libre Comercio entre Colombia y la Unión Europea. (Trabajo de grado en Negocios Internacionales). Universidad Piloto de Colombia, Facultad de Ciencias Sociales y Empresariales. https://repository.unipiloto.edu.co/handle/20.500.12277/10535 | spa |
dc.relation.references | Camacho, F. G., de Souza, P. A. L., Martins, M. L., Benincá, C., & Zanoelo, E. F. (2020). A comprehensive kinetic model for the process of electrochemical peroxidation and its application for the degradation of trifluralin. Journal of Electroanalytical Chemistry, 114163. https://doi.org/10.1016/j.jelechem.2020.114163 | spa |
dc.relation.references | Cañizares, P., Carmona, M., Lobato, J., Martínez, F., & Rodrigo, M. A. (2005). Electrodissolution of Aluminum Electrodes in Electrocoagulation Processes. Industrial & Engineering Chemistry Research, 44(12), 4178-4185. https://doi.org/10.1021/ie048858a | spa |
dc.relation.references | CCB – Cámara de Comercio de Bogotá. (2021, enero). Internacionalización ¿Cómo exportar tus prendas de vestir? Biblioteca Digital CCB. http://hdl.handle.net/11520/26629 | spa |
dc.relation.references | Chang, M.-C., Shu, H.-Y., & Yu, H.-H. (2006). An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater. Journal of Hazardous Materials, 138(3), 574–581. https://doi.org/10.1016/j.jhazmat.2006.05.088 | spa |
dc.relation.references | Chaturvedi, A., Rai, B. N., Singh, R. S., & Jaiswal, R. P. (2021). A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. Reviews in Chemical Engineering, 38(6). https://www.doi.org/10.1515/revce-2020-0010 | spa |
dc.relation.references | Chavaco, L. C., Arcos, C. A., & Prato-Garcia, D. (2017). Decolorization of reactive dyes in solar pond reactors: Perspectives and challenges for the textile industry. Journal of Environmental Management, 198, 203–212. https://doi.org/10.1016/j.jenvman.2017.04.077 | spa |
dc.relation.references | chec - Grupo EPM. (2023, 10 de septiembre). Publicaciones de tarifas. https://www.chec.com.co/Home/Transparencia/Planeaci%C3%B3n-presupuestos-e-informes/Publicaciones-de-Tarifas | spa |
dc.relation.references | Chen, T.-C., Chen, T.-E., Lu, M.-C., & Bellotindos, L. M. (2017). Removal of COD from TFT-LCD Wastewater by Electro-Fenton Technology Using a Tubular Reactor. Journal of Environmental Engineering, 143(7), 04017018. https://doi.org/10.1061/(asce)ee.1943-7870.0001211 | spa |
dc.relation.references | Chen, X., Chen, G., & Yue, P. L. (2002). Novel Electrode System for Electroflotation of Wastewater. Environmental Science & Technology, 36(4), 778-783. https://doi.org/10.1021/es011003u | spa |
dc.relation.references | Choo, K.-H., Choi, S.-J., & Hwang, E.-D. (2007). Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system. Desalination, 202(1-3), 262-270. https://doi.org/10.1016/j.desal.2005.12.063 | spa |
dc.relation.references | Christian, D., Gaekwad, A., Dani, H., Shabiimam M. A., Kandya, A. (2023). Recent techniques of textile industrial wastewater treatment: A review. Materials Today: Proceedings, 77(1), 277-285. https://doi.org/10.1016/j.matpr.2022.11.301 | spa |
dc.relation.references | Ciabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing effluents by potassium ferrate. Desalination, 250(1), 222-228. https://doi.org/10.1016/j.desal.2009.06.019 | spa |
dc.relation.references | Clark, M. (2011). 1 - Fundamental principles of dyeing. En Clark, M. (Ed.) Handbook of Textile and Industrial Dyeing (pp. 3-27). Principles, Processes and Types of Dyes. https://doi.org/10.1533/9780857093974.1.1 | spa |
dc.relation.references | Common Objective. (2021, 23 de noviembre). Sustainability Issues. The Issues: Water. Common Objective. https://www.commonobjective.co/article/the-issues-water | spa |
dc.relation.references | Conde Arcila, J. (2014). La innovación como determinante de competitividad en la industria textil-confección: el caso de Corea y Colombia (Trabajo de Grado). Pontificia Universidad Javeriana. Facultad de Ciencias Económicas y Administrativas. Bogotá D. C. http://hdl.handle.net/10554/9342 | spa |
dc.relation.references | CONPES - Consejo Nacional De Política Económica y Social. (2018). Documento CONPES 3934: Política de crecimiento verde. Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/documento-normativa/conpes-3934-de-2018/ | spa |
dc.relation.references | Cotton Incorporated. (2012). Textile Dyeing. Cotton Incorporated. https://www.cottonworks.com/wp-content/uploads/2018/01/Dyeing_Booklet.pdf | spa |
dc.relation.references | Cruz-González, K., Torres-López, O., García-León, A. M., Brillas, E., Hernández-Ramírez, A., & Peralta-Hernández, J. M. (2012). Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination, 286, 63-68. https://doi.org/10.1016/j.desal.2011.11.005 | spa |
dc.relation.references | Cruz-González, K., Torres-López, O., García-León, A., Guzmán-Mar, J. L., Reyes, L. H., Hernández-Ramírez, A., & Peralta-Hernández, J. M. (2010). Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode. Chemical Engineering Journal, 160(1), 199-206. https://doi.org/10.1016/j.cej.2010.03.043 | spa |
dc.relation.references | Cruz-Rizo, A., Gutiérrez-Granados, S., Salazar, R., & Peralta-Hernández, J. M. (2017). Application of electro-Fenton/BDD process for treating tannery wastewaters with industrial dyes. Separation and Purification Technology, 172, 296-302. https://doi.org/10.1016/j.seppur.2016.08.029 | spa |
dc.relation.references | Cubillos Moreno, E. (1996, 4 de junio). Tratamiento y Disposición de las Aguas Servidas. EL TIEMPO. https://www.eltiempo.com/archivo/documento/MAM-311523 | spa |
dc.relation.references | da Costa Soares, I. C., da Silva, D. R., do Nascimento, J. H. O., Garcia-Segura, S., & Martínez-Huitle, C. A. (2017). Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies. Environmental Science and Pollution Research, 24(31), 24167-24176. https://doi.org/10.1007/s11356-017-0041-z | spa |
dc.relation.references | da Rocha Santana, R. M., Napoleão, D. C., Rodriguez-Diaz, J. M., de Mendonça Gomes R. K., Gomes Silva, M., Estolano de Lima, V. M., de Melo Neto A. A., Vinhas, G. M., & Bezerra Duarte, M. M. M. (2023). Efficient microbial cellulose/Fe3O4 nanocomposite for photocatalytic degradation by advanced oxidation process of textile dyes. Chemosphere, 326, 138453. https://doi.org/10.1016/j.chemosphere.2023.138453 | spa |
dc.relation.references | DANE - Departamento Administrativo Nacional de Estadística. (2024-a, 21 de agosto). Anexos Estadísticos PIB: Producción PIB a precios corrientes - II trimestre 2024. Producto interno Bruto Nacional Trimestral. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnica | spa |
dc.relation.references | DANE - Departamento Administrativo Nacional de Estadística. (2024-b, 20 de agosto). Boletín técnico: Anexos Principales Variables (2022). Encuesta Anual Manufacturera (EAM) Históricos. https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam/eam-historicos | spa |
dc.relation.references | DANE - Departamento Administrativo Nacional de Estadística. (2024-c, 27 de agosto). Boletín Técnico 2021. Encuesta Ambiental Industrial (EAI) Históricos. https://www.dane.gov.co/index.php/estadisticas-por-tema/ambientales/encuesta-ambiental-industrial-eai/encuesta-ambiental-industrial-eai-historicos?highlight=WyJlbmN1ZXN0YSIsImVuY3Vlc3RhcyIsImVuY3Vlc3RhZG9zIiwiZW5jdWVzdGFkb3JhIiwiZW5jdWVzdGFkb3IiLCJlbmN1ZXN0YWRvcmVzIiwiZW5jdWVzdGFuZG8iLCJlbmN1ZXN0YW4iLCJlbmN1ZXN0YWRhIiwiZW5jdWVzdGFyIiwiZW5jdWVzdGFkYXMiLCJlbmN1ZXN0YWRvIiwiZW5jdWVzdGFyb24iLCJlbmN1ZXN0YWVuIiwiYW1iaWVudGFsIiwiYW1iaWVudGFsZXMiLCJhbWJpXHUwMGU5bnRhbGVzIiwiYW1iaWVudGFsbWVudGUiLCJpbmR1c3RyaWFsIiwiaW5kdXN0cmlhbGVzIl0= | spa |
dc.relation.references | de Oliveira, L. P., Hudebine, D., Guillaume, D., & Verstraete, J. J. (2016). A review of kinetic modeling methodologies for complex processes. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 71(3), 45. https://doi.org/10.2516/ogst/2016011 | spa |
dc.relation.references | de Vargas, L., 2004. CAPÍTULO 6: FLOCULACIÓN. En de Vargas, L. (coordinadora) Tratamiento de agua para consumo humano. Plantas de filtración rápida. Manual I: Teoría. Tomo I. Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente. | spa |
dc.relation.references | Deng, F., Jiang, J. & Sirés, I. (2023). State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Letters. 33, 17–34. https://doi.org/10.1007/s42823-022-00420-z | spa |
dc.relation.references | Dhamorikar, R. S., Lade, V. G., Kewalramani, P. V., Bindwal, A. B. (2024). Review on integrated advanced oxidation processes for water and wastewater treatment. Journal of Industrial and Engineering Chemistry, 138, 104-122. https://doi.org/10.1016/j.jiec.2024.04.037 | spa |
dc.relation.references | DIAN. (2023, 10 de septiembre). Sistema Estadístico de Comercio Exterior. http://websiex.dian.gov.co/ | spa |
dc.relation.references | Dindaş, G. B., Çalışkan, Y., Celebi, E. E., Tekbaş, M., Bektaş, N., & Yatmaz, H. C. (2020). Treatment of pharmaceutical wastewater by combination of electrocoagulation, electro-fenton and photocatalytic oxidation processes. Journal of Environmental Chemical Engineering, 8(3), 103777. https://doi.org/10.1016/j.jece.2020.103777 | spa |
dc.relation.references | do Vale-Júnior, E., da Silva, D. R., Fajardo, A. S., & Martínez-Huitle, C. A. (2018). Treatment of an azo dye effluent by peroxi-coagulation and its comparison to traditional electrochemical advanced processes. Chemosphere, 204, 548-555. https://doi.org/10.1016/j.chemosphere.2018.04.007 | spa |
dc.relation.references | Do, S.-H.; Batchelor, B.; Lee, H.-K.; Kong, S.-H. (2009). Hydrogen peroxide decomposition on manganese oxide (pyrolusite): Kinetics, intermediates, and mechanism. Chemosphere, 75(1), 8-12. https://doi.org/10.1016/j.chemosphere.2008.11.075 | spa |
dc.relation.references | Dobrosz-Gómez, I., Gómez-García, M.-Á., & Ibarra-Taquez, H. N. (2022). Treatment of soluble coffee industrial effluent by electro-coagulation–electro-oxidation process: Multiobjective optimization and kinetic study. International Journal of Environmental Science and Technology, 19(7), 6071-6088. https://doi.org/10.1007/s13762-021-03562-1 | spa |
dc.relation.references | Dobrosz-Gómez, I., Gómez-García, M.-Á., & Ibarra-Taquez, H. N. (2021). Integration of environmental and economic performance of Electro-Coagulation-Anodic Oxidation sequential process for the treatment of soluble coffee industrial effluent. Science of The Total Environment, 764, 142818. https://doi.org/10.1016/j.scitotenv.2020.142818 | spa |
dc.relation.references | Dobrosz-Gómez, I., Quintero-Arias, J.-D., & Gómez-García, M.-Á. (2024-a). Fenton advanced oxidation process for the treatment of industrial textile wastewater highly polluted with acid-black 194 dye. Case Studies in Chemical and Environmental Engineering, 9, 100672. https://doi.org/10.1016/j.cscee.2024.100672 | spa |
dc.relation.references | Dobrosz-Gómez, I., Quintero-Arias, J.-D., & Gómez-García, M.-Á. (2024-b). Coagulation-Flocculation - Fenton-Neutralization sequential process for the treatment of industrial effluent polluted with AB194 dye. Case Studies in Chemical and Environmental Engineering, 9, 100720. https://doi.org/10.1016/j.cscee.2024.100720 | spa |
dc.relation.references | Dobrosz-Gómez, I., Salazar-Sogamoso, L. M., Castaño-Sánchez, J. C., Salazar-López, D. O., Gómez-García, M. Á. (2024-c). Environmental and Economic Evaluation of the Sequential Combination of Coagulation–Flocculation with Different Electro-Fenton-Based Configurations for the Treatment of Raw Textile Wastewater. Water. 16(15), 2154. https://doi.org/10.3390/w16152154 | spa |
dc.relation.references | Donlagic, J., & Levec, J. (1999). Wet oxidation of an azo dye: Lumped kinetics in batch and mixed flow reactors. AIChE journal. 45(12), 2571-2579. https://doi.org/10.1002/aic.690451213 | spa |
dc.relation.references | dos Santos, A. B., Cervantes, F. J., & van Lier, J. B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresource Technology, 98(12), 2369–2385. https://doi.org/10.1016/j.biortech.2006.11.013 | spa |
dc.relation.references | dos Santos, A. J., de Lima, M. D., da Silva, D. R., Garcia-Segura, S., & Martínez-Huitle, C. A. (2016). Influence of the water hardness on the performance of electro-Fenton approach: Decolorization and mineralization of Eriochrome Black T. Electrochimica Acta, 208, 156-163. https://doi.org/10.1016/j.electacta.2016.05.015 | spa |
dc.relation.references | Duque A., J. G., (2013, 14 de agosto). En 5 días van tres vertimientos de colorantes al río Medellín. elCOLOMBIANO. https://www.elcolombiano.com/historico/en_5_dias_van_tres_vertimientos_de_colorantes_al_rio_medellin-FCec_255642 | spa |
dc.relation.references | Elbatea, A. A., Nosier, S. A., Zatout, A. A., Hassan, I., Sedahmed, G. H., Abdel-Aziz, M. H., & El-Naggar, M. A. (2021). Removal of reactive red 195 from dyeing wastewater using electro-Fenton process in a cell with oxygen sparged fixed bed electrodes. Journal of Water Process Engineering, 41, 102042. https://doi.org/10.1016/j.jwpe.2021.102042 | spa |
dc.relation.references | El-Desoky, H. S., Ghoneim, M. M., & Zidan, N. M. (2010-a). Decolorization and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation. Desalination, 264(1-2), 143-150. https://doi.org/10.1016/j.desal.2010.07.018 | spa |
dc.relation.references | El-Desoky, H. S., Ghoneim, M. M., El-Sheikh, R., & Zidan, N. M. (2010-b). Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton’s reagent. Journal of Hazardous Materials, 175(1-3), 858-865. https://doi.org/10.1016/j.jhazmat.2009.10.089 | spa |
dc.relation.references | El-Ghenymy, A., Centellas, F., Garrido, J. A., Rodríguez, R. M., Sirés, I., Cabot, P. L., & Brillas, E. (2014). Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochimica Acta, 130, 568–576. https://doi.org/10.1016/j.electacta.2014.03.066 | spa |
dc.relation.references | El-Gohary, F., & Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159-1164. https://doi.org/10.1016/j.desal.2009.05.010 | spa |
dc.relation.references | El-Khorassani, H., Trebuchon, P., Bitar, H., Thomas, O. A. (1999). Simple UV spectrophotometric procedure for the survey of industrial sewage system. Water Science & Technology, 39 (10–11), 77–82. https://doi.org/10.2166/wst.1999.0633 | spa |
dc.relation.references | EMAS - Empresa Metropolitana de Aseo S.A E.S.P. (2023, 10 de septiembre). Tarifas 2023. https://www.emas.com.co/tarifas-2023 | spa |
dc.relation.references | Enokihara, G. H., Loures, C. C. A., Izário Filho, H. J., Alcântara, M. A. K., Siqueira, A. F., Da Rós, P. C. M., Napoleão, D. A. S. & de Aguiar, L. G. D. (2024). Kinetic modelling of total organic carbon degradation in dairy wastewater. Environmental technology, 45(5), 880-887. https://doi.org/10.1080/09593330.2022.2130103 | spa |
dc.relation.references | Ergan, B. T., & Gengec, E. (2020). Dye degradation and kinetics of online Electro-Fenton system with thermally activated carbon fiber cathodes. Journal of Environmental Chemical Engineering, 8(5), 104217. https://doi.org/10.1016/j.jece.2020.104217 | spa |
dc.relation.references | Ergan, B. T., Soybelli, M., & Gengec, E. (2021). Impact of thermal modification of carbon felt on the performance of oxygen reduction reaction and mineralisation of dye in on-line electro fenton system. International Journal of Environmental Analytical Chemistry, 103(20), 9730–9746. https://doi.org/10.1080/03067319.2021.2015341 | spa |
dc.relation.references | Ertugay, N., & Acar, F. N. (2017). Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158–S1163. https://doi.org/10.1016/j.arabjc.2013.02.009 | spa |
dc.relation.references | Escobedo, E., Cho, K., & Chang, Y. S. (2022). Electrochemical activation of hydrogen peroxide, persulfate, and free chlorine using sacrificial iron anodes for decentralized wastewater treatment. Journal of Hazardous Materials, 423, 127068. https://doi.org/10.1016/j.jhazmat.2021.127068 | spa |
dc.relation.references | Espinel González, P. A., Aparicio Soto, D. M. & Mora, A. J., (2018). Sector Textil Colombiano y su Influencia en la Economía del País. Punto de Vista, 9(13). https://doi.org/10.15765/pdv.v9i13.1118 | spa |
dc.relation.references | European Parliament. (2020, 29 de septiembre). The impact of textile production and waste on the environment (infographics). Topics European Parliament. https://www.europarl.europa.eu/topics/en/article/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographics#:~:text=Textile%20production%20is%20estimated%20to,microplastics%20released%20into%20the%20environment | spa |
dc.relation.references | Farhadi, S., Aminzadeh, B., Torabian, A., Khatibikamal, V., & Alizadeh Fard, M. (2012). Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes. Journal of Hazardous Materials, 219-220, 35–42. https://doi.org/10.1016/j.jhazmat.2012.03.013 | spa |
dc.relation.references | Feinstein, A. R. (1998). P-Values and Confidence Intervals: Two Sides of the Same Unsatisfactory Coin. Journal of Clinical Epidemiology, 51(4), 355–360. https://doi.org/10.1016/s0895-4356(97)00295-3 | spa |
dc.relation.references | Feng, L., Serna-Galvis, E. A., Oturan, N., Giannakis, S., Torres-Palma, R. A., & Oturan, M. A. (2019). Evaluation of process influencing factors, degradation products, toxicity evolution and matrix-related effects during electro-Fenton removal of piroxicam from waters. Journal of Environmental Chemical Engineering, 103400. https://doi.org/10.1016/j.jece.2019.103400 | spa |
dc.relation.references | Fradj, A. B., Boubakri, A., Hafiane, A., & Hamouda, S. B. (2020). Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration. Results in Chemistry, 2, 100017. https://doi.org/10.1016/j.rechem.2019.100017 | spa |
dc.relation.references | Friedman, C. L., Lemley, A. T., & Hay, A. (2006). Degradation of Chloroacetanilide Herbicides by Anodic Fenton Treatment. Journal of Agricultural and Food Chemistry, 54(7), 2640–2651. https://doi.org/10.1021/jf0523317 | spa |
dc.relation.references | Gao, B.-Y., Yue, Q.-Y., Wang, Y., & Zhou, W.-Z. (2007). Color removal from dye-containing wastewater by magnesium chloride. Journal of Environmental Management, 82(2), 167-172. https://doi.org/10.1016/j.jenvman.2005.12.019 | spa |
dc.relation.references | García-Rodríguez, O., Bañuelos, J. A., Rico-Zavala, A., Godínez, L. A., & Rodríguez-Valadez, F. J. (2016). Electrocatalytic Activity of Three Carbon Materials for the In-situ Production of Hydrogen Peroxide and Its Application to the Electro-Fenton Heterogeneous Process. International Journal of Chemical Reactor Engineering, 14(4), 843-850. https://doi.org/10.1515/ijcre-2015-0115 | spa |
dc.relation.references | García-Segura, S., & Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 1–35. https://doi.org/10.1016/j.jphotochemrev.2017.01.005 | spa |
dc.relation.references | García-Segura, S., Mostafa, E., & Baltruschat, H. (2019). Electrogeneration of inorganic chloramines on boron-doped diamond anodes during electrochemical oxidation of ammonium chloride, urea and synthetic urine matrix. Water Research, 160, 107-117. https://doi.org/10.1016/j.watres.2019.05.046 | spa |
dc.relation.references | Georgiou, D., Aivazidis, A., Hatiras, J., & Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354(02)00481-5 | spa |
dc.relation.references | Ghanbari, F., & Moradi, M. (2015). A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. Journal of Environmental Chemical Engineering, 3(1), 499–506. https://doi.org/10.1016/j.jece.2014.12.018 | spa |
dc.relation.references | Ghanbari, F., Moradi, M., Mehdipour, F., & Gohari, F. (2015). Simultaneous application of copper and PbO2 anodes for electrochemical treatment of olive oil mill wastewater. Desalination and Water Treatment, 57(13), 5828–5836. https://doi.org/10.1080/19443994.2015.1005144 | spa |
dc.relation.references | Ghoneim, M. M., El-Desoky, H. S., & Zidan, N. M. (2011). Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination, 274(1-3), 22-30. https://doi.org/10.1016/j.desal.2011.01.062 | spa |
dc.relation.references | Gilpavas, E. (2020). Procesos Avanzados de Oxidación para la degradación de índigo y materia orgánica de aguas Residuales de una Industria textil (Tesis presentada como requisito parcial para optar al título de: Doctor en Ingeniería-Ingeniería Química). Universidad Nacional de Colombia sede Manizales, Facultad de Ingeniería y Arquitectura. https://repositorio.unal.edu.co/handle/unal/78505 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2017). Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, 191, 189-197. https://doi.org/10.1016/j.jenvman.2017.01.015 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M. Á. (2018). Optimization of sequential chemical coagulation—Electro-oxidation process for the treatment of an industrial textile wastewater. Journal of Water Process Engineering, 22, 73-79. https://doi.org/10.1016/j.jwpe.2018.01.005 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M.-Á. (2019). Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Science of The Total Environment, 651, 551-560. https://doi.org/10.1016/j.scitotenv.2018.09.125 | spa |
dc.relation.references | GilPavas, E., Dobrosz-Gómez, I., & Gómez-García, M.-Á. (2020). Efficient treatment for textile wastewater through sequential electrocoagulation, electrochemical oxidation and adsorption processes: Optimization and toxicity assessment. Journal of Electroanalytical Chemistry, 878, 114578. https://doi.org/10.1016/j.jelechem.2020.114578 | spa |
dc.relation.references | GilPavas, E., Medina, J., Dobrosz-Gómez, I., & Gómez-García, M. A. (2014). Statistical optimization of industrial textile wastewater treatment by electrochemical methods. Journal of Applied Electrochemistry, 44(12), 1421–1430. https://doi.org/10.1007/s10800-014-0767-y | spa |
dc.relation.references | Giraldo Loaiza, C. (2023). Aplicación del sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textil. (Tesis presentada como requisito parcial para optar al título de: Magister en Ingeniería-Ingeniería Química). Universidad Nacional de Colombia sede Manizales, Facultad de Ingeniería y Arquitectura. https://repositorio.unal.edu.co/handle/unal/85822 | spa |
dc.relation.references | Giraldo-Loaiza, C., Salazar-Loaiza, A. M., Sandoval-Barrera, M. A., Macías-Quiroga, I. F., Ocampo-Serna, D. M., Sanabria-González, N. R. (2024). Integration of Ion Exchange-AOP-Biological System for the Treatment of Real Textile Wastewater. Chem Engineering, 8(4), 76. https://doi.org/10.3390/chemengineering8040076 | spa |
dc.relation.references | Gkika, D. A., Mitropoulos, A. C., Kyzas, G. Z. (2022).Why reuse spent adsorbents? The latest challenges and limitations. Science of The Total Environment, 822, 153612. https://doi.org/10.1016/j.scitotenv.2022.153612 | spa |
dc.relation.references | Gökkuş, Ö., & Yıldız, Y. Ş. (2014). Investigation of the effect of process parameters on the coagulation flocculation. Fresenius Environmental Bulletin, 23(2), 463-470. | spa |
dc.relation.references | Golder, A.K., Samanta, A.N., Ray, S. (2007). Removal of Cr3+ by electrocoagulation with multiple electrodes: biopolar and monopolar configurations. Journal of Hazardous Materials. 141, 653–661. https://doi.org/10.1016/j.jhazmat.2006.07.025 | spa |
dc.relation.references | Golob, V., Vinder, A., & Simonic, M. (2005). Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes and Pigments, 67(2), 93-97. https://doi.org/10.1016/j.dyepig.2004.11.003 | spa |
dc.relation.references | Gomes de Sousa Lucas, M. P., (2009). Application of Advanced Oxidation Processes to Wastewater Treatment. (Tesis doctoral en Química) University of Trás-os-Montes and Alto Douro. Vila Real. https://repositorio.utad.pt/entities/publication/2c6f480e-53fc-49df-9d01-107b16cb5cde | spa |
dc.relation.references | Gómez Cely, Á., Molano, U. & Silva, S. J. (2010). Textiles en Colombia al finalizar el siglo XIX: producción artesanal, importación e industrialización. (11ª ed.) s.l.: Cuadernos de Curaduría Museo Nacional de Colombia. ISSN: 1909-5929. https://www.museonacional.gov.co/Publicaciones/publicaciones-virtuales/Documents/Textiles_en_colombia.pdf | spa |
dc.relation.references | Gómez, C. A., Gómez-García, M.-Á., Dobrosz-Gómez, I. (2023). Analysis of the Capacity of the Fenton Process for the Treatment of Polluted Wastewater from the Leather Dyeing Industry. The Scientific World Journal, 2023(1), 1-21. https://doi.org/10.1155/2023/4724606 | spa |
dc.relation.references | Gonzalo Loza. (2025, 1 de enero). Los lodos de las depuradoras del País Vasco aumentan la fertilidad del campo en Navarra. EL PAÍS. https://elpais.com/espana/paisvasco/2025-01-02/los-lodos-de-las-depuradoras-del-pais-vasco-aumentan-la-fertilidad-del-campo-en-navarra.html | spa |
dc.relation.references | Gopal, S., Somanathan, A., Jeyakumar, R., & Fernandez, C. (2022). A bench-scale electrochemical peroxidation reactor performance on removal of organic pollutants from tannery industrial wastewater. Desalination and water treatment, 277, 120-135. https://doi.org/10.5004/dwt.2022.29039 | spa |
dc.relation.references | Grand View Research. (2024). Textile Market Size, Share & Trends Analysis Report, 2024 – 2030. Grand View Research, Inc. https://www.grandviewresearch.com/industry-analysis/textile-market# | spa |
dc.relation.references | Groenen Serrano, K. (2021). A critical review on the electrochemical production and use of peroxo-compounds. Current Opinion in Electrochemistry, 27, 100679. https://doi.org/10.1016/j.coelec.2020.100679 | spa |
dc.relation.references | Gu, X., Lu, X.; Tian, J., Li, X., Zhou, B., Zheng, X., Xu, J. (2017). Degradation of folic acid wastewater by electro-Fenton method with three-dimensional electrode and its kinetic study. Royal Society Open Science, 5(1), 170926. https://doi.org/10.6084/m9.figshare.c.3957466.v | spa |
dc.relation.references | Güçlü, D., Şahinkaya, S., & Şirin, N. (2013). Post-Treatment of Coking Industry Wastewater by the Electro-Fenton Process. Water Environment Research, 85(5), 391–396. https://doi.org/10.2175/106143013x13596524516662 | spa |
dc.relation.references | Guinea, E., Garrido, J. A., Rodríguez, R. M., Cabot, P.-L., Arias, C., Centellas, F., & Brillas, E. (2010). Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochimica Acta, 55(6), 2101–2115. https://doi.org/10.1016/j.electacta.2009.11.040 | spa |
dc.relation.references | Gul, A., Khaligh, N. G., Julkapli, N. M. (2021). Surface modification of Carbon-Based Nanoadsorbents for the Advanced Wastewater Treatment. Journal of Molecular Structure, 1235, 130148. https://doi.org/10.1016/j.molstruc.2021.130148 | spa |
dc.relation.references | Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1–16. https://doi.org/10.1080/23311916.2018.1502242 | spa |
dc.relation.references | Gutiérrez Guzmán, K. A. (2018, 13 de abril). Novedoso método identifica el tipo de colorantes que contaminan los ríos. Periódico UNAL. https://periodico.unal.edu.co/articulos/novedoso-metodo-identifica-el-tipo-de-colorantes-que-contaminan-los-rios/ | spa |
dc.relation.references | Gutiérrez-Pulido, H. & de la Vara R. (2008). Análisis y Diseño de Experimentos, 2da Ed. 351-357. McGraw-Hill Interamericana Editores S.A. ISBN-10: 9701065263. | spa |
dc.relation.references | Guvenc, S. Y., Cebi, A., Can-Güven, Demir, A., Ghanvbari, F., & Varank, G. (2022). Box-Behnken design-based biodiesel wastewater treatment using sequential acid cracking and electrochemical peroxidation process: Focus on COD, oil-grease and volatile fatty acids removals. Korean Journal of Chemical Engineering, 39, 2555–2570. https://doi.org/10.1007/s11814-022-1118-z | spa |
dc.relation.references | Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M., & Oturan, M. A. (2007). Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. Journal of Electroanalytical Chemistry, 610(1), 75-84. https://doi.org/10.1016/j.jelechem.2007.07.004 | spa |
dc.relation.references | Hayati, F., Khodabakhshi, M. R., Isari, A. A., Moradi, S., Kakavandi, B. (2020). LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: optimization, performance and reaction mechanism studies. Journal of Water Process Engineering, 38, 101693. https://doi.org/10.1016/j.jwpe.2020.101693 | spa |
dc.relation.references | He, Z., Huang, C., Wang, Q., Jiang, Z., Chen, J., & Song, S. (2011). Preparation of a Praseodymium Modified Ti/SnO2-Sb/PbO2 Electrode and its Application in the Anodic Degradation of the Azo Dye Acid Black 194. International Journal of Electrochemical Science, 6(14), 4341-4354. https://doi.org/10.1016/S1452-3981(23)18332-5 | spa |
dc.relation.references | Hector, H. (2019, 25 de marzo). Denuncias ciudadanas: De nuevo aparece contaminada la quebrada La Pereira. Oriéntese.co. https://orientese.co/de-nuevo-aparece-contaminada-la-quebrada-la-pereira/ | spa |
dc.relation.references | Hernández Muñoz, A. (2015). Depuración y desinfección de aguas residuales (6ª Edición). Colegio de Ingenieros de Caminos, Canales y Puertos Garceta. ISBN: 9788416228263. | spa |
dc.relation.references | Herrera Ibarra, L. M. (2023). Evaluación de los procesos de peroxidación electroquímica y foto-Fenton heterogéneo con escoria de cobre en la remoción de colorantes en efluentes de la industria textil. (Tesis presentada como requisito parcial para optar al título de: Doctor en Ciencias y Tecnología del Agua). Instituto Mexicano de Tecnología del Agua -IMTA, Coordinación de Gobernanza del Agua y Fortalecimiento de Capacidades. http://repositorio.imta.mx/handle/20.500.12013/2320 | spa |
dc.relation.references | Herrera-Ibarra, L. M., Martín-Domínguez, A., Ramírez-Zamora, R. M., Pérez-Castrejón, S., Rivera-Huerta, M. de L., Drogui, P., & Bañuelos-Díaz, J. A. (2023). Electrochemical peroxidation for the bleaching of real textile effluents. Journal of Environmental Chemical Engineering, 11(5), 110509. https://doi.org/10.1016/j.jece.2023.110509 | spa |
dc.relation.references | Hill, C. G. Jr. & Root, T. W. (2014). Introduction to chemical engineering kinetics & reactor design (2nd edition). John Wiley & Sons, Inc. ISBN 978-1-118-36825-1. | spa |
dc.relation.references | Holguin Castellanos, D., Correa Navarro, Y., Rivera Giraldo, J., Ocampo Serna, D., Giraldo Cuartas, V. (2024). Biorremediación de agua residual contaminada con el colorante negro ácido 194, proveniente de una industria textil de Caldas, utilizando complejos enzimáticos y Fusarium oxysporum. https://repositorio.ucaldas.edu.co/handle/ucaldas/18909 | spa |
dc.relation.references | Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090 | spa |
dc.relation.references | Homem, V., Alves, A., & Santos, L. (2013). Microwave-assisted Fenton’s oxidation of amoxicillin. Chemical Engineering Journal, 220, 35–44. https://doi.org/10.1016/j.cej.2013.01.047 | spa |
dc.relation.references | Hu, X., Lei, L., Chen, G., Yue, P. (2001). On the degradability of printing and dyeing wastewater by wet air oxidation. Water Research. 35, 2078–2080. https://doi.org/10.1016/S0043-1354(00)00481-4 | spa |
dc.relation.references | Ibarra Taquez, H. N. (2018). Procesos electroquímicos para el tratamiento de aguas residuales provenientes de la industria de café soluble (Tesis presentada como requisito parcial para optar al título de: Doctor en Ingeniería-Ingeniería Química). Universidad Nacional de Colombia sede Manizales, Facultad de Ingeniería y Arquitectura. https://repositorio.unal.edu.co/bitstream/handle/unal/69474/1053772256.2018.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Ibarra-Taquez, H. N., GilPavas, E., Blatchley, E. R., Gómez-García, M.-Á., & Dobrosz-Gómez, I. (2017). Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis. Journal of Environmental Management, 200, 530-538. https://doi.org/10.1016/j.jenvman.2017.05.095 | spa |
dc.relation.references | IDEAM - Instituto de hidrología, meteorología y estudios ambientales. (2002, 9 de septiembre). Guía para el Monitoreo de Vertimientos, Aguas Superficiales y Aguas Subterráneas. https://corponor.gov.co/corponor/sigescor2010/TRAMITESYSERVICIOS/Guia_monitoreo_IDEAM.pdf | spa |
dc.relation.references | IDEAM – Instituto de Hidrología, Meteorología y Estudios Ambientales. (2023). Capítulo 8 Calidad del agua en Colombia. En IDEAM Estudio Nacional del Agua 2022. IDEAM. https://www.andi.com.co/Uploads/ENA%202022_compressed.pdf | spa |
dc.relation.references | Inexmoda. (2024-a, 19 de agosto). Nuestra Historia. https://inexmoda.org.co/nuestra-historia/ | spa |
dc.relation.references | Inexmoda. (2024-b, 19 de agosto). Noticias: Informe Observatorio de Moda Junio 2024. Inexmoda. https://inexmoda.org.co/observatorio-inexmoda-junio-2024/ | spa |
dc.relation.references | Ito, T., Adachi, Y., Yamanashi, Y., & Shimada, Y. (2016). Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes. Water Research, 100, 458-465. https://doi.org/10.1016/j.watres.2016.05.050 | spa |
dc.relation.references | Jayson, G. G., Parsons, B. J., & Swallow, A. J. (1973). Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 1597. https://doi.org/10.1039/F19736901597 | spa |
dc.relation.references | Jegadeesan, C., Somanathan, A., & Jeyakumar, A. B. (2023). Sanitary landfill leachate treatment by aerated electrochemical Fenton process. Journal of Environmental Management, 337, 117698. https://doi.org/10.1016/j.jenvman.2023.117698 | spa |
dc.relation.references | Jegadeesan, C., Somanathan, A., Jeyakumar R. B., Sharmila, V. G., Arafath K. A. Y. (2021). Treatment of municipal solid waste landfill leachate by aeration assisted electrochemical peroxidation process using aluminium and iron electrodes. Desalination and Water Treatment, 244, 131-146. https://doi.org/10.5004/dwt.2021.27917 | spa |
dc.relation.references | Jin, X., C., Liu, G., Q., Xu, Z., H., Tao, W., Y. (2007). Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and Biotechnology. 74, 239–243. https://doi.org/10.1007/s00253-006-0658-1 | spa |
dc.relation.references | Jorfi, S., Alavi, S., Jaafarzadeh, N., Ghanbari, F., & Ahmadi, M. (2018). COD Removal from High Salinity Petrochemical Wastewater Using Photo-assisted Peroxi-coagulation. Chemical and Biochemical Engineering Quarterly, 32(2), 229–238. https://doi.org/10.15255/cabeq.2017.1268 | spa |
dc.relation.references | Kallawar, G. A., & Bhanvase, B. A. (2024). A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environmental Science and Pollution Research, 31, 1748–1789. https://doi.org/10.1007/s11356-023-31175-3 | spa |
dc.relation.references | Kang, Q., Gao, B., Yue, Q., Zhou, W., & Shen, D. (2007). Residual color profiles of reactive dyes mixture during a chemical flocculation process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1-3), 45-53. https://doi.org/10.1016/j.colsurfa.2006.11.021 | spa |
dc.relation.references | Kayan, B., Gözmen, B., Demirel, M., & Gizir, A. M. (2010). Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques. Journal of Hazardous Materials, 177(1-3), 95-102. https://doi.org/10.1016/j.jhazmat.2009.11.076 | spa |
dc.relation.references | Khan, S., & Malik, A. (2017). Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environmental Science and Pollution Research, 25(5), 4446–4458. https://doi.org/10.1007/s11356-017-0783-7 | spa |
dc.relation.references | Khan, Z. U. H., Gul, N. S., Sabahat, S., Sun, J., Tahir, K., Shah, N. S., Muhammad, N., Rahim, A., Imran, M., Iqbal, J., Khan, M. T., Khasim, S., Farooq, U., Wu, J. (2023). Removal of organic pollutants through hydroxyl radical-based advanced oxidation processes. Ecotoxicology and Environmental Safety, 267, 115564. https://doi.org/10.1016/j.ecoenv.2023.115564 | spa |
dc.relation.references | Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent – A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043 | spa |
dc.relation.references | Kim, K., Qiu, P., Cui, M., & Khim, J. (2016). Development and application of Fe3O4–Pd nanospheres as catalyst for electrochemical-heterogeneous Fenton process. Chemical Engineering Journal, 284, 1165–1173. https://doi.org/10.1016/j.cej.2015.09.035 | spa |
dc.relation.references | Kim, T.-H., Park, C., Yang, J., & Kim, S. (2004). Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation. Journal of Hazardous Materials, 112(1-2), 95-103. https://doi.org/10.1016/j.jhazmat.2004.04.008 | spa |
dc.relation.references | Kishimoto, N., Kitamura, T., & Nakamura, Y. (2015). Applicability of an electrochemical Fenton-type process to actual wastewater treatment. Water Science and Technology, 72(6), 850–857. https://doi.org/10.2166/wst.2015.279 | spa |
dc.relation.references | Kong, L., & Lemley, A. T. (2006). Kinetic Modeling of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Degradation in Soil Slurry by Anodic Fenton Treatment. Journal of Agricultural and Food Chemistry, 54(11), 3941–3950. https://doi.org/10.1021/jf060046x | spa |
dc.relation.references | Kong, L., & Lemley, A. T. (2007). Effect of nonionic surfactants on the oxidation of carbaryl by anodic Fenton treatment. Water Research, 41(12), 2794–2802. https://doi.org/10.1016/j.watres.2007.03.001 | spa |
dc.relation.references | Korpe, S., & Rao, P. V. (2021). Application of Advanced Oxidation Processes and Cavitation Techniques for Treatment of Tannery Wastewater-A Review. Journal of Environmental Chemical Engineering, 105234. https://doi.org/10.1016/j.jece.2021.105234 | spa |
dc.relation.references | Kourdali, S., Badis, A., Boucherit, A., Boudjema, K., & Saiba, A. (2018). Electrochemical disinfection of bacterial contamination: Effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxicoagulation and electrocoagulation. Journal of Environmental Management, 226, 106–119. https://doi.org/10.1016/j.jenvman.2018.08.038 | spa |
dc.relation.references | Kozak, M., Cırık, K., Dolaz, M., & Başak, S. (2021). Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor-aerobic membrane bioreactor. Process Biochemistry, 105, 62-71. https://doi.org/10.1016/j.procbio.2021.03.013 | spa |
dc.relation.references | Krishnatrey, R., Sharma, S., Sharma, K. P., & Mathur, N. (2003). Toxic Effects of Textile Printing Industry Effluents on Liver and Testes of Albino Rats. Bulletin of Environmental Contamination and Toxicology, 71(3), 453-457. https://doi.org/10.1007/s00128-003-8781-5 | spa |
dc.relation.references | Kumar, P., Prasad, B., Mishra, I. M., & Chand, S. (2008). Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation. Journal of Hazardous Materials, 153(1-2), 635-645. https://doi.org/10.1016/j.jhazmat.2007.09.007 | spa |
dc.relation.references | Kurt, U., Apaydin, O., & Gonullu, M. T. (2007). Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process. Journal of Hazardous Materials, 143(1-2), 33-40. https://doi.org/10.1016/j.jhazmat.2006.08.065 | spa |
dc.relation.references | Kwong, K. C., Chim M. M., Davies J. F., Wilson K. R., Chan M. N. (2018). Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate. Atmospheric Chemistry and Physics, 18(4), 2809–2820. https://doi.org/10.5194/acp-18-2809-2018 | spa |
dc.relation.references | LA PATRIA. (2020, 4 de febrero). Daño en empresa de Maltería provocó coloración azul de la quebrada Manizales: Corpocaldas. LA PATRIA.COM. https://www.lapatria.com/medioambiente/dano-en-empresa-de-malteria-provoco-coloracion-azul-de-la-quebrada-manizales | spa |
dc.relation.references | Labiadh, L., Oturan, M. A., Panizza, M., Hamadi, N. B., & Ammar, S. (2015). Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. Journal of Hazardous Materials, 297, 34-41. https://doi.org/10.1016/j.jhazmat.2015.04.062 | spa |
dc.relation.references | LaMorte, W. W. (2016, 16 de junio). Confidence Intervals and p-Values. Boston University School of Public Health. Confidence Intervals and p-Values | spa |
dc.relation.references | Largeau, M. A., Mutuku, R., & Thuo, J. (2018). Effect of Iron Powder (Fe2O3) on Strength, Workability, and Porosity of the Binary Blended Concrete. Open Journal of Civil Engineering, 8, 411-425. https://doi.org/10.4236/ojce.2018.84029 | spa |
dc.relation.references | Ledakowicz, S. & Padźior, K. (2021). Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Integrated with Biological Methods. Molecules, 26(4), 870. https://doi.org/10.3390/molecules26040870 | spa |
dc.relation.references | Lei, H., Li, H., Li, Z., Li, Z., Chen, K., Zhang, X., & Wang, H. (2010). Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Safety and Environmental Protection, 88(6), 431-438. https://doi.org/10.1016/j.psep.2010.06.005 | spa |
dc.relation.references | Lescano, M. R., Lopez, A. O., Romero, R. L., & Zalazar, C. S. (2021). Degradation of chlorpyrifos formulation in water by the UV/H2O2 process: Lumped kinetic modelling of total organic carbon removal. Journal of Photochemistry and Photobiology A: Chemistry. 404, 112924. https://doi.org/10.1016/j.jphotochem.2020.112924 | spa |
dc.relation.references | Li, J., Zhao, L., Qin, L., Tian, X., Wang, A., Zhou, Y., Meng, L., & Chen, Y. (2016). Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo – Fenton processes. Chemosphere, 146, 442-449. https://doi.org/10.1016/j.chemosphere.2015.12.069 | spa |
dc.relation.references | Li, L., Chen, P., & Gloyna, E. F. (1991). Generalized kinetic model for wet oxidation of organic compounds. AIChE Journal, 37(11), 1687–1697. https://doi.org/10.1002/aic.690371112 | spa |
dc.relation.references | Li, L., Crain, N., & Gloyna, E. F. (1996). Kinetic lumping applied to wastewater treatment. Water Environment Research. 68(5), 841–854. https://doi.org/10.2175/106143096x127848 | spa |
dc.relation.references | Liang, S., Zhu, L., Hua, J., Duan, W., Yang, P.-T., Wang, S.-L., Wei, C., Liu C., & Feng, C. (2020). Fe2+/HClO Reaction Produces FeIVO2+: An Enhanced Advanced Oxidation Process. Environmental Science & Technology, 54(10), 6406–6414. https://doi.org/10.1021/acs.est.0c00218 | spa |
dc.relation.references | Lin, J., Ye, W., Xie, M., Seo, D. H., Luo, J., Wan, Y. (2023). Environmental impacts and remediation of dye-containing wastewater. Nature Reviews Earth Environment, 4, 785–803. https://doi.org/10.1038/s43017-023-00489-8 | spa |
dc.relation.references | Liu L., Chen Z., Zhang J., Shan D., Wu Y., Bai L., & Wang, B. (2021). Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: a review. Journal of Water Process Engineering, 42, 102122. https://doi.org/10.1016/j.jwpe.2021.102122 | spa |
dc.relation.references | Liu, H., Zhao, X., Qu, J. (2010). Electrocoagulation in Water Treatment. In: Comninellis, C., Chen, G. (eds.) Electrochemistry for the Environment. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68318-8_10 | spa |
dc.relation.references | Lizama-Bahena, C., Álvarez-Gallegos, A., Hernandez, J. A., & Silva-Martinez, S. (2014). Elimination of bio-refractory chlorinated herbicides like atrazine, alachlor, and chlorbromuron from aqueous effluents by Fenton, electro-Fenton, and peroxi-coagulation methods. Desalination and Water Treatment, 55(13), 3683–3693. https://doi.org/10.1080/19443994.2014.939858 | spa |
dc.relation.references | Lu, W., Lei, S., Chen, N., & Feng, C. (2023). Research on two-step advanced treatment of old landfill leachate by sequential electrochemical peroxidation-electro-Fenton process. Chemical Engineering Journal, 451, 138746. https://doi.org/10.1016/j.cej.2022.138746 | spa |
dc.relation.references | Lucas, M. S., Dias, A. A., Sampaio, A., Amaral, C., & Peres, J. A. (2007). Degradation of a textile reactive Azo dye by a combined chemical–biological process: Fenton’s reagent-yeast. Water Research, 41(5), 1103-1109. https://doi.org/10.1016/j.watres.2006.12.013 | spa |
dc.relation.references | Ma, X., & Zhou, M. (2009). A comparative study of azo dye decolorization by electro-Fenton in two common electrolytes. Journal of Chemical Technology & Biotechnology, 84(10), 1544-1549. https://doi.org/10.1002/jctb.2218 | spa |
dc.relation.references | MADS - Ministerio de Ambiente y Desarrollo Sostenible. (2015). RESOLUCIÓN 0631, s.l.: Diario Oficial No. 49.486 de 18 de abril de 2015. Ministerio de Ambiente y Desarrollo Sostenible. | spa |
dc.relation.references | Magdy, M., Gar Alalm, M., & El-Etriby, H. K. (2021). Comparative Life Cycle Assessment of five chemical methods for removal of phenol and its transformation products. Journal of Cleaner Production, 291, 125923. https://doi.org/10.1016/j.jclepro.2021.125923 | spa |
dc.relation.references | Mahmood, S., Khalid, A., Arshad, M., Mahmood, T., Crowley, D.E. (2016). Detoxification of azo dyes by bacterial oxidoreductase enzymes. Critical Reviews in Biotechnology, 36, 639–651. https://doi.org/10.3109/07388551.2015.1004518 | spa |
dc.relation.references | Mahmoudi, N., Farhadian, M., Solaimany Nazar, A. R., Eskandari, P., & Esfahani, K. N. (2022). Investigation and optimization of the performance of sono-photo-electro-Fenton process for removal of Acid Black 172 and Disperse Blue 56 from polluted water: comparison of the degradation activity with electro-Fenton-based processes. International Journal of Environmental Science and Technology, 19, 1671–1682. https://doi.org/10.1007/s13762-021-03296-0 | spa |
dc.relation.references | Malakootian, M., & Moridi, A. (2017). Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Process Safety and Environmental Protection, 111, 138-147. https://doi.org/10.1016/j.psep.2017.06.008 | spa |
dc.relation.references | Malakootian, M., Nasiri, A., Khatami, M., Mahdizadeh, H., Karimi, P., Ahmadian, M., Asadzadeh, N., & Heidari, M. R. (2019). Experimental data on the removal of phenol by electro-H2O2 in presence of UV with response surface methodology. MethodsX, 6, 1188-1193. https://doi.org/10.1016/j.mex.2019.05.004 | spa |
dc.relation.references | Malinović, B. N., Pavlović, M. G., & Djuričić, T. (2017). Electrocoagulation of textile wastewater containing a mixture of organic dyes by iron electrode. Journal of Electrochemical Science and Engineering, 7(2), 103. https://doi.org/10.5599/jese.366 | spa |
dc.relation.references | Mao, G., Hu, H., Liu, X., Crittenden, J., & Huang, N. (2021). A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environmental Pollution, 275, 115785. https://doi.org/10.1016/j.envpol.2020.115785 | spa |
dc.relation.references | Markets and Markets. (2022). Textile Dyes Market by Dye Type, Type, Fiber Type, and Region – Global Forecast to 2027. MarketsandMarkets Research Private Ltd. https://www.marketsandmarkets.com/Market-Reports/textile-dye-market-226167405.html | spa |
dc.relation.references | Marlina, E., Purwanto, P. Sudarno, S. (2022). Decolorization of industrial wastewater using electrochemical peroxidation process. Journal of Electrochemical Science and Engineering, 12(2), 373-382. https://doi.org/10.5599/jese.1017 | spa |
dc.relation.references | Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62–71. https://doi.org/10.1016/j.coelec.2018.07.010 | spa |
dc.relation.references | Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361 | spa |
dc.relation.references | Martins, R. C., Lopes, R. J. G., & Quinta-Ferreira, R. M. (2010). Lumped kinetic models for single ozonation of phenolic effluents. Chemical Engineering Journal, 165(2), 678–685. https://doi.org/10.1016/j.cej.2010.09.060 | spa |
dc.relation.references | Más COLOMBIA (2023, 18 de septiembre). Industria textil y de confecciones: cada vez más importaciones y menos exportaciones. Más COLOMBIA. https://mascolombia.com/industria-textil-y-de-confecciones-cada-vez-mas-importaciones-y-menos-exportaciones/ | spa |
dc.relation.references | Meylani, V., Surahman, E., Fudholi, A., Almalki, W. H., Ilyas, N., & Sayyed, R. Z. (2023). Biodiversity in microbial fuel cells: Review of a promising technology for wastewater treatment. Journal of Environmental Chemical Engineering, 11(2), 109503. https://doi.org/10.1016/j.jece.2023.109503 | spa |
dc.relation.references | MITECO – Ministerio para la Transición Ecológica y el Reto Demográfico. (2021). Proyecto Estratégico para la recuperación y Transformación Económica en Economía Circular (PERTE en EC). MITECO. https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/economia-circular/perte-en-ec.html | spa |
dc.relation.references | Moazeni, K., Mirzaei, M., Baghdadi, M., & Torabian, A. (2023). Sequential Treatment of Textile Industry Wastewater Using Electrocoagulation and Photo electro-Fenton Processes. Water Air Soil Pollut, 234, 413. https://doi.org/10.1007/s11270-023-06406-5 | spa |
dc.relation.references | Monteil, H., Péchaud, Y., Oturan, N., & Oturan, M. A. (2018). A review on Efficiency and Cost Effectiveness of Electro- and Bio-electro-Fenton processes: Application to the Treatment of Pharmaceutical Pollutants in Water. Chemical Engineering Journal, 376, 119577. https://doi.org/10.1016/j.cej.2018.07.179 | spa |
dc.relation.references | Monteil, H., Péchaud, Y., Oturan, N., Trellu, C., & Oturan, M. A. (2021). Pilot scale continuous reactor for water treatment by electrochemical advanced oxidation processes: Development of a new hydrodynamic/reactive combined model. Chemical Engineering Journal, 404, 127048. https://doi.org/10.1016/j.cej.2020.127048 | spa |
dc.relation.references | Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. http://dx.doi.org/10.1016/j.apcatb.2016.08.037 | spa |
dc.relation.references | Mousset, E., Loh, W. H., Lim, W. S., Jarry, L., Wang, Z., & Lefebvre, O. (2021). Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria. Water Research, 200, 117234. https://doi.org/10.1016/j.watres.2021.117234 | spa |
dc.relation.references | Mousset, E., Oturan, N., van Hullebusch, E. D., Guibaud, G., Esposito, G., & Oturan, M. A. (2014). Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process – Study of soil washing recycling possibilities and environmental impact. Water Research, 48, 306–316. https://doi.org/10.1016/j.watres.2013.09.044 | spa |
dc.relation.references | Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments, (4th Edition). John Wiley & Sons, Inc. ISBN: 978-1-118-91601-8. | spa |
dc.relation.references | Nayebi, B., Ghalebizade, M., & Niavol, K. P. (2021). Removal of Acid Red 131 by Peroxi-Coagulation Using Stainless Steel and Aluminum Electrodes: a Comparative Study. Water Conservation Science and Engineering, 6, 201-211. https://doi.org/10.1007/s41101-021-00114-z | spa |
dc.relation.references | Neta, P., Huie, R. E., & Ross, A. B. (1988). Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(3), 1027–1284. https://doi.org/10.1063/1.555808 | spa |
dc.relation.references | Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3), 33–50. https://doi.org/10.1016/s0304-3894(02)00282-0 | spa |
dc.relation.references | Nidheesh, P. V., Gandhimathi, R., & Ramesh, S. T. (2013). Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099–2132. https://doi.org/10.1007/s11356-012-1385-z | spa |
dc.relation.references | Noticias Caracol. (2016, 25 de septiembre). Azul, rojo, verde, naranja o gris: ¿cuál es el verdadero color del río Medellín? Noticias Caracol. https://noticias.caracoltv.com/antioquia/azul-rojo-verde-naranja-o-gris-cual-es-el-verdadero-color-del-rio-medellin | spa |
dc.relation.references | Nouri, H., Azin, E., Kamyabi, A., & Moghimi, H. (2021). Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater. International Journal of Environmental Science and Technology, 18, 2545-2558. https://doi.org/10.1007/s13762-020-03011-5 | spa |
dc.relation.references | NUEVA CRÓNICA QUINDÍO. (2020, 10 de noviembre). Quebradas del Quindío, convertidas en depósitos de desechos. NUEVA CRÓNICA QUINDÍO. https://www.cronicadelquindio.com/noticias/galeria/quebradas-del-quindio-convertidas-en-depositos-de-desechos | spa |
dc.relation.references | Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of The Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 | spa |
dc.relation.references | Olvera-Vargas, H., Zheng, X., Garcia-Rodriguez, O., & Lefebvre, O. (2019). Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment. Water Research, 154, 277–286. https://doi.org/10.1016/j.watres.2019.01.063 | spa |
dc.relation.references | OMS – Organización Mundial de la Salud. (2011). Guía para la calidad del agua de consumo humano. Cuarta edición que incorpora la primera Adenda. Organización Mundial de la Salud.https://apps.who.int/iris/bitstream/handle/10665/272403/9789243549958-spa.pdf?ua=1 | spa |
dc.relation.references | Ortiz Londoño, D. (2019, 4 de octubre). Preocupantes índices de contaminación de la quebrada El Erazo. CARACOL RADIO. https://caracol.com.co/emisora/2019/10/04/pereira/1570181078_865362.html | spa |
dc.relation.references | Oturan, N., Panizza, M., & Oturan, M. A. (2009). Cold Incineration of Chlorophenols in Aqueous Solution by Advanced Electrochemical Process Electro-Fenton. Effect of Number and Position of Chlorine Atoms on the Degradation Kinetics. The Journal of Physical Chemistry A, 113(41), 10988–10993. https://doi.org/10.1021/jp9069674 | spa |
dc.relation.references | Özcan, A., Oturan, M. A., Oturan, N., & Şahin, Y. (2009). Removal of Acid Orange 7 from water by electrochemically generated Fenton’s reagent. Journal of Hazardous Materials, 163(2-3), 1213-1220. https://doi.org/10.1016/j.jhazmat.2008.07.088 | spa |
dc.relation.references | Özdemir, C., Öden, M. K., Şahinkaya, S., & Kalipçi, E. (2011). Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. Clean - Soil, Air, Water, 39(1), 60–67. https://doi.org/10.1002/clen.201000263 | spa |
dc.relation.references | Özdemir, C., Tezcan, H., Sahinkaya, S., & Kalipci, E. (2010). Pretreatment of Olive Oil Mill Wastewater by Two Different Applications of Fenton Oxidation Processes. Clean - Soil, Air, Water, 38(12), 1152–1158. https://doi.org/10.1002/clen.201000222 | spa |
dc.relation.references | Ozguven, A., & Ozturk, D. (2023). A Numerical Optimization Approach for Removal of Astrazon Pink FG from Aqueous Media by Fenton Oxidation. Arabian Journal for Science and Engineering, 48, 8431–8452. https://doi.org/10.1007/s13369-022-06996-y | spa |
dc.relation.references | Özmen, F. K., Gerek, E. E., & Koparal, A. S. (2021). Treatment of food industry wastewater by ⸱OH-based electrochemical-Fenton method and toxicity evaluation. Desalination and Water Treatment, 233, 239-252. https://doi.org/10.5004/dwt.2021.27593 | spa |
dc.relation.references | Panizza, M., & Cerisola, G. (2005). Application of diamond electrodes to electrochemical processes. Electrochimica Acta, 51(2), 191–199. https://doi.org/10.1016/j.electacta.2005.04.023 | spa |
dc.relation.references | Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541–6569. https://doi.org/10.1021/cr9001319 | spa |
dc.relation.references | Panizza, M., Kapalka, A., & Comninellis, C. (2008). Oxidation of organic pollutants on BDD anodes using modulated current electrolysis. Electrochimica Acta, 53(5), 2289–2295. https://doi.org/10.1016/j.electacta.2007.09.044 | spa |
dc.relation.references | Panizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Anodic oxidation of 2- naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 507(1-2), 206–214. https://doi.org/10.1016/s0022-0728(01)00398-9 | spa |
dc.relation.references | Papić, S., Koprivanac, N., Božić, A. L., Vujević, D., Dragičević, S. K., Kušić, H., & Peternel, I. (2006). Advanced Oxidation Processes in Azo Dye Wastewater Treatment. Water Environment Research, 78(6), 572–579. https://doi.org/10.2175/106143006x101665 | spa |
dc.relation.references | Pasciucco, E., Pasciucco, F., Panico, A., Iannelli, R., & Pecorini, I. (2025). Optimization of a Fenton-based process as a tertiary treatment of tannery wastewater through response surface methodology. Journal of Water Process Engineering, 69, 106588. https://doi.org/10.1016/j.jwpe.2024.106588 | spa |
dc.relation.references | Patel, D. K., Tipre, D. R., & Dave, S. R. (2017). Enzyme mediated bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. Journal of the Taiwan Institute of Chemical Engineers, 77, 1–9. https://doi.org/10.1016/j.jtice.2017.02.027 | spa |
dc.relation.references | Patel, H., & Vashi, R. T. (2010). Treatment of Textile Wastewater by Adsorption and Coagulation. E-Journal of Chemistry, 7(4), 1468-1476. https://doi.org/10.1155/2010/987620 | spa |
dc.relation.references | Pekey, H. (2016). Evaluation of electrochemical peroxidation (ECP) process variables for removal of co-complex dye using a central composite design. Desalination and Water Treatment, 57(21), 9845-9858. https://doi.org/10.1080/19443994.2015.1033466 | spa |
dc.relation.references | Peng, Q., Lü, X., Ou, J., Zhou, Y., Xu, T., Hu, B., Yu, G., Zhu C., & Xie, Z. (2022). Study on removal of phosphorus and COD in wastewater by sinusoidal AC Fenton oxidation-coagulation. Environmental Technology, 44(22), 3382–3392. https://doi.org/10.1080/09593330.2022.2058423 | spa |
dc.relation.references | Peng, R. C., Yu, P., & Luo, Y. B. (2016). A comparative study of Fenton and electro-Fenton treatment for COD removal from coking industry wastewater. Fresenius Environmental Bulletin, 25(10), 3987-3992. ISSN 1018-4619. | spa |
dc.relation.references | Petchrompo, S., Coit, D. W., Brintrup, A., Wannakrairot, A., Kumar Parlikad, A. (2022). A review of Pareto pruning methods for multi-objective optimization. Computers & Industrial Engineering, 167, 108022. https://doi.org/10.1016/j.cie.2022.108022 | spa |
dc.relation.references | Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84. https://doi.org/10.1080/10643380500326564 | spa |
dc.relation.references | Pimentel Prates, M., de Oliveira Loures Marcionílio, S. M., Borges Machado, K., Medeiros de Araújo, D., Martínez-Huitle, C. A., Leão Arantes, A. L., & Ferreira da Silva Gadêlha, J. E. (2023). Fenton: A Systematic Review of Its Application in Wastewater Treatment. Processes, 11, 2466. https://doi.org/10.3390/pr11082466 | spa |
dc.relation.references | Pulgarin, C., Invernizzi, M., Parra, S., Sarria, V., Polania, R., & Péringer, P. (1999). Strategy for the coupling of photochemical and biological flow reactors useful in mineralization of biorecalcitrant industrial pollutants. Catalysis Today, 54(2-3), 341–352. https://doi.org/10.1016/s0920-5861(99)00195-9 | spa |
dc.relation.references | Qiao, J., & Xiong, Y. (2021). Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants. Journal of Water Process Engineering, 44, 102308. https://doi.org/10.1016/j.jwpe.2021.102308 | spa |
dc.relation.references | Qiu, S., He, D., Ma, J., Liu, T., & Waite, T. D. (2015). Kinetic Modeling of the Electro-Fenton Process: Quantification of Reactive Oxygen Species Generation. Electrochimica Acta, 176, 51–58. https://doi.org/10.1016/j.electacta.2015.06.103 | spa |
dc.relation.references | Quintero Arias J. D. (2023). Proceso avanzado de oxidación Fenton integrado con coagulación-floculación o electrocoagulación para el tratamiento de aguas residuales industriales textiles. (Tesis presentada como requisito parcial para optar al título de: Doctor en Ingeniería-Ingeniería Química). Universidad Nacional de Colombia sede Manizales, Facultad de Ingeniería y Arquitectura. https://repositorio.unal.edu.co/handle/unal/86293 | spa |
dc.relation.references | Quintero Arias, J. D., Gómez-García, M. Á., & Dobrosz-Gómez, I. (2024). The scope of alum coagulation-flocculation assisted by slaked lime for the treatment of industrial wastewater containing highly concentrated Acid Black 194 dye. Optimization, molecular weight distribution and toxicity analysis. Results in Engineering, 23, 102676. https://doi.org/10.1016/j.rineng.2024.102676 | spa |
dc.relation.references | Rahmani, A. R., Shabanloo, A., Fazlzadeh, M., & Poureshgh, Y. (2016). Investigation of operational parameters influencing in treatment of dye from water by electro-Fenton process. Desalination and Water Treatment, 57(51), 24387-24394. https://doi.org/10.1080/19443994.2016.1146918 | spa |
dc.relation.references | Rai, H. S., Bhattacharyya, M. S., Singh, J., Bansal, T. K., Vats, P., & Banerjee, U. C. (2005). Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment. Critical Reviews in Environmental Science and Technology, 35(3), 219–238. https://doi.org/10.1080/10643380590917932 | spa |
dc.relation.references | Raji, M., & Mirbagheri, S. A. (2021). A global trend of Fenton-based AOPs focused on wastewater treatment: a bibliometric and visualization analysis. Water Practice and Technology, 16(1), 19–34. https://doi.org/10.2166/WPT.2020.099 | spa |
dc.relation.references | Ramírez-Carranza, D. R., González-Blanco, G., Martínez-Gallegos, S. M., Ávila-Pérez, P., Beristain-Cardoso, R., & Macedo-Miranda, G. (2023). Effect of Fenton process as a pretreatment in the phytoremediation of metronidazole by Scirpus lacustris. Environmental Technology, 45(19), 3888–3897. https://doi.org/10.1080/09593330.2023.2236767 | spa |
dc.relation.references | Ramírez-Díaz, R. C. & Prato-Garcia, P. (2021). Can thermal intensification be considered a sustainable way for greening Fenton processes? Journal of Environmental Management, 289, 112551. https://doi.org/10.1016/j.jenvman.2021.112551 | spa |
dc.relation.references | Ranga, M., Sinha, S., & Biswas, P. (2023).Rhodamine B dye degradation by fabricated Ti/RuO2 anode: Optimization by RSM, reaction mechanism, study of sludge. Korean Journal of Chemical Engineering, 40(9), 2219-2238. https://doi.org/10.1007/s11814-022-1355-1 | spa |
dc.relation.references | Rathour, R., Patel, D., Shaikh, S., Desai, C. (2019). Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures. Bioresource Technology, 285, 21349. https://doi.org/10.1016/j.biortech.2019.121349 | spa |
dc.relation.references | Ren, Y.-Z., Franke, M., Anschuetz, F., Ondruschka, B., Ignaszak, A., & Braeutigam, P. (2014). Sonoelectrochemical degradation of triclosan in water. Ultrasonics Sonochemistry, 21(6), 2020–2025. https://doi.org/10.1016/j.ultsonch.2014.03.028 | spa |
dc.relation.references | RETEMA - Revista Técnica de Medio Ambiente. (2016, 26 de abril). Nueva instalación de valorización de lodos de la EDAR de Galindo. https://www.retema.es/articulos-reportajes/nueva-instalacion-valorizacion-lodos-edar-galindo | spa |
dc.relation.references | Ridruejo, C., Centellas, F., Cabot, P. L., Sirés, I., & Brillas, E. (2018). Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes. Water Research, 128, 71–81. https://doi.org/10.1016/j.watres.2017.10.048 | spa |
dc.relation.references | Rodrigues, A. C., Boroski, M., Shimada, N. S., Garcia, J. C., Nozaki, J., & Hioka, N. (2008). Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 194(1), 1–10. https://doi.org/10.1016/j.jphotochem.2007.07.007 | spa |
dc.relation.references | Rodríguez Castañeda, K. (2015, 31 de octubre). Autoridades investigan nuevo vertimiento de colorantes al río Medellín-Aburrá. El Palpitar. http://www.elpalpitar.com/medio-ambiente/2015/10/de-nuevo-el-rio-medellin-amanecio-tenido-de-rojo/ | spa |
dc.relation.references | Rojas, J. C. (2018, 4 de febrero). Inexmoda, la idea que sacudió la cadena textil colombiana. EL TIEMPO. https://www.eltiempo.com/economia/empresas/historia-de-inexmoda-la-idea-que-sacudio-la-cadena-textil-colombiana-178820 | spa |
dc.relation.references | Rosa, E. V., Mater, L., Souza-Sierra, M. M., Rörig, L. R., Vieira, L. M., & Radetski, C. M. (2007). Textile sludge application to non-productive soil: physico-chemical and phytotoxicity aspects. Ecotoxicology and Environmental Safety, 68(1), 91-97. https://doi.org/10.1016/j.ecoenv.2006.06.006 | spa |
dc.relation.references | Rosales, E., Sanromán, M. A., & Pazos, M. (2012). Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye. Environmental Science and Pollution Research, 19(5), 1738-1746. https://doi.org/10.1007/s11356-011-0668-0 | spa |
dc.relation.references | Rubio-Clemente, A., Chica, E. L., & Peñuela, G. A. (2014). Aplicación del proceso Fenton en el tratamiento de aguas residuales de origen petroquímico. Ingeniería y competitividad, 16(2), 211-223. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332014000200019&lng=en&tlng=es | spa |
dc.relation.references | Saba, B., Christy, A. D., Park, T., Yu, Z., Li, K., & Tuovinen, O. H. (2018). Decolorization of reactive black 5 and reactive blue 4 dyes in microbial fuel cells. Applied Biochemistry and Biotechnology, 186, 1017–1033, https://doi.org/10.1007/s12010-018-2774-7 | spa |
dc.relation.references | Şahinkaya, S. & Özgüroğlu, G. (2021). Removal of COD and surfactants from grey water by Fenton type processes. Turkish Journal of Engineering, 5(2), 69-74. https://doi.org/10.31127/tuje.674021 | spa |
dc.relation.references | Sahınkaya, S. & Yakut, S. M. (2020). A comparative study on applicability of nano-sized iron(II, III) oxide in ultrasonicated Fenton process. Environmental Engineering Research, 25(1), 36-42. https://doi.org/10.4491/eer.2018.277 | spa |
dc.relation.references | Saini, R., Kumar Mondal, M., & Kumar, P. (2016). Fenton oxidation of pesticide methyl parathion in aqueous solution: kinetic study of the degradation. Environmental Progress & Sustainable Energy, 36(2), 420–427. https://doi.org/10.1002/ep.12473 | spa |
dc.relation.references | Saltmiras, D. A., & Lemley, A. T. (2000). Degradation of Ethylene Thiourea (ETU) with Three Fenton Treatment Processes. Journal of Agricultural and Food Chemistry, 48(12), 6149–6157. https://doi.org/10.1021/jf000084v | spa |
dc.relation.references | Sánchez Cepillo, D. I. (2011). Diseño óptimo de Laminados en Materiales Compuestos. Aplicación del MEF y el Método de las Superficies de Respuesta. (Trabajo final para optar al título de: Máster en Diseño Avanzado en Ingeniería Mecánica). Escuela Superior de Ingenieros. Universidad de Sevilla. https://biblus.us.es/bibing/proyectos/abreproy/70238/ | spa |
dc.relation.references | Sandhwar, V. K., & Prasad, B. (2017-a). Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study. Journal of Environmental Management, 203, 476–488. https://doi.org/10.1016/j.jenvman.2017.08.022 | spa |
dc.relation.references | Sandhwar, V. K., & Prasad, B. (2017-b). Comparative study of electrochemical oxidation and electrochemical Fenton processes for simultaneous degradation of phthalic and para-toluic acids from aqueous medium. Journal of Molecular Liquids, 243, 519–532. https://doi.org/10.1016/j.molliq.2017.08.016 | spa |
dc.relation.references | Sandhwar, V. K., & Prasad, B. (2018). Comparison of electrocoagulation, peroxi-electrocoagulation and peroxi-coagulation processes for treatment of simulated purified terephthalic acid wastewater: Optimization, sludge and kinetic analysis. Korean Journal of Chemical Engineering, 35, 909–921. https://doi.org/10.1007/s11814-017-0336-2 | spa |
dc.relation.references | Sandhwar, V. K., Saxena, D., Verma, S., Garg, K. K., & Prasad, B. (2020). Comparison of COD removal from petrochemical wastewater by electro-Fenton and electro oxidation processes: optimization and kinetic analyses. Separation Science and Technology, 56(13), 2300–2309. https://doi.org/10.1080/01496395.2020.1823414 | spa |
dc.relation.references | Sanghi, R., Bhattacharya, B., Dixit, A., & Singh, V. (2006). Ipomoea dasysperma seed gum: An effective natural coagulant for the decolorization of textile dye solutions. Journal of Environmental Management, 81(1), 36-41. https://doi.org/10.1016/j.jenvman.2005.09.015 | spa |
dc.relation.references | Santacruz Armero, W. V. (2023). Evaluación toxicológica de efluentes textiles remediados con el método de coagulación floculación y electrocoagulación mediante el bioindicador Poecilia reticulata y Lactuca sativa. (Tesis presentada como requisito parcial para optar por el título de Biólogo). Universidad de Caldas, Facultad de Ciencias Exactas y Naturales. https://repositorio.ucaldas.edu.co/handle/ucaldas/18906 | spa |
dc.relation.references | Santana-Martínez, G., Roa-Morales, G., Del Campo, E. M., Romero, R., Frontana-Uribe, B. A., & Natividad, R. (2016). Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochimica Acta, 195, 246-256. https://doi.org/10.1016/j.electacta.2016.02.093 | spa |
dc.relation.references | Santos, A., Yustos, P., Rodríguez, S., & Romero, A. (2010). Mineralization lumping kinetic model for abatement of organic pollutants using Fenton's reagent. Catalysis Today. 151(1-2), 89-93. https://doi.org/10.1016/j.cattod.2010.02.022 | spa |
dc.relation.references | Santos, M. S. F., Alves, A., & Madeira, L. M. (2011). Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal, 175, 279–290. https://doi.org/10.1016/j.cej.2011.09.106 | spa |
dc.relation.references | Sarayu, K., & Sandhya, S. (2012). Current Technologies for Biological Treatment of Textile Wastewater–A Review. Applied Biochemistry and Biotechnology, 167(3), 645–661. https://doi.org/10.1007/s12010-012-9716-6 | spa |
dc.relation.references | Scott, J. P., & Ollis, D. F. (1995). Integration of chemical and biological oxidation processes for water treatment: Review and recommendations. Environmental Progress, 14(2), 88–103. https://doi.org/10.1002/ep.670140212 | spa |
dc.relation.references | Sebastiano, R., Contiello, N., Senatore, S., Righetti, P. G., & Citterio, A. (2012). Analysis of commercial Acid Black 194 and related dyes by micellar electrokinetic chromatography. Dyes and Pigments, 94(2), 258–265. https://doi.org/10.1016/j.dyepig.2011.12.014 | spa |
dc.relation.references | Selcuk, H. (2005). Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 64(3), 217-222. https://doi.org/10.1016/j.dyepig.2004.03.020 | spa |
dc.relation.references | Selim, N., Maghrawy, H. H., Fathy, R., Gamal, M., Abd El Kareem, H., Bowman, K., Brehney, M., Kyazze, G., Keshavarz, T., & Gomaa, O. (2020). Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation, Journal of Radiation Research and Applied Sciences, 13(1), 373–382. https://doi.org/10.1080/16878507.2020.1743480 | spa |
dc.relation.references | Shaala, N. M. A., Zulkifli, S. Z., Ismail, A., Azmai, M. N. A., & Mohamat-Yusuff, F. (2015). Lethal Concentration 50 (LC50) and Effects of Diuron on Morphology of Brine Shrimp Artemia Salina (Branchiopoda: Anostraca) Nauplii. Procedia Environmental Sciences, 30, 279–284. https://doi.org/10.1016/j.proenv.2015.10.050 | spa |
dc.relation.references | Sharma, B., Dangi, A. K., & Shukla, P. (2018). Contemporary enzyme-based technologies for bioremediation: A review. Journal of Environmental Management, 210, 10–22. https://doi.org/10.1016/j.jenvman.2017.12.075 | spa |
dc.relation.references | Sharma, M., Sharma, S., Alkhanjaf, A. A. M., Arora, N. K., Saxena, B., Umar, A., Ibrahim, A., Akhtar, M. S., Mahajan, A., Negi, S., Kumar, R., & Baskoutas, S. (2025). Microbial fuel cells for azo dye degradation: A perspective review. Journal of Industrial and Engineering Chemistry, 142, 45-67. https://doi.org/10.1016/j.jiec.2024.07.031 | spa |
dc.relation.references | Shin, Y.-U., Yoo, H.-Y., Kim, S., Chung, K.-M., Park, Y.-G., Hwang, K.-H., Hong, S. W.,Park, H., Cho, K., & Lee, J. (2017). Sequential combination of electro-Fenton and elec-trochemical chlorination processes for the treatment of anaerobically-digested foodwastewater. Environmental Science & Technology, 51(18), 10700–10710. https://doi.org/10.1021/acs.est.7b02018 | spa |
dc.relation.references | Shindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Taherzadeh, M. J. (2020). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1), 70–87. https://doi.org/10.1080/21655979.2020.1863034 | spa |
dc.relation.references | Shokri, A., & Nasernejad, B. (2023). Treatment of spent caustic wastewater by electro-Fenton process: Kinetics and cost analysis. Process Safety and Environmental Protection, 172, 836-845. https://doi.org/10.1016/j.psep.2023.02.077 | spa |
dc.relation.references | Shoukat, R., Khan, S. J., & Jamal, Y. (2019). Hybrid anaerobic-aerobic biological treatment for real textile wastewater. Journal of Water Process Engineering, 29, 100804, https://doi.org/10.1016/j.jwpe.2019.100804 | spa |
dc.relation.references | Silva, A. M. T., Quinta-Ferreira, R. M., & Levec, J. (2003). Catalytic and Noncatalytic Wet Oxidation of Formaldehyde. A Novel Kinetic Model. Industrial & Engineering Chemistry Research, 42(21), 5099–5108. https://doi.org/10.1021/ie030090r | spa |
dc.relation.references | Silva, A. M., Herney-Ramirez, J., Söylemez, U., & Madeira, L. M. (2012). A lumped kinetic model based on the Fermi's equation applied to the catalytic wet hydrogen peroxide oxidation of Acid Orange 7. Applied Catalysis B: Environmental, 121, 10-19. https://doi.org/10.1016/j.apcatb.2012.03.018 | spa |
dc.relation.references | Sirés, I., Guivarch, E., Oturan, N., & Oturan, M. A. (2008). Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere, 72(4), 592–600. https://doi.org/10.1016/j.chemosphere.2008.03.010 | spa |
dc.relation.references | Sobczak, M., Bujnowicz, S., & Bilińska, L. (2024). Fenton and electro-Fenton treatment for industrial textile wastewater recycling. Comparison of by-products removal, biodegradability, toxicity, and re-dyeing. Water Resources and Industry, 31, 100256. https://doi.org/10.1016/j.wri.2024.100256 | spa |
dc.relation.references | Soltani, F., Navidjouy, N., & Rahimnejadc, M. (2022). A review on bio-electro-Fenton systems as environmentally friendly methods for degradation of environmental organic pollutants in wastewater. RSC Advances, 12, 5184-5213. https://doi.org/10.1039/D1RA08825D | spa |
dc.relation.references | Sonu, K., Sogani, M., & Syed, Z. (2021). Integrated Constructed Wetland‐Microbial Fuel Cell using Biochar as Wetland Matrix: Influence on Power Generation and Textile Wastewater Treatment. ChemistrySelect, 6(32), 8323–8328. https://doi.org/10.1002/slct.202102033 | spa |
dc.relation.references | Su, C. X. H., Low, L. W., Teng, T. T., & Wong, Y. S. (2016). Combination and hybridisation of treatments in dye wastewater treatment: A review. Journal of Environmental Chemical Engineering, 4(3), 3618-3631. https://doi.org/10.1016/j.jece.2016.07.026 | spa |
dc.relation.references | Suhan, M. B. K., Shuchi, S. B., Anis, A., Haque, Z., & Islam, M. S. (2020). Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: Kinetics and cost analysis. Environmental Nanotechnology, Monitoring & Management, 14, 100335. https://doi.org/10.1016/j.enmm.2020.100335 | spa |
dc.relation.references | Suksaroj, C., Héran, M., Allègre, C., & Persin, F. (2005). Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination, 178(1-3), 333-341. https://doi.org/10.1016/j.desal.2004.11.043 | spa |
dc.relation.references | Sun, L., Mo, Y., Zhang, L. (2022). A mini review on bio-electrochemical systems for the treatment of azo dye wastewater: State-of-the-art and future prospects. Chemosphere, 294, 133801. https://doi.org/10.1016/j.chemosphere.2022.133801 | spa |
dc.relation.references | Tabish, M., Tabinda, A. B., Mazhar, Z., Yasar, A., Ansar, J., & Wasif, I. (2024). Physical, chemical and biological treatment of textile wastewater for removal of dyes and heavy metals. Desalination and Water Treatment, 320, 100842. https://doi.org/10.1016/j.dwt.2024.100842 | spa |
dc.relation.references | Tan, B. (2000). Removal of dyes and industrial dye wastes by magnesium chloride. Water Research, 34(2), 597-601. https://doi.org/10.1016/S0043-1354(99)00151-7 | spa |
dc.relation.references | Tanveer, R., Yasar, A., Nizami, A.-S., & Tabinda, A. B. (2023). Integration of physical and advanced oxidation processes for treatment and reuse of textile dye-bath effluents with minimum area footprint. Journal of Cleaner Production, 383, 135366. https://doi.org/10.1016/j.jclepro.2022.135366 | spa |
dc.relation.references | Tomcsányi, L., De Battisti, A., Hirschberg, G., Varga, K., & Liszi, J. (1999). The study of the electrooxidation of chloride at RuO2/TiO2 electrode using CV and radiotracer techniques and evaluating by electrochemical kinetic simulation methods. Electrochimica Acta, 44(14), 2463–2472. https://doi.org/10.1016/s0013-4686(98)00381-8 | spa |
dc.relation.references | Torres, R. A., Sarria, V., Torres, W., Peringer, P., & Pulgarin, C. (2003). Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: Toward an electrochemical–biological coupling. Water Research, 37(13), 3118–3124. https://doi.org/10.1016/S0043-1354(03)00179-9 | spa |
dc.relation.references | Torres-Segundo, C., Vergara-Sánchez, J., Reyes-Romero, P., Gómez-Díaz, A., Rodríguez-Albarrán, M., & Martínez-Valencia, H. (2019). Effect on Discoloration by Nonthermal Plasma in Dissolved Textile Dyes: Acid Black 194. Revista Mexicana de Ingeniería Química, 18(3), 939-947. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Torres | spa |
dc.relation.references | Trejo, L. F. (2024, 24 de mayo). LA PATRIA: Tono rojizo en la quebrada Cristales (Manizales) se diluye, pero preocupa a habitantes. [Denuncia pública con foto adjunta] [Post]. Instagram. https://www.instagram.com/p/C7X0-JcNWCC/?igsh=cjRncHlpaHUxaWhh | spa |
dc.relation.references | Ulu, H. B., Değermenci, N., & Dilek, F. B. (2020). Removal of chloridazon pesticide from waters by fenton and photo-fenton processes. Desalination and Water Treatment, 194, 429–438. https://doi.org/10.5004/dwt.2020.25905 | spa |
dc.relation.references | UNE - Normalización Española (2012). Calidad del agua. Examen y determinación del color. (UNE-EN ISO 7887:2012). https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049776 | spa |
dc.relation.references | Urbina-Suarez, N. A., Angel-Ospina, A. C., Lopez-Barrera, G. L., Barajas-Solano, A. F., & Machuca-Martínez, F. (2024). S-curve and landscape maps for the analysis of trends on industrial textile wastewater treatment, Environmental Advances, 15,100491. https://doi.org/10.1016/j.envadv.2024.100491 | spa |
dc.relation.references | Usma, L. (2020, 5 de febrero). ¿Qué hay detrás del extraño color azul en una quebrada en Manizales? LA PATRIA.COM. https://www.eltiempo.com/colombia/otras-ciudades/contaminacion-con-colorantes-en-quebrada-preocupa-a-manizales-458858 | spa |
dc.relation.references | Ütebay, B., Çelik, P., & Çay, A. (2020). Textile Wastes: Status and Perspectives. IntechOpen. https://doi.org/10.5772/intechopen.92234 | spa |
dc.relation.references | Varadarajan, G. & Venkatachalam, P. (2016). Sustainable textile dyeing processes. Environmental Chemistry Letters, 14(1), 113-122. https://doi.org/10.1007/s10311-015-0533-3 | spa |
dc.relation.references | Varjani, S., Rakholiya, P., Shindhal, T., Shah, A. V., & Ngo, H. H. (2021). Trends in dye industry effluent treatment and recovery of value added products. Journal of Water Process Engineering, 39, 101734. https://doi.org/10.1016/j.jwpe.2020.101734 | spa |
dc.relation.references | Vera, G., Tam, J., Vera, V., & Pinto, E. (2001). Pruebas ecotoxicologícas con cadmio y cromo usando postlarvas del pejerrey Odontesthes (Austromenidia) regia regia Hildebrand. Revista peruana de Biología, 8(2), 125-135. | spa |
dc.relation.references | Verma A. K., Bhunia P., & Dash R. R. (2014). Reclamation of wastewater using composite coagulants: A sustainable solution to the textile industries. Chemical Engineering Transactions, 42, 175-180. https://doi.org/10.3303/CET1442030 | spa |
dc.relation.references | Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168. https://doi.org/10.1016/j.jenvman.2011.09.012 | spa |
dc.relation.references | Vidal, J., Espinoza, C., Contreras, N., & Salazar, R. (2017). Elimination of Industrial Textile Dye by Electrocoagulation using Iron Electrodes. Journal of the Chilean Chemical Society, 62(2), 3519-3524. https://dx.doi.org/10.4067/S0717-97072017000200019 | spa |
dc.relation.references | Vidal, J., Villegas, L., Peralta-Hernández, J. M., & Salazar González, R. (2016). Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Journal of Environmental Science and Health, Part A, 51(4), 289–296. https://doi.org/10.1080/10934529.2015.1109385 | spa |
dc.relation.references | Vineta, S., Silvana, M. Z., Sanja, M. R., & Golomeova, M. S. (2014, 21–22 de Noviembre). Methods for Waste Waters Treatment in Textile Industry [Documento de conferencia]. International Scientific Conference. UNITECH 2014, Gabrovo, Bulgaria. https://eprints.ugd.edu.mk/11670/1/METHODS%20FOR%20WASTE%20WATERS%20TREATMENT%20IN%20TEXTILE%20INDUSTRY.pdf | spa |
dc.relation.references | Vogel, F., Harf, J., Hug, A., & Von Rohr, P. R. (2000). The mean oxidation number of carbon (MOC) a useful concept for describing oxidation processes. Water Research, 34(10), 2689-2702. https://doi.org/10.1016/S0043-1354(00)00029-4 | spa |
dc.relation.references | Wahyuni, A. S., Suhartana, S., & Bima, D. N. (2021). Electrochemical Peroxidation Method for Reduction of Chemical Oxygen Demand (COD) Carbofuran in Furadan 3GR Pesticides. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 18(2), 181-191. https://doi.org/10.14710/presipitasi.v18i2.181-191 | spa |
dc.relation.references | walo. (2016, 24 de septiembre). Esta claro q hoy juega Nacional en el Atanasio pero tampoco para pintar hoy el río Medellin de Verde. [Opinión con foto adjunta] [Post]. X. https://x.com/walo1989_1/status/779691457540190208 | spa |
dc.relation.references | Wang, A., Li, Y.-Y., & Ru, J. (2010). The mechanism and application of the electro-Fenton process for azo dye Acid Red 14 degradation using an activated carbon fibre felt cathode. Journal of Chemical Technology & Biotechnology, 85(11), 1423-1546. https://doi.org/10.1002/jctb.2450 | spa |
dc.relation.references | Wang, A., Qu, J., Ru, J., Liu, H., & Ge, J. (2005). Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes and Pigments, 65(3), 227-233. https://doi.org/10.1016/j.dyepig.2004.07.019 | spa |
dc.relation.references | Wang, C.-T., Chou, W.-L., Chung, M.-H., & Kuo, Y.-M. (2010). COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination, 253(1-3), 129-134. https://doi.org/10.1016/j.desal.2009.11.020 | spa |
dc.relation.references | Wang, Q., & Lemley, A. T. (2001). Kinetic Model and Optimization of 2,4-D Degradation by Anodic Fenton Treatment. Environmental Science & Technology, 35(22), 4509–4514. https://doi.org/10.1021/es0109693 | spa |
dc.relation.references | Wang, Q., & Lemley, A. T. (2002). Oxidation of diazinon by anodic Fenton treatment. Water Research, 36(13), 3237–3244. https://doi.org/10.1016/s0043-1354(02)00041-6 | spa |
dc.relation.references | Wang, Q., & Lemley, A. T. (2003). Competitive Degradation and Detoxification of Carbamate Insecticides by Membrane Anodic Fenton Treatment. Journal of Agricultural and Food Chemistry, 51(18), 5382–5390. https://doi.org/10.1021/jf034311f | spa |
dc.relation.references | Wang, Q., & Lemley, A. T. (2004). Kinetic Effect of Humic Acid on Alachlor Degradation by Anodic Fenton Treatment. Journal of Environment Quality, 33(6), 2343. https://doi.org/10.2134/jeq2004.2343 | spa |
dc.relation.references | Wang, Q., Scherer, E. M., & Lemley, A. T. (2004). Metribuzin Degradation by Membrane Anodic Fenton Treatment and Its Interaction with Ferric Ion. Environmental Science & Technology, 38(4), 1221–1227. https://doi.org/10.1021/es0345827 | spa |
dc.relation.references | Wang, Z., Fang, C., & Megharaj, M. (2014-a). Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye. ACS Sustainable Chemistry & Engineering, 2(4), 1022-1025. https://doi.org/10.1021/sc500021n | spa |
dc.relation.references | Wang, Z., Yu, C., Fang, C., & Mallavarapu, M. (2014-b). Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environmental Technology & Innovation, 1-2, 29–34. https://doi.org/10.1016/j.eti.2014.08.003 | spa |
dc.relation.references | Xu, H., Yu, T., Wang, J., Li, M., & Liu, Y. (2015). Online monitoring of Fenton-mediated reactive red 6B oxidation kinetics. Environmental Progress & Sustainable Energy, 34(4), 1019–1027. https://doi.org/10.1002/ep.12093 | spa |
dc.relation.references | Yadav, V., Ali, J., & Garg, M. C. (2021). Biosorption of methylene blue dye from textile-industry wastewater onto sugarcane bagasse: response surface modeling, isotherms, kinetic and thermodynamic modeling. Journal of Hazardous, Toxic, and Radioactive Waste, 25(1), 04020067. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000572 | spa |
dc.relation.references | Yilmaz, T., Demir, E. K., Aşık, G., Başaran, S. T., Cokgor, E., Sözen, S., & Sahinkaya, E. (2024). Performance of a high-rate membrane bioreactor for energy-efficient treatment of textile wastewater. Journal of Environmental Management, 358, 120845. https://doi.org/10.1016/j.jenvman.2024.120845 | spa |
dc.relation.references | Yu, F., Zhou, M., & Yu, X. (2015). Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochimica Acta, 163, 182-189. https://doi.org/10.1016/j.electacta.2015.02.166 | spa |
dc.relation.references | Yurtsever, A., Basaran, E., Ucar, D., & Sahinkaya, E. (2021). Self-forming dynamic membrane bioreactor for textile industry wastewater treatment. Science of the Total Environment, 751, 141572. https://doi.org/10.1016/j.scitotenv.2020.141572 | spa |
dc.relation.references | Zarei, M., Niaei, A., Salari, D., & Khataee, A. (2010). Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube–PTFE cathode. Journal of Hazardous Materials, 173(1-3), 544–551. https://doi.org/10.1016/j.jhazmat.2009.08.120 | spa |
dc.relation.references | Zeng, H., Liu, C., Wang, F., Zhang, J., & Li, D. (2022). Disposal of iron-manganese sludge from waterworks and its potential for arsenic removal. Journal of Environmental Chemical Engineering, 10(5), 108480. https://doi.org/10.1016/j.jece.2022.108480 | spa |
dc.relation.references | Zhang, C., Chen, H., Xue, G., Liu, Y., Chen, S., & Jia, C. (2021). A critical review of the aniline transformation fate in azo dye wastewater treatment. Journal of Cleaner Production, 321, 128971. https://doi.org/10.1016/j.jclepro.2021.128971 | spa |
dc.relation.references | Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007-a). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145(1-2), 227–232. https://doi.org/10.1016/j.jhazmat.2006.11.016 | spa |
dc.relation.references | Zhang, H., Jiang, M., Wang, Z. and Wu, F. (2007-b). Decolorisation of CI Reactive Black 8 by zero-valent iron powder with/without ultrasonic irradiation. Coloration Technology, 123, 203-208. https://doi.org/10.1111/j.1478-4408.2007.00079.x | spa |
dc.relation.references | Zhang, H., Ran, X., & Wu, X. (2012). Electro-Fenton treatment of mature landfill leachate in a continuous flow reactor. Journal of Hazardous Materials, 241-242, 259–266. https://doi.org/10.1016/j.jhazmat.2012.09.040 | spa |
dc.relation.references | Zhang, H., Zhang, J., Zhang, C., Liu, F., & Zhang, D. (2009). Degradation of C.I. Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics Sonochemistry, 16(3), 325–330. https://doi.org/10.1016/j.ultsonch.2008.09.005 | spa |
dc.relation.references | Zhang, Q. & Chuang, K. T. (1999). Wet oxidation of bleach plant effluent: Effects of pH on the oxidation with or without a Pd/Al2O3 catalyst. The Canadian Journal of Chemical Engineering. 77(2), 399-405. https://doi.org/10.1002/cjce.5450770228 | spa |
dc.relation.references | Zhang, Q., Wang, C., & Lei, Y. (2016). Fenton’s Oxidation Kinetics, Pathway, and Toxicity Evaluation of Diethyl Phthalate in Aqueous Solution. Journal of Advanced Oxidation Technologies, 19(1), 125-133. https://doi.org/10.1515/jaots-2016-0117 | spa |
dc.relation.references | Zhang, Q., Yin, H., Su, P., Fu, W., Song, G. & Zhou, M. (2022). Insight into the dual-cathode peroxi-coagulation process for cost-effective treatment of organic wastewater: Increase pH application range and reduce iron sludge. Chemical Engineering Journal, 444, 136590. https://doi.org/10.1016/j.cej.2022.136590 | spa |
dc.relation.references | Zhou, M., Yu, Q., Lei, L., & Barton, G. (2007). Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology, 57(2), 380-387. https://doi.org/10.1016/j.seppur.2007.04.021 | spa |
dc.relation.references | Zhou, X., Hou, Z., Lv, L., Song, J., & Yin, Z. (2019). Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: Parameters optimization, removal behavior and kinetics analysis. Chemosphere, 238, 124649. https://doi.org/10.1016/j.chemosphere.2019.124649 | spa |
dc.relation.references | Salazar Sogamoso, L. M. (2025). Decoloración y Mineralización de un Agua Residual Industrial Textil mediante un Proceso Electro-Fenton con generación de H2O2 in-situ. (Tesis presentada como requisito parcial para optar al título de: Magíster en Ingeniería – Ingeniería Ambiental). Universidad Nacional de Colombia sede Manizales, Facultad de Ingeniería y Arquitectura. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Agua Residual Industrial Textil | spa |
dc.subject.proposal | Colorante Negro Ácido 194 | spa |
dc.subject.proposal | Proceso Electroquímico Avanzado de Oxidación | spa |
dc.subject.proposal | Electro-Fenton | spa |
dc.subject.proposal | Peroxidación electroquímica | spa |
dc.subject.proposal | Peroxi-Coagulación | spa |
dc.subject.proposal | Optimización multiobjetivo | spa |
dc.subject.proposal | Industrial Textile Wastewater | eng |
dc.subject.proposal | Acid Black 194 Dye | eng |
dc.subject.proposal | Advanced Electrochemical Oxidation Process | eng |
dc.subject.proposal | Electro-Fenton | eng |
dc.subject.proposal | Electrochemical Peroxidation | eng |
dc.subject.proposal | Peroxi-coagulation | eng |
dc.subject.proposal | Multi-objective Optimization | eng |
dc.subject.unesco | Agua residual | spa |
dc.subject.unesco | Waste water | eng |
dc.subject.unesco | Tratamiento del agua | spa |
dc.subject.unesco | Water treatment | eng |
dc.subject.unesco | Química del agua | spa |
dc.subject.unesco | Water chemistry | eng |
dc.title | Tratamiento de un agua residual textil contaminada con colorante negro ácido 194 mediante un proceso Electro-Fenton | spa |
dc.title.translated | Treatment of textile wastewater contaminated with Acid Black 194 dye using an Electro-Fenton process | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Tecnologías alternativas para el tratamiento de aguas residuales de la industria textil, Convocatoria de Proyectos Conectando Conocimiento (Convocatoria 852–2019, Proyecto: 202010034716, Contrato: 172–2021, HERMES-46681) | spa |
oaire.awardtitle | Convocatoria para el Fortalecimiento de la Investigación, Creación, e Innovación articulado con la Formación en la Universidad Nacional de Colombia 2020–2021 (Proyectos: HERMES-51167 y HERMES-51225) | spa |
oaire.fundername | MinCiencias | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053866647.2025.pdf
- Tamaño:
- 7.79 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: