Construcción de una red de regulación génica en respuesta a la polución ambiental a partir de la integración de datos ómicos e identificación de potenciales biomarcadores relacionados

dc.contributor.advisorLopez Kleine, Lilianaspa
dc.contributor.advisorGarcia Arteaga, Juan Davidspa
dc.contributor.authorInfante Hurtado, Byron Alexisspa
dc.contributor.cvlacInfante Hurtado, Byron Alexis [0000085303]spa
dc.contributor.googlescholarInfante Hurtado, Byron Alexis [wl9emw0AAAAJ&hl]spa
dc.contributor.orcidInfante Hurtado, Byron Alexis [0000-0002-0058-2085]spa
dc.contributor.researchgateInfante Hurtado, Byron Alexis [Byron-Infante]spa
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biología de Sistemasspa
dc.date.accessioned2025-03-05T14:29:25Z
dc.date.available2025-03-05T14:29:25Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa Organización Mundial de Salud reportó en el 2021 que la contaminación del aire es uno de los mayores riesgos para la salud, principalmente debido a la exposición al material particulado fino (PM2.5). Este tipo de contaminante se asocia con enfermedades pulmonares y millones de muertes prematuras. En Bogotá, en los últimos años se han registrado picos de concentración de PM2.5 peligrosos para la salud. En el presente trabajo se evalúan los efectos de la exposición a PM2.5 sobre la regulación génica. La metodología utilizada consistió en: 1) Análisis de unión diferencial en datos de ChIP-seq, 2) Análisis de expresión diferencial en datos de RNA-seq y 3) Construcción y análisis de redes de regulación. Además, se utilizó un enfoque novedoso en la construcción de redes de regulación a partir de datos de ChIP-seq. Con la información obtenida se lograron identificar posibles metafirmas de genes y biomarcadores transcripcionales y epigenéticos, además de evidenciar el potencial de la metodología utilizada. Este trabajo de investigación es pionero en Colombia tanto por la integración de datos de diferente índole como por su contribución al entendimiento del impacto de la contaminación del aire, un problema cada vez más frecuente de las activades humanas (Texto tomado de la fuente).spa
dc.description.abstractThe World Health Organization reported in 2021 that air pollution is one of the greatest health risks, mainly due to exposure to fine particulate matter (PM2.5). This pollutant is associated with lung diseases and millions of premature deaths. In Bogotá, in recent years, peaks in PM2.5 concentration have been recorded at levels hazardous to health. This study evaluates the effects of PM2.5 exposure on gene regulation. The methodology consisted of: 1) differential binding analysis of ChIP-seq data, 2) differential expression analysis of RNA-seq data, and 3) construction and analysis of regulatory networks. Additionally, a novel approach was applied to construct regulatory networks using ChIP-seq data. The findings enabled the identification of potential gene meta-signatures and transcriptional and epigenetic biomarkers, highlighting the potential of the proposed methodology. This research is pioneering in Colombia, not only for integrating diverse data types but also for contributing to the understanding of the impact of air pollution, a growing issue driven by human activities.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioinformáticaspa
dc.description.methodsEste trabajo de investigación formó parte del proyecto “Impacto de la calidad del aire en los patrones epigenéticos de la histona H3 en habitantes de Bogotá”, registrado en el Ministerios de Ciencia Tecnología en Innovación con el código 84742 y ante la Universidad Nacional de Colombia con el código de proyecto Hermes 17961. Para la recolección de muestras utilizadas en los análisis de ChIP-seq y RNA-seq, se diseñó un estudio observacional analítico de corte transversal, esto con el apoyo del Grupo de investigación de epigenética y cáncer (EPILAB), de la Pontificia Universidad Javeriana. En el estudio se definieron tres grupos de individuos: personas expuestas a baja concentración de PM2.5, personas expuestas a alta concentración de PM2.5 y personas diagnosticadas con asma grave T2-alta, como modelo de enfermedad pulmonar. En las secciones 4.1.1.1 a 4.1.1.3 se describen las zonas de muestreo, sus respectivos niveles de concentración de PM2.5 asignados y la población en cada grupo de estudio. La recolección de los datos y muestras biológicas se realizó en un solo periodo temporal, durante el primer trimestre del año 2023, sin intervención ni seguimiento posterior. Los voluntarios fueron asignados a los grupos de exposición a PM2.5, baja o alta, de acuerdo con valores históricos de la Red de Monitoreo de la Calidad del Aire (RMCAB) o al grupo de diagnóstico de enfermedad pulmonar. Además, se procuró equilibrar los grupos de estudio por sexo y edad. También, se tuvieron en cuenta las variables de confusión más relevantes para asegurar comparabilidad con los casos en todas las características pertinentes, exceptuando la condición de interés. Esta investigación se realizó bajo las directrices del Ministerio de Salud de Colombia (008430-1993) y con la aprobación del comité de Ética de la Facultad de Medicina de la Pontificia Universidad Javeriana (FM-CIE-1171-20).spa
dc.description.researchareaBiología de Sistemasspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovaciónspa
dc.format.extentxviii, 91 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87601
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformáticaspa
dc.relation.referencesAl-Harazi, O., Kaya, I. H., Al-Eid, M., Alfantoukh, L., Al Zahrani, A. S., Al Sebayel, M., Kaya, N., & Colak, D. (2021). Identification of Gene Signature as Diagnostic and Prognostic Blood Biomarker for Early Hepatocellular Carcinoma Using Integrated Cross-Species Transcriptomic and Network Analyses. Frontiers in Genetics, 12, 710049. https://doi.org/10.3389/fgene.2021.710049spa
dc.relation.referencesAltmäe, S., Koel, M., Võsa, U., Adler, P., Suhorutšenko, M., Laisk-Podar, T., Kukushkina, V., Saare, M., Velthut-Meikas, A., Krjutškov, K., Aghajanova, L., Lalitkumar, P. G., Gemzell-Danielsson, K., Giudice, L., Simón, C., & Salumets, A. (2017). Meta-signature of human endometrial receptivity: A meta-analysis and validation study of transcriptomic biomarkers. Scientific Reports, 7(1), 10077. https://doi.org/10.1038/s41598-017-10098-3spa
dc.relation.referencesAndo, M., Saito, Y., Xu, G., Bui, N. Q., Medetgul-Ernar, K., Pu, M., Fisch, K., Ren, S., Sakai, A., Fukusumi, T., Liu, C., Haft, S., Pang, J., Mark, A., Gaykalova, D. A., Guo, T., Favorov, A. V., Yegnasubramanian, S., Fertig, E. J., … Califano, J. A. (2019). Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nature Communications, 10(1), 2188. https://doi.org/10.1038/s41467-019-09937-wspa
dc.relation.referencesAndrews, S. (2010). FastQC: a quality control tool for high throughput sequence data (Version 0.12.0) [Java]. Braham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqcspa
dc.relation.referencesAudia, J. E., & Campbell, R. M. (2016). Histone Modifications and Cancer. Cold Spring Harbor Perspectives in Biology, 8(4), a019521. https://doi.org/10.1101/cshperspect.a019521spa
dc.relation.referencesBadkas, A., De Landtsheer, S., & Sauter, T. (2022). Construction and contextualization approaches for protein-protein interaction networks. Computational and Structural Biotechnology Journal, 20, 3280–3290. https://doi.org/10.1016/j.csbj.2022.06.040spa
dc.relation.referencesBarrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2012). NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Research, 41(D1), D991–D995. https://doi.org/10.1093/nar/gks1193spa
dc.relation.referencesBasu, A., & Tiwari, V. K. (2021). Epigenetic reprogramming of cell identity: Lessons from development for regenerative medicine. Clinical Epigenetics, 13(1), 144. https://doi.org/10.1186/s13148-021-01131-4spa
dc.relation.referencesBleker, C., Grady, S. K., & Langston, M. A. (2024). A Comparative Study of Gene Co-Expression Thresholding Algorithms. Journal of Computational Biology, 31(6), 539–548. https://doi.org/10.1089/cmb.2024.0509spa
dc.relation.referencesBlondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008spa
dc.relation.referencesBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.relation.referencesBorate, B. R., Chesler, E. J., Langston, M. A., Saxton, A. M., & Voy, B. H. (2009). Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Research Notes, 2(1), 240. https://doi.org/10.1186/1756-0500-2-240spa
dc.relation.referencesBradley, K. A., Bush, K. R., Epler, A. J., Dobie, D. J., Davis, T. M., Sporleder, J. L., Maynard, C., Burman, M. L., & Kivlahan, D. R. (2003). Two Brief Alcohol-Screening Tests From the Alcohol Use Disorders Identification Test (AUDIT): Validation in a Female Veterans Affairs Patient Population. Archives of Internal Medicine, 163(7), 821. https://doi.org/10.1001/archinte.163.7.821spa
dc.relation.referencesBroad Institute. (2019). Picard toolkit (Version 3.2.0) [Computer software]. https://broadinstitute.github.io/picard/spa
dc.relation.referencesBush, K. (1998). The AUDIT Alcohol Consumption Questions (AUDIT-C)An Effective Brief Screening Test for Problem Drinking. Archives of Internal Medicine, 158(16), 1789. https://doi.org/10.1001/archinte.158.16.1789spa
dc.relation.referencesCaliff, R. M. (2018). Biomarker definitions and their applications. Experimental Biology and Medicine, 243(3), 213–221. https://doi.org/10.1177/1535370217750088spa
dc.relation.referencesCantini, L., Calzone, L., Martignetti, L., Rydenfelt, M., Blüthgen, N., Barillot, E., & Zinovyev, A. (2017). Classification of gene signatures for their information value and functional redundancy. Npj Systems Biology and Applications, 4(1), 2. https://doi.org/10.1038/s41540-017-0038-8spa
dc.relation.referencesCarenzo, A., Pistore, F., Serafini, M. S., Lenoci, D., Licata, A. G., & De Cecco, L. (2022). hacksig: A unified and tidy R framework to easily compute gene expression signature scores. Bioinformatics, 38(10), 2940–2942. https://doi.org/10.1093/bioinformatics/btac161spa
dc.relation.referencesCastañeda, D. S., & Méndez, J. A. (2018). Estimación de la relación entre material particulado PM10 atmosférico y el susceptible de resuspensión en algunas vías de Bogotá [Trabajo de grado - Pregrado, Universidad de La Salle]. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/744/spa
dc.relation.referencesChen, R., & Snyder, M. (2012). Systems biology: Personalized medicine for the future? Current Opinion in Pharmacology, 12(5), 623–628. https://doi.org/10.1016/j.coph.2012.07.011spa
dc.relation.referencesChen, Z., Li, C., Zhou, Y., Li, P., Cao, G., Qiao, Y., Yao, Y., & Su, J. (2024). Histone 3 lysine 9 acetylation-specific reprogramming regulates esophageal squamous cell carcinoma progression and metastasis. Cancer Gene Therapy, 31(4), 612–626. https://doi.org/10.1038/s41417-024-00738-yspa
dc.relation.referencesChu, J., Hart, J. E., Chhabra, D., Garshick, E., Raby, B. A., & Laden, F. (2016). Gene expression network analyses in response to air pollution exposures in the trucking industry. Environmental Health, 15(1), 101. https://doi.org/10.1186/s12940-016-0187-zspa
dc.relation.referencesCildir, G., Toubia, J., Yip, K. H., Zhou, M., Pant, H., Hissaria, P., Zhang, J., Hong, W., Robinson, N., Grimbaldeston, M. A., Lopez, A. F., & Tergaonkar, V. (2019). Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity, 51(5), 949-965.e6. https://doi.org/10.1016/j.immuni.2019.09.021spa
dc.relation.referencesConcejo de Bogotá. (2019). Calidad del Aire y salud pública. Concejo de Bogotá. //concejodebogota.gov.co/calidad-del-aire-y-salud-publica/cbogota/2020-03-24/172238.phpspa
dc.relation.referencesCraig, C. L., Marshall, A. L., Sj??Str??M, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International Physical Activity Questionnaire: 12-Country Reliability and Validity: Medicine & Science in Sports & Exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FBspa
dc.relation.referencesCui, G., Dong, Q., Gai, K., & Qi, S. (2023). Chromatin Dynamics: Chromatin Remodeler, Epigenetic Modification and Diseases. In T. Huang (Ed.), Epigenetics—Regulation and New Perspectives. IntechOpen. https://doi.org/10.5772/intechopen.108385spa
dc.relation.referencesDinarvand, M., Koch, F. C., Al Mouiee, D., Vuong, K., Vijayan, A., Tanzim, A. F., Azad, A. K. M., Penesyan, A., Castaño-Rodríguez, N., & Vafaee, F. (2022). dRNASb: A systems biology approach to decipher dynamics of host-pathogen interactions using temporal dual RNA-seq data. Microbial Genomics, 8(9). https://doi.org/10.1099/mgen.0.000862spa
dc.relation.referencesDing, R., Jin, Y., Liu, X., Ye, H., Zhu, Z., Zhang, Y., Wang, T., & Xu, Y. (2017). Dose- and time- effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution. Scientific Reports, 7(1), 43737. https://doi.org/10.1038/srep43737spa
dc.relation.referencesDo, H. T. T., Shanak, S., Barghash, A., & Helms, V. (2023). Differential exon usage of developmental genes is associated with deregulated epigenetic marks. Scientific Reports, 13(1), 12256. https://doi.org/10.1038/s41598-023-38879-zspa
dc.relation.referencesEdgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. https://doi.org/10.1093/nar/30.1.207spa
dc.relation.referencesEisenman, T. S., Churkina, G., Jariwala, S. P., Kumar, P., Lovasi, G. S., Pataki, D. E., Weinberger, K. R., & Whitlow, T. H. (2019). Urban trees, air quality, and asthma: An interdisciplinary review. Landscape and Urban Planning, 187, 47–59. https://doi.org/10.1016/j.landurbplan.2019.02.010spa
dc.relation.referencesEscorcia-Rodríguez, J. M., Gaytan-Nuñez, E., Hernandez-Benitez, E. M., Zorro-Aranda, A., Tello-Palencia, M. A., & Freyre-González, J. A. (2023). Improving gene regulatory network inference and assessment: The importance of using network structure. Frontiers in Genetics, 14, 1143382. https://doi.org/10.3389/fgene.2023.1143382spa
dc.relation.referencesEwels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354spa
dc.relation.referencesFeng, S., Huang, F., Zhang, Y., Feng, Y., Zhang, Y., Cao, Y., & Wang, X. (2023). The pathophysiological and molecular mechanisms of atmospheric PM2.5 affecting cardiovascular health: A review. Ecotoxicology and Environmental Safety, 249, 114444. https://doi.org/10.1016/j.ecoenv.2022.114444spa
dc.relation.referencesFishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes, I., Iny Stein, T., Rosen, N., Kohn, A., Twik, M., Safran, M., Lancet, D., & Cohen, D. (2017). GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database: The Journal of Biological Databases and Curation, 2017, bax028. https://doi.org/10.1093/database/bax028spa
dc.relation.referencesFongsodsri, K., Chamnanchanunt, S., Desakorn, V., Thanachartwet, V., Sahassananda, D., Rojnuckarin, P., & Umemura, T. (2021). Particulate Matter 2.5 and Hematological Disorders From Dust to Diseases: A Systematic Review of Available Evidence. Frontiers in Medicine, 8, 692008. https://doi.org/10.3389/fmed.2021.692008spa
dc.relation.referencesFurth, N., & Shema, E. (2022). It’s all in the combination: Decoding the epigenome for cancer research and diagnostics. Current Opinion in Genetics & Development, 73, 101899. https://doi.org/10.1016/j.gde.2022.101899spa
dc.relation.referencesGao, Y., Chen, L., Han, Y., Wu, F., Yang, W.-S., Zhang, Z., Huo, T., Zhu, Y., Yu, C., Kim, H., Lee, M., Tang, Z., Phillips, K., He, B., Jung, S. Y., Song, Y., Zhu, B., Xu, R.-M., & Feng, Q. (2020). Acetylation of histone H3K27 signals the transcriptional elongation for estrogen receptor alpha. Communications Biology, 3(1), 165. https://doi.org/10.1038/s42003-020-0898-0spa
dc.relation.referencesGates, L. A., Shi, J., Rohira, A. D., Feng, Q., Zhu, B., Bedford, M. T., Sagum, C. A., Jung, S. Y., Qin, J., Tsai, M.-J., Tsai, S. Y., Li, W., Foulds, C. E., & O’Malley, B. W. (2017). Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. Journal of Biological Chemistry, 292(35), 14456–14472. https://doi.org/10.1074/jbc.M117.802074spa
dc.relation.referencesGavito-Covarrubias, D., Ramírez-Díaz, I., Guzmán-Linares, J., Limón, I. D., Manuel-Sánchez, D. M., Molina-Herrera, A., Coral-García, M. Á., Anastasio, E., Anaya-Hernández, A., López-Salazar, P., Juárez-Díaz, G., Martínez-Juárez, J., Torres-Jácome, J., Albarado-Ibáñez, A., Martínez-Laguna, Y., Morán, C., & Rubio, K. (2024). Epigenetic mechanisms of particulate matter exposure: Air pollution and hazards on human health. Frontiers in Genetics, 14, 1306600. https://doi.org/10.3389/fgene.2023.1306600spa
dc.relation.referencesGhatak, S., Mehrabi, S. F., Mehdawi, L. M., Satapathy, S. R., & Sjölander, A. (2022). Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers. International Journal of Molecular Sciences, 23(2), 793. https://doi.org/10.3390/ijms23020793spa
dc.relation.referencesGillespie, C. S. (2015). Fitting Heavy Tailed Distributions: The poweRlaw Package. Journal of Statistical Software, 64(2). https://doi.org/10.18637/jss.v064.i02spa
dc.relation.referencesGonzález, D., Infante, A., López, L., Ceschin, D., Fernández-Sanchez, M. J., Cañas, A., Zafra-Mejía, C., & Rojas, A. (2025). Airborne fine particulate matter exposure induces transcriptomic alterations resembling asthmatic signatures: Insights from integrated omics analysis. Environmental Epigenetics, 11(1), dvae026. https://doi.org/10.1093/eep/dvae026spa
dc.relation.referencesGreenstone, M., Hasenkopf, C., Sharma, N., & Gautam, H. (2024). Annual Update. Air Quality Life Index, 45.spa
dc.relation.referencesHarrison, P. W., Amode, M. R., Austine-Orimoloye, O., Azov, A. G., Barba, M., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S. K., Boddu, S., Branco Lins, P. R., Brooks, L., Ramaraju, S. B., Campbell, L. I., Martinez, M. C., Charkhchi, M., Chougule, K., … Yates, A. D. (2024). Ensembl 2024. Nucleic Acids Research, 52(D1), D891–D899. https://doi.org/10.1093/nar/gkad1049spa
dc.relation.referencesHealth Effects Institute. (2024). State of Global Air 2024. Special Report. 33 pp.spa
dc.relation.referencesHitz, B. C., Lee, J.-W., Jolanki, O., Kagda, M. S., Graham, K., Sud, P., Gabdank, I., Seth Strattan, J., Sloan, C. A., Dreszer, T., Rowe, L. D., Podduturi, N. R., Malladi, V. S., Chan, E. T., Davidson, J. M., Ho, M., Miyasato, S., Simison, M., Tanaka, F., … Cherry, J. M. (2023). The ENCODE Uniform Analysis Pipelines. https://doi.org/10.1101/2023.04.04.535623spa
dc.relation.referencesHuynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE, 5(9), e12776. https://doi.org/10.1371/journal.pone.0012776spa
dc.relation.referencesJun, Q., Youhong, L., Yuan, Z., Xi, Y., Wang, B., Xinyi, S., Fu, Y., Kedan, C., Lian, J., & Jianqing, Z. (2022). Histone modification of endothelial-mesenchymal transition in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 9, 1022988. https://doi.org/10.3389/fcvm.2022.1022988spa
dc.relation.referencesKan, M., Diwadkar, A. R., Shuai, H., Joo, J., Wang, A. L., Ong, M.-S., Sordillo, J. E., Iribarren, C., Lu, M. X., Hernandez-Pacheco, N., Perez-Garcia, J., Gorenjak, M., Potočnik, U., Burchard, E. G., Pino-Yanes, M., Wu, A. C., & Himes, B. E. (2022). Multiomics analysis identifies BIRC3 as a novel glucocorticoid response–associated gene. Journal of Allergy and Clinical Immunology, 149(6), 1981–1991. https://doi.org/10.1016/j.jaci.2021.11.025spa
dc.relation.referencesKaviraj, A., Unlu, E., Gupta, A., & El Nemr, A. (2014). Biomarkers of Environmental Pollutants. BioMed Research International, 2014, 1–2. https://doi.org/10.1155/2014/806598spa
dc.relation.referencesKayalar, Ö., Rajabi, H., Konyalilar, N., Mortazavi, D., Aksoy, G. T., Wang, J., & Bayram, H. (2024). Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Frontiers in Immunology, 15, 1324552. https://doi.org/10.3389/fimmu.2024.1324552spa
dc.relation.referencesKim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915. https://doi.org/10.1038/s41587-019-0201-4spa
dc.relation.referencesKlemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207–220. https://doi.org/10.1038/s41576-018-0089-8spa
dc.relation.referencesKundaje, A., & Shcherbina, A. (2020). Encode:encode4_GRCh38_blacklist (Bed Bed3 No. ENCSR636HFF) [Bed bed3]. ENCODE. https://www.encodeproject.org/files/ENCFF356LFXspa
dc.relation.referencesLacal, I., & Ventura, R. (2018). Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Frontiers in Molecular Neuroscience, 11, 292. https://doi.org/10.3389/fnmol.2018.00292spa
dc.relation.referencesLandt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B. E., Bickel, P., Brown, J. B., Cayting, P., Chen, Y., DeSalvo, G., Epstein, C., Fisher-Aylor, K. I., Euskirchen, G., Gerstein, M., Gertz, J., Hartemink, A. J., Hoffman, M. M., … Snyder, M. (2012). ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 22(9), 1813–1831. https://doi.org/10.1101/gr.136184.111spa
dc.relation.referencesLangfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559spa
dc.relation.referencesLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923spa
dc.relation.referencesLangmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. https://doi.org/10.1186/gb-2009-10-3-r25spa
dc.relation.referencesLiao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656spa
dc.relation.referencesLin, H., & Zhang, W. (2023). RNA-seq analysis identifies the effect of PM2.5 on human nasal epithelial cells cultured under air-liquid interface (ALI) conditions until differentiated. (Expression Profiling by High Throughput Sequencing No. GSE243618). GEO. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243618spa
dc.relation.referencesLionetto, M. G., Caricato, R., & Giordano, M. E. (2019). Pollution Biomarkers in Environmental and Human Biomonitoring. The Open Biomarkers Journal, 9(1), 1–9. https://doi.org/10.2174/1875318301909010001spa
dc.relation.referencesLisi, S., Trovato, M., Vitaloni, O., Fantini, M., Chirichella, M., Tognini, P., Cornuti, S., Costa, M., Groth, M., & Cattaneo, A. (2022). Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. International Journal of Molecular Sciences, 23(16), 8892. https://doi.org/10.3390/ijms23168892spa
dc.relation.referencesLiu, B.-H. (2018). Differential Coexpression Network Analysis for Gene Expression Data. In T. Huang (Ed.), Computational Systems Biology (Vol. 1754, pp. 155–165). Springer New York. https://doi.org/10.1007/978-1-4939-7717-8_9spa
dc.relation.referencesLiu, C., Xu, J., Chen, Y., Guo, X., Zheng, Y., Wang, Q., Chen, Y., Ni, Y., Zhu, Y., Joyce, B. T., Baccarelli, A., Deng, F., Zhang, W., & Hou, L. (2015). Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature. Environmental Health, 14(1), 65. https://doi.org/10.1186/s12940-015-0052-5spa
dc.relation.referencesLiu, E., Li, L., & Cheng, L. (2019). Gene Regulatory Network Review. In Encyclopedia of Bioinformatics and Computational Biology (pp. 155–164). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20218-5spa
dc.relation.referencesLove, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8spa
dc.relation.referencesLovejoy, J. C. (2024). Expanding our thought horizons in systems biology and medicine. Frontiers in Systems Biology, 4, 1385458. https://doi.org/10.3389/fsysb.2024.1385458spa
dc.relation.referencesLv, Y., Huang, S., Zhang, T., & Gao, B. (2021). Application of Multilayer Network Models in Bioinformatics. Frontiers in Genetics, 12, 664860. https://doi.org/10.3389/fgene.2021.664860spa
dc.relation.referencesMadaniyazi, L., Li, S., Li, S., & Guo, Y. (2020). Candidate gene expression in response to low-level air pollution. Environment International, 140, 105610. https://doi.org/10.1016/j.envint.2020.105610spa
dc.relation.referencesMajeed, A., & Rauf, I. (2020). Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social Networks. Inventions, 5(1), 10. https://doi.org/10.3390/inventions5010010spa
dc.relation.referencesMaleki, F., Ovens, K., McQuillan, I., & Kusalik, A. J. (2019). Size matters: How sample size affects the reproducibility and specificity of gene set analysis. Human Genomics, 13(S1), 42. https://doi.org/10.1186/s40246-019-0226-2spa
dc.relation.referencesMcClure, R. S., Wendler, J. P., Adkins, J. N., Swanstrom, J., Baric, R., Kaiser, B. L. D., Oxford, K. L., Waters, K. M., & McDermott, J. E. (2019). Unified feature association networks through integration of transcriptomic and proteomic data. PLOS Computational Biology, 15(9), e1007241. https://doi.org/10.1371/journal.pcbi.1007241spa
dc.relation.referencesMcCullough, S. D., Dhingra, R., Fortin, M. C., & Diaz-Sanchez, D. (2017). Air pollution and the epigenome: A model relationship for the exploration of toxicoepigenetics. Current Opinion in Toxicology, 6, 18–25. https://doi.org/10.1016/j.cotox.2017.07.001spa
dc.relation.referencesMcLeay, R. C., & Bailey, T. L. (2010). Motif Enrichment Analysis: A unified framework and an evaluation on ChIP data. BMC Bioinformatics, 11(1), 165. https://doi.org/10.1186/1471-2105-11-165spa
dc.relation.referencesMillan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring Epigenetic Marks by Analysis of Noncovalent Interactions. ChemBioChem, 22(2), 408–415. https://doi.org/10.1002/cbic.202000380spa
dc.relation.referencesMinisterio de Ambiente y desarrollo sostenible. (2017). Resolución 2254 de 2017. Por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones. https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-2254-de-2017.pdfspa
dc.relation.referencesMisiukiewicz-Stępien, P., Mierzejewski, M., Zajusz-Zubek, E., Goryca, K., Adamska, D., Szeląg, M., Krenke, R., & Paplińska-Goryca, M. (2022). RNA-Seq Analysis of UPM-Exposed Epithelium Co-Cultivated with Macrophages and Dendritic Cells in Obstructive Lung Diseases. International Journal of Molecular Sciences, 23(16), 9125. https://doi.org/10.3390/ijms23169125spa
dc.relation.referencesMontaner, J., Ramiro, L., Simats, A., Tiedt, S., Makris, K., Jickling, G. C., Debette, S., Sanchez, J.-C., & Bustamante, A. (2020). Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nature Reviews Neurology, 16(5), 247–264. https://doi.org/10.1038/s41582-020-0350-6spa
dc.relation.referencesMukherjee, S., Dasgupta, S., Mishra, P. K., & Chaudhury, K. (2021). Air pollution-induced epigenetic changes: Disease development and a possible link with hypersensitivity pneumonitis. Environmental Science and Pollution Research International, 28(40), 55981–56002. https://doi.org/10.1007/s11356-021-16056-xspa
dc.relation.referencesNaik, A., Dalpatraj, N., & Thakur, N. (2022). Global Gene Expression Regulation Mediated by TGFβ Through H3K9me3 Mark. Cancer Informatics, 21, 11769351221115135. https://doi.org/10.1177/11769351221115135spa
dc.relation.referencesNakato, R., & Sakata, T. (2021). Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods, 187, 44–53. https://doi.org/10.1016/j.ymeth.2020.03.005spa
dc.relation.referencesNathan, R. A., Sorkness, C. A., Kosinski, M., Schatz, M., Li, J. T., Marcus, P., Murray, J. J., & Pendergraft, T. B. (2004). Development of the asthma control test☆A survey for assessing asthma control. Journal of Allergy and Clinical Immunology, 113(1), 59–65. https://doi.org/10.1016/j.jaci.2003.09.008spa
dc.relation.referencesNewell, R., Pienaar, R., Balderson, B., Piper, M., Essebier, A., & Bodén, M. (2021). ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates. Genomics, 113(4), 1855–1866. https://doi.org/10.1016/j.ygeno.2021.04.026spa
dc.relation.referencesNewman, M. (2018). Networks (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198805090.001.0001spa
dc.relation.referencesNurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., Vollger, M. R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt, S. J., Diekhans, M., Logsdon, G. A., Alonge, M., Antonarakis, S. E., Borchers, M., Bouffard, G. G., Brooks, S. Y., … Phillippy, A. M. (2022). The complete sequence of a human genome. Science, 376(6588), 44–53. https://doi.org/10.1126/science.abj6987spa
dc.relation.referencesObservatorio Nacional de Salud. (2018). Carga de Enfermedad Ambiental en Colombia (Informe Técnico Especial No. 10; p. 96). Instituto Nacional de Salud. https://www.ins.gov.co/Direcciones/ONS/Informes/10%20Carga%20de%20enfermedad%20ambiental%20en%20Colombia.pdfspa
dc.relation.referencesOna, S. (2023). ChIP sequencing. BioRender. https://app.biorender.com/biorender-templates/t-5f20a148563a0600ad9d9f87spa
dc.relation.referencesPaplińska-Goryca, M., Misiukiewicz-Stępien, P., Goryca, K., Adamska, D., & Szelag, M. (2022). RNA-Seq analysis of differentially expressed genes in UPM-exposed epithelium co-cultivated with macrophages and dendritic cells from patients with asthma and COPD (Expression Profiling by High Throughput Sequencing No. GSE175541). Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175541spa
dc.relation.referencesPatridge, E. F., & Bardyn, T. P. (2018). Research Electronic Data Capture (REDCap). Journal of the Medical Library Association, 106(1). https://doi.org/10.5195/jmla.2018.319spa
dc.relation.referencesPeng, Y., Markov, Y., Goncearenco, A., Landsman, D., & Panchenko, A. R. (2021). Human Histone Interaction Networks: An Old Concept, New Trends. Journal of Molecular Biology, 433(6), 166684. https://doi.org/10.1016/j.jmb.2020.10.018spa
dc.relation.referencesPérez, R., & Jarosińska, D. (2022). Update of the WHO global air quality guidelines: Systematic reviews – An introduction. Environment International, 170, 107556. https://doi.org/10.1016/j.envint.2022.107556spa
dc.relation.referencesPham, D., Vincentz, J. W., Firulli, A. B., & Kaplan, M. H. (2012). Twist1 Regulates Ifng Expression in Th1 Cells by Interfering with Runx3 Function. The Journal of Immunology, 189(2), 832–840. https://doi.org/10.4049/jimmunol.1200854spa
dc.relation.referencesPirot, N., Delpech, H., Deleuze, V., Dohet, C., Courtade-Saïdi, M., Basset-Léobon, C., Chalhoub, E., Mathieu, D., & Pinet, V. (2014). Lung endothelial barrier disruption in Lyl1 -deficient mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 306(8), L775–L785. https://doi.org/10.1152/ajplung.00200.2013spa
dc.relation.referencesPrada, D., López, G., Solleiro-Villavicencio, H., Garcia-Cuellar, C., & Baccarelli, A. A. (2020). Molecular and cellular mechanisms linking air pollution and bone damage. Environmental Research, 185, 109465. https://doi.org/10.1016/j.envres.2020.109465spa
dc.relation.referencesQian, H., Zhu, M., Tan, X., Zhang, Y., Liu, X., & Yang, L. (2023). Super-enhancers and the super-enhancer reader BRD4: Tumorigenic factors and therapeutic targets. Cell Death Discovery, 9(1), 470. https://doi.org/10.1038/s41420-023-01775-6spa
dc.relation.referencesQuezada, H., Guzmán-Ortiz, A. L., Díaz-Sánchez, H., Valle-Rios, R., & Aguirre-Hernández, J. (2017). Omics-based biomarkers: Current status and potential use in the clinic. Boletín Médico Del Hospital Infantil de México (English Edition), 74(3), 219–226. https://doi.org/10.1016/j.bmhime.2017.11.030spa
dc.relation.referencesQuinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033spa
dc.relation.referencesR Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/spa
dc.relation.referencesRosa, S., & Shaw, P. (2013). Insights into Chromatin Structure and Dynamics in Plants. Biology, 2(4), 1378–1410. https://doi.org/10.3390/biology2041378spa
dc.relation.referencesRoss-Innes, C. S., Stark, R., Teschendorff, A. E., Holmes, K. A., Ali, H. R., Dunning, M. J., Brown, G. D., Gojis, O., Ellis, I. O., Green, A. R., Ali, S., Chin, S.-F., Palmieri, C., Caldas, C., & Carroll, J. S. (2012). Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature, 481(7381), 389–393. https://doi.org/10.1038/nature10730spa
dc.relation.referencesRossner, P., Tulupova, E., Rossnerova, A., Libalova, H., Honkova, K., Gmuender, H., Pastorkova, A., Svecova, V., Topinka, J., & Sram, R. J. (2015). Reduced gene expression levels after chronic exposure to high concentrations of air pollutants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 780, 60–70. https://doi.org/10.1016/j.mrfmmm.2015.08.001spa
dc.relation.referencesRussell, M., Aqil, A., Saitou, M., Gokcumen, O., & Masuda, N. (2023). Gene communities in co-expression networks across different tissues. PLOS Computational Biology, 19(11), e1011616. https://doi.org/10.1371/journal.pcbi.1011616spa
dc.relation.referencesSchatz, M., Kosinski, M., Yarlas, A. S., Hanlon, J., Watson, M. E., & Jhingran, P. (2009). The minimally important difference of the Asthma Control Test. Journal of Allergy and Clinical Immunology, 124(4), 719-723.e1. https://doi.org/10.1016/j.jaci.2009.06.053spa
dc.relation.referencesSecretaría Distrital de Ambiente. (2018). Se declara alerta ambiental en Bogotá. Se declara alerta ambiental en Bogotá. https://www.ambientebogota.gov.co/search?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_returnToFullPageURL=https%3A%2F%2Fambientebogota.gov.co%2Fsearch%3Fp_auth%3DL9YHV1xs%26p_p_id%3D3%26p_p_lifecycle%3D1%26p_p_state%3Dnormal%26p_p_state_rcv%3D1&_101_assetEntryId=498636&_101_type=content&_101_urlTitle=se-declara-alerta-ambiental-en-bogota&inheritRedirect=truespa
dc.relation.referencesSecretaría Distrital de Ambiente. (2023). Alerta por calidad del aire Bogotá—Todas las investigaciones. Alerta por calidad del aire Bogotá - Todas las investigaciones. https://www.ambientebogota.gov.co/todas-las-investigacionesspa
dc.relation.referencesSelma, S., & Orzáez, D. (2021). Perspectives for epigenetic editing in crops. Transgenic Research, 30(4), 381–400. https://doi.org/10.1007/s11248-021-00252-zspa
dc.relation.referencesSeth, S., Mallik, S., Bhadra, T., & Zhao, Z. (2022). Dimensionality Reduction and Louvain Agglomerative Hierarchical Clustering for Cluster-Specified Frequent Biomarker Discovery in Single-Cell Sequencing Data. Frontiers in Genetics, 13, 828479. https://doi.org/10.3389/fgene.2022.828479spa
dc.relation.referencesShin, B., Cole, S. L., Park, S.-J., Ledford, D. K., & Lockey, R. F. (2010). A new symptom-based questionnaire for predicting the presence of asthma. Journal of Investigational Allergology & Clinical Immunology, 20(1), 27–34.spa
dc.relation.referencesShvedunova, M., & Akhtar, A. (2022). Modulation of cellular processes by histone and non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 23(5), 329–349. https://doi.org/10.1038/s41580-021-00441-yspa
dc.relation.referencesSonawane, A. R., DeMeo, D. L., Quackenbush, J., & Glass, K. (2021). Constructing gene regulatory networks using epigenetic data. Npj Systems Biology and Applications, 7(1), 45. https://doi.org/10.1038/s41540-021-00208-3spa
dc.relation.referencesSonawane, A. R., Weiss, S. T., Glass, K., & Sharma, A. (2019). Network Medicine in the Age of Biomedical Big Data. Frontiers in Genetics, 10, 294. https://doi.org/10.3389/fgene.2019.00294spa
dc.relation.referencesStark, R., & Brown, G. (2017). DiffBind [Computer software]. Bioconductor. https://doi.org/10.18129/B9.BIOC.DIFFBINDspa
dc.relation.referencesStolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on Reverse‐Engineering Assessment and Methods: The DREAM of High‐Throughput Pathway Inference. Annals of the New York Academy of Sciences, 1115(1), 1–22. https://doi.org/10.1196/annals.1407.021spa
dc.relation.referencesStretch, C., Khan, S., Asgarian, N., Eisner, R., Vaisipour, S., Damaraju, S., Graham, K., Bathe, O. F., Steed, H., Greiner, R., & Baracos, V. E. (2013). Effects of Sample Size on Differential Gene Expression, Rank Order and Prediction Accuracy of a Gene Signature. PLoS ONE, 8(6), e65380. https://doi.org/10.1371/journal.pone.0065380spa
dc.relation.referencesThe Encyclopedia of DNA Elements. (n.d.). Terms and Definitions. ENCODE. Retrieved August 20, 2024, from https://www.encodeproject.org/data-standards/terms/spa
dc.relation.referencesThe Encyclopedia of DNA Elements. (2020, July). Histone ChIP-seq Data Standards and Processing Pipeline. ENCODE. https://www.encodeproject.org/chip-seq/histone-encode4/spa
dc.relation.referencesThe Encyclopedia of DNA Elements. (2021, May). Bulk RNA-seq Data Standards and Processing Pipeline – ENCODE. ENCODE. https://www.encodeproject.org/data-standards/encode4-bulk-rna/spa
dc.relation.referencesThomas, M., Kay, S., Pike, J., Williams, A., Rosenzweig, J. R. C., Hillyer, E. V., & Price, D. (2009). The Asthma Control TestTM (ACT) as a predictor of GINA guideline-defined asthma control: Analysis of a multinational cross-sectional survey. Primary Care Respiratory Journal, 18(1), 41–49. https://doi.org/10.4104/pcrj.2009.00010spa
dc.relation.referencesTuresky, R. J., & Lu, K. (2020). Biomarkers of Environmental Toxicants: Exposure and Biological Effects. Toxics, 8(2), 37. https://doi.org/10.3390/toxics8020037spa
dc.relation.referencesVerheul, T. C. J., Van Hijfte, L., Perenthaler, E., & Barakat, T. S. (2020). The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Frontiers in Cell and Developmental Biology, 8, 592164. https://doi.org/10.3389/fcell.2020.592164spa
dc.relation.referencesVlaanderen, J., Vermeulen, R., Whitaker, M., Chadeau-Hyam, M., Hottenga, J.-J., De Geus, E., Willemsen, G., Penninx, B. W. J. H., Jansen, R., & Boomsma, D. I. (2022). Impact of long-term exposure to PM2.5 on peripheral blood gene expression pathways involved in cell signaling and immune response. Environment International, 168, 107491. https://doi.org/10.1016/j.envint.2022.107491spa
dc.relation.referencesVorontsov, I. E., Eliseeva, I. A., Zinkevich, A., Nikonov, M., Abramov, S., Boytsov, A., Kamenets, V., Kasianova, A., Kolmykov, S., Yevshin, I. S., Favorov, A., Medvedeva, Y. A., Jolma, A., Kolpakov, F., Makeev, V. J., & Kulakovskiy, I. V. (2024). HOCOMOCO in 2024: A rebuild of the curated collection of binding models for human and mouse transcription factors. Nucleic Acids Research, 52(D1), D154–D163. https://doi.org/10.1093/nar/gkad1077spa
dc.relation.referencesWachowski, N. A., Pippin, J. A., Boehm, K., Lu, S., Leonard, M. E., Manduchi, E., Parlin, U. W., Wabitsch, M., Chesi, A., Wells, A. D., Grant, S. F. A., & Pahl, M. C. (2024). Implicating type 2 diabetes effector genes in relevant metabolic cellular models using promoter-focused Capture-C. Diabetologia. https://doi.org/10.1007/s00125-024-06261-xspa
dc.relation.referencesWang, L., Wang, S., & Li, W. (2012). RSeQC: Quality control of RNA-seq experiments. Bioinformatics, 28(16), 2184–2185. https://doi.org/10.1093/bioinformatics/bts356spa
dc.relation.referencesWang, Q., Li, M., Wu, T., Zhan, L., Li, L., Chen, M., Xie, W., Xie, Z., Hu, E., Xu, S., & Yu, G. (2022). Exploring Epigenomic Datasets by ChIPseeker. Current Protocols, 2(10), e585. https://doi.org/10.1002/cpz1.585spa
dc.relation.referencesWang, X.-M., Ming, K., Wang, S., Wang, J., Li, P.-L., Tian, R.-F., Liu, S.-Y., Cheng, X., Chen, Y., Shi, W., Wan, J., Hu, M., Tian, S., Zhang, X., She, Z.-G., Li, H., Ding, Y., & Zhang, X.-J. (2023). Network-based analysis identifies key regulatory transcription factors involved in skin aging. Experimental Gerontology, 178, 112202. https://doi.org/10.1016/j.exger.2023.112202spa
dc.relation.referencesWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484spa
dc.relation.referencesWorld Health Organization (Ed.). (2006). Air quality guidelines: Global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.spa
dc.relation.referencesWorld Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO European Centre for Environment and Health.spa
dc.relation.referencesWu, Y.-L., Lin, Z.-J., Li, C.-C., Lin, X., Shan, S.-K., Guo, B., Zheng, M.-H., Li, F., Yuan, L.-Q., & Li, Z. (2023). Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy, 8(1), 98. https://doi.org/10.1038/s41392-023-01333-7spa
dc.relation.referencesYamada, R., Okada, D., Wang, J., Basak, T., & Koyama, S. (2021). Interpretation of omics data analyses. Journal of Human Genetics, 66(1), 93–102. https://doi.org/10.1038/s10038-020-0763-5spa
dc.relation.referencesYao, R.-Q., Shen, Z., Ma, Q.-M., Ling, P., Wei, C.-R., Zheng, L.-Y., Duan, Y., Li, W., Zhu, F., Sun, Y., & Wu, G.-S. (2023). Combination of transcriptional biomarkers and clinical parameters for early prediction of sepsis indued acute respiratory distress syndrome. Frontiers in Immunology, 13, 1084568. https://doi.org/10.3389/fimmu.2022.1084568spa
dc.relation.referencesYu, G., Wang, L.-G., & He, Q.-Y. (2015). ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31(14), 2382–2383. https://doi.org/10.1093/bioinformatics/btv145spa
dc.relation.referencesYulinawati, H., Khairani, T., & Siami, L. (2021). Analysis of indoor and outdoor particulate (PM2.5 ) at a women and children’s hospital in West Jakarta. IOP Conference Series: Earth and Environmental Science, 737(1), 012067. https://doi.org/10.1088/1755-1315/737/1/012067spa
dc.relation.referencesZhang, B., & Horvath, S. (2005). A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Genetics and Molecular Biology, 4(1). https://doi.org/10.2202/1544-6115.1128spa
dc.relation.referencesZhang, H.-H., Li, Z., Liu, Y., Xinag, P., Cui, X.-Y., Ye, H., Hu, B.-L., & Lou, L.-P. (2018). Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. Journal of Zhejiang University. Science. B, 19(4), 317–326. https://doi.org/10.1631/jzus.B1700123spa
dc.relation.referencesZhang, J., Li, J., Hou, Y., Lin, Y., Zhao, H., Shi, Y., Chen, K., Nian, C., Tang, J., Pan, L., Xing, Y., Gao, H., Yang, B., Song, Z., Cheng, Y., Liu, Y., Sun, M., Linghu, Y., Li, J., … Zhou, D. (2024). Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor. Cell, 187(13), 3409-3426.e24. https://doi.org/10.1016/j.cell.2024.04.023spa
dc.relation.referencesZhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., & Liu, X. S. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biology, 9(9), R137. https://doi.org/10.1186/gb-2008-9-9-r137spa
dc.relation.referencesZhang, Y., Yin, X., & Zheng, X. (2023). The relationship between PM2.5 and the onset and exacerbation of childhood asthma: A short communication. Frontiers in Pediatrics, 11, 1191852. https://doi.org/10.3389/fped.2023.1191852spa
dc.relation.referencesZhao, W., Xu, Y., Wang, Y., Gao, D., King, J., Xu, Y., & Liang, F.-S. (2021). Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Scientific Reports, 11(1), 15912. https://doi.org/10.1038/s41598-021-95398-5spa
dc.relation.referencesZheng, S., Hedl, M., & Abraham, C. (2015). Twist1 and Twist2 Contribute to Cytokine Downregulation following Chronic NOD2 Stimulation of Human Macrophages through the Coordinated Regulation of Transcriptional Repressors and Activators. The Journal of Immunology, 195(1), 217–226. https://doi.org/10.4049/jimmunol.1402808spa
dc.relation.referencesZhong, Y., Jiang, L., Hiai, H., Toyokuni, S., & Yamada, Y. (2007). Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene, 26(48), 6937–6947. https://doi.org/10.1038/sj.onc.1210494spa
dc.relation.referencesZhu, L. J. (2013). Integrative Analysis of ChIP-Chip and ChIP-Seq Dataset. In T.-L. Lee & A. C. Shui Luk (Eds.), Tiling Arrays (Vol. 1067, pp. 105–124). Humana Press. https://doi.org/10.1007/978-1-62703-607-8_8spa
dc.relation.referencesZhu, L. J., Gazin, C., Lawson, N. D., Pagès, H., Lin, S. M., Lapointe, D. S., & Green, M. R. (2010). ChIPpeakAnno: A Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics, 11(1), 237. https://doi.org/10.1186/1471-2105-11-237spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.lembCONTAMINACION DEL AIREspa
dc.subject.lembAir - Pollutioneng
dc.subject.lembMARCADORES BIOQUIMICOSspa
dc.subject.lembBiochemical markerseng
dc.subject.lembCALIDAD DEL AIREspa
dc.subject.lembAir qualityeng
dc.subject.lembPERFILACION DE LA EXPRESION GENICAspa
dc.subject.lembGene expression profilingeng
dc.subject.lembENFERMEDADES DE LOS PULMONESspa
dc.subject.lembLung diseaseseng
dc.subject.proposalRedes de regulaciónspa
dc.subject.proposalRedes de coexpresiónspa
dc.subject.proposalEpigenéticaspa
dc.subject.proposalPM2.5spa
dc.subject.proposalContaminación del airespa
dc.subject.proposalBiomarcadores
dc.subject.proposalIntegración multiómica
dc.subject.proposalTranscriptómica
dc.subject.proposalEpigenómica
dc.subject.proposalRegulation networkseng
dc.subject.proposalCo-expression networkseng
dc.subject.proposalEpigeneticseng
dc.subject.proposalPM2.5eng
dc.subject.proposalAir pollutioneng
dc.subject.proposalBiomarkerseng
dc.subject.proposalMulti-omics integrationeng
dc.subject.proposalTranscriptomicseng
dc.subject.proposalEpigenomicseng
dc.titleConstrucción de una red de regulación génica en respuesta a la polución ambiental a partir de la integración de datos ómicos e identificación de potenciales biomarcadores relacionadosspa
dc.title.translatedConstruction of a gene regulatory network in response to environmental pollution through omics data integration and identification of potential related biomarkerseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleImpacto de la calidad del aire en los patrones epigenéticos de la histona H3 en habitantes de Bogotá - Código Minciencias 84742spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032475928.2025.pdf
Tamaño:
3.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioinformática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: