Construcción de una red de regulación génica en respuesta a la polución ambiental a partir de la integración de datos ómicos e identificación de potenciales biomarcadores relacionados
dc.contributor.advisor | Lopez Kleine, Liliana | spa |
dc.contributor.advisor | Garcia Arteaga, Juan David | spa |
dc.contributor.author | Infante Hurtado, Byron Alexis | spa |
dc.contributor.cvlac | Infante Hurtado, Byron Alexis [0000085303] | spa |
dc.contributor.googlescholar | Infante Hurtado, Byron Alexis [wl9emw0AAAAJ&hl] | spa |
dc.contributor.orcid | Infante Hurtado, Byron Alexis [0000-0002-0058-2085] | spa |
dc.contributor.researchgate | Infante Hurtado, Byron Alexis [Byron-Infante] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Bioinformática y Biología de Sistemas | spa |
dc.date.accessioned | 2025-03-05T14:29:25Z | |
dc.date.available | 2025-03-05T14:29:25Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | La Organización Mundial de Salud reportó en el 2021 que la contaminación del aire es uno de los mayores riesgos para la salud, principalmente debido a la exposición al material particulado fino (PM2.5). Este tipo de contaminante se asocia con enfermedades pulmonares y millones de muertes prematuras. En Bogotá, en los últimos años se han registrado picos de concentración de PM2.5 peligrosos para la salud. En el presente trabajo se evalúan los efectos de la exposición a PM2.5 sobre la regulación génica. La metodología utilizada consistió en: 1) Análisis de unión diferencial en datos de ChIP-seq, 2) Análisis de expresión diferencial en datos de RNA-seq y 3) Construcción y análisis de redes de regulación. Además, se utilizó un enfoque novedoso en la construcción de redes de regulación a partir de datos de ChIP-seq. Con la información obtenida se lograron identificar posibles metafirmas de genes y biomarcadores transcripcionales y epigenéticos, además de evidenciar el potencial de la metodología utilizada. Este trabajo de investigación es pionero en Colombia tanto por la integración de datos de diferente índole como por su contribución al entendimiento del impacto de la contaminación del aire, un problema cada vez más frecuente de las activades humanas (Texto tomado de la fuente). | spa |
dc.description.abstract | The World Health Organization reported in 2021 that air pollution is one of the greatest health risks, mainly due to exposure to fine particulate matter (PM2.5). This pollutant is associated with lung diseases and millions of premature deaths. In Bogotá, in recent years, peaks in PM2.5 concentration have been recorded at levels hazardous to health. This study evaluates the effects of PM2.5 exposure on gene regulation. The methodology consisted of: 1) differential binding analysis of ChIP-seq data, 2) differential expression analysis of RNA-seq data, and 3) construction and analysis of regulatory networks. Additionally, a novel approach was applied to construct regulatory networks using ChIP-seq data. The findings enabled the identification of potential gene meta-signatures and transcriptional and epigenetic biomarkers, highlighting the potential of the proposed methodology. This research is pioneering in Colombia, not only for integrating diverse data types but also for contributing to the understanding of the impact of air pollution, a growing issue driven by human activities. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioinformática | spa |
dc.description.methods | Este trabajo de investigación formó parte del proyecto “Impacto de la calidad del aire en los patrones epigenéticos de la histona H3 en habitantes de Bogotá”, registrado en el Ministerios de Ciencia Tecnología en Innovación con el código 84742 y ante la Universidad Nacional de Colombia con el código de proyecto Hermes 17961. Para la recolección de muestras utilizadas en los análisis de ChIP-seq y RNA-seq, se diseñó un estudio observacional analítico de corte transversal, esto con el apoyo del Grupo de investigación de epigenética y cáncer (EPILAB), de la Pontificia Universidad Javeriana. En el estudio se definieron tres grupos de individuos: personas expuestas a baja concentración de PM2.5, personas expuestas a alta concentración de PM2.5 y personas diagnosticadas con asma grave T2-alta, como modelo de enfermedad pulmonar. En las secciones 4.1.1.1 a 4.1.1.3 se describen las zonas de muestreo, sus respectivos niveles de concentración de PM2.5 asignados y la población en cada grupo de estudio. La recolección de los datos y muestras biológicas se realizó en un solo periodo temporal, durante el primer trimestre del año 2023, sin intervención ni seguimiento posterior. Los voluntarios fueron asignados a los grupos de exposición a PM2.5, baja o alta, de acuerdo con valores históricos de la Red de Monitoreo de la Calidad del Aire (RMCAB) o al grupo de diagnóstico de enfermedad pulmonar. Además, se procuró equilibrar los grupos de estudio por sexo y edad. También, se tuvieron en cuenta las variables de confusión más relevantes para asegurar comparabilidad con los casos en todas las características pertinentes, exceptuando la condición de interés. Esta investigación se realizó bajo las directrices del Ministerio de Salud de Colombia (008430-1993) y con la aprobación del comité de Ética de la Facultad de Medicina de la Pontificia Universidad Javeriana (FM-CIE-1171-20). | spa |
dc.description.researcharea | Biología de Sistemas | spa |
dc.description.sponsorship | Ministerio de Ciencia Tecnología e Innovación | spa |
dc.format.extent | xviii, 91 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87601 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Bioinformática | spa |
dc.relation.references | Al-Harazi, O., Kaya, I. H., Al-Eid, M., Alfantoukh, L., Al Zahrani, A. S., Al Sebayel, M., Kaya, N., & Colak, D. (2021). Identification of Gene Signature as Diagnostic and Prognostic Blood Biomarker for Early Hepatocellular Carcinoma Using Integrated Cross-Species Transcriptomic and Network Analyses. Frontiers in Genetics, 12, 710049. https://doi.org/10.3389/fgene.2021.710049 | spa |
dc.relation.references | Altmäe, S., Koel, M., Võsa, U., Adler, P., Suhorutšenko, M., Laisk-Podar, T., Kukushkina, V., Saare, M., Velthut-Meikas, A., Krjutškov, K., Aghajanova, L., Lalitkumar, P. G., Gemzell-Danielsson, K., Giudice, L., Simón, C., & Salumets, A. (2017). Meta-signature of human endometrial receptivity: A meta-analysis and validation study of transcriptomic biomarkers. Scientific Reports, 7(1), 10077. https://doi.org/10.1038/s41598-017-10098-3 | spa |
dc.relation.references | Ando, M., Saito, Y., Xu, G., Bui, N. Q., Medetgul-Ernar, K., Pu, M., Fisch, K., Ren, S., Sakai, A., Fukusumi, T., Liu, C., Haft, S., Pang, J., Mark, A., Gaykalova, D. A., Guo, T., Favorov, A. V., Yegnasubramanian, S., Fertig, E. J., … Califano, J. A. (2019). Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nature Communications, 10(1), 2188. https://doi.org/10.1038/s41467-019-09937-w | spa |
dc.relation.references | Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data (Version 0.12.0) [Java]. Braham Institute. http://www.bioinformatics.babraham.ac.uk/projects/fastqc | spa |
dc.relation.references | Audia, J. E., & Campbell, R. M. (2016). Histone Modifications and Cancer. Cold Spring Harbor Perspectives in Biology, 8(4), a019521. https://doi.org/10.1101/cshperspect.a019521 | spa |
dc.relation.references | Badkas, A., De Landtsheer, S., & Sauter, T. (2022). Construction and contextualization approaches for protein-protein interaction networks. Computational and Structural Biotechnology Journal, 20, 3280–3290. https://doi.org/10.1016/j.csbj.2022.06.040 | spa |
dc.relation.references | Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2012). NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Research, 41(D1), D991–D995. https://doi.org/10.1093/nar/gks1193 | spa |
dc.relation.references | Basu, A., & Tiwari, V. K. (2021). Epigenetic reprogramming of cell identity: Lessons from development for regenerative medicine. Clinical Epigenetics, 13(1), 144. https://doi.org/10.1186/s13148-021-01131-4 | spa |
dc.relation.references | Bleker, C., Grady, S. K., & Langston, M. A. (2024). A Comparative Study of Gene Co-Expression Thresholding Algorithms. Journal of Computational Biology, 31(6), 539–548. https://doi.org/10.1089/cmb.2024.0509 | spa |
dc.relation.references | Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008 | spa |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 | spa |
dc.relation.references | Borate, B. R., Chesler, E. J., Langston, M. A., Saxton, A. M., & Voy, B. H. (2009). Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Research Notes, 2(1), 240. https://doi.org/10.1186/1756-0500-2-240 | spa |
dc.relation.references | Bradley, K. A., Bush, K. R., Epler, A. J., Dobie, D. J., Davis, T. M., Sporleder, J. L., Maynard, C., Burman, M. L., & Kivlahan, D. R. (2003). Two Brief Alcohol-Screening Tests From the Alcohol Use Disorders Identification Test (AUDIT): Validation in a Female Veterans Affairs Patient Population. Archives of Internal Medicine, 163(7), 821. https://doi.org/10.1001/archinte.163.7.821 | spa |
dc.relation.references | Broad Institute. (2019). Picard toolkit (Version 3.2.0) [Computer software]. https://broadinstitute.github.io/picard/ | spa |
dc.relation.references | Bush, K. (1998). The AUDIT Alcohol Consumption Questions (AUDIT-C)An Effective Brief Screening Test for Problem Drinking. Archives of Internal Medicine, 158(16), 1789. https://doi.org/10.1001/archinte.158.16.1789 | spa |
dc.relation.references | Califf, R. M. (2018). Biomarker definitions and their applications. Experimental Biology and Medicine, 243(3), 213–221. https://doi.org/10.1177/1535370217750088 | spa |
dc.relation.references | Cantini, L., Calzone, L., Martignetti, L., Rydenfelt, M., Blüthgen, N., Barillot, E., & Zinovyev, A. (2017). Classification of gene signatures for their information value and functional redundancy. Npj Systems Biology and Applications, 4(1), 2. https://doi.org/10.1038/s41540-017-0038-8 | spa |
dc.relation.references | Carenzo, A., Pistore, F., Serafini, M. S., Lenoci, D., Licata, A. G., & De Cecco, L. (2022). hacksig: A unified and tidy R framework to easily compute gene expression signature scores. Bioinformatics, 38(10), 2940–2942. https://doi.org/10.1093/bioinformatics/btac161 | spa |
dc.relation.references | Castañeda, D. S., & Méndez, J. A. (2018). Estimación de la relación entre material particulado PM10 atmosférico y el susceptible de resuspensión en algunas vías de Bogotá [Trabajo de grado - Pregrado, Universidad de La Salle]. https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/744/ | spa |
dc.relation.references | Chen, R., & Snyder, M. (2012). Systems biology: Personalized medicine for the future? Current Opinion in Pharmacology, 12(5), 623–628. https://doi.org/10.1016/j.coph.2012.07.011 | spa |
dc.relation.references | Chen, Z., Li, C., Zhou, Y., Li, P., Cao, G., Qiao, Y., Yao, Y., & Su, J. (2024). Histone 3 lysine 9 acetylation-specific reprogramming regulates esophageal squamous cell carcinoma progression and metastasis. Cancer Gene Therapy, 31(4), 612–626. https://doi.org/10.1038/s41417-024-00738-y | spa |
dc.relation.references | Chu, J., Hart, J. E., Chhabra, D., Garshick, E., Raby, B. A., & Laden, F. (2016). Gene expression network analyses in response to air pollution exposures in the trucking industry. Environmental Health, 15(1), 101. https://doi.org/10.1186/s12940-016-0187-z | spa |
dc.relation.references | Cildir, G., Toubia, J., Yip, K. H., Zhou, M., Pant, H., Hissaria, P., Zhang, J., Hong, W., Robinson, N., Grimbaldeston, M. A., Lopez, A. F., & Tergaonkar, V. (2019). Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity, 51(5), 949-965.e6. https://doi.org/10.1016/j.immuni.2019.09.021 | spa |
dc.relation.references | Concejo de Bogotá. (2019). Calidad del Aire y salud pública. Concejo de Bogotá. //concejodebogota.gov.co/calidad-del-aire-y-salud-publica/cbogota/2020-03-24/172238.php | spa |
dc.relation.references | Craig, C. L., Marshall, A. L., Sj??Str??M, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J. F., & Oja, P. (2003). International Physical Activity Questionnaire: 12-Country Reliability and Validity: Medicine & Science in Sports & Exercise, 35(8), 1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB | spa |
dc.relation.references | Cui, G., Dong, Q., Gai, K., & Qi, S. (2023). Chromatin Dynamics: Chromatin Remodeler, Epigenetic Modification and Diseases. In T. Huang (Ed.), Epigenetics—Regulation and New Perspectives. IntechOpen. https://doi.org/10.5772/intechopen.108385 | spa |
dc.relation.references | Dinarvand, M., Koch, F. C., Al Mouiee, D., Vuong, K., Vijayan, A., Tanzim, A. F., Azad, A. K. M., Penesyan, A., Castaño-Rodríguez, N., & Vafaee, F. (2022). dRNASb: A systems biology approach to decipher dynamics of host-pathogen interactions using temporal dual RNA-seq data. Microbial Genomics, 8(9). https://doi.org/10.1099/mgen.0.000862 | spa |
dc.relation.references | Ding, R., Jin, Y., Liu, X., Ye, H., Zhu, Z., Zhang, Y., Wang, T., & Xu, Y. (2017). Dose- and time- effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution. Scientific Reports, 7(1), 43737. https://doi.org/10.1038/srep43737 | spa |
dc.relation.references | Do, H. T. T., Shanak, S., Barghash, A., & Helms, V. (2023). Differential exon usage of developmental genes is associated with deregulated epigenetic marks. Scientific Reports, 13(1), 12256. https://doi.org/10.1038/s41598-023-38879-z | spa |
dc.relation.references | Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. https://doi.org/10.1093/nar/30.1.207 | spa |
dc.relation.references | Eisenman, T. S., Churkina, G., Jariwala, S. P., Kumar, P., Lovasi, G. S., Pataki, D. E., Weinberger, K. R., & Whitlow, T. H. (2019). Urban trees, air quality, and asthma: An interdisciplinary review. Landscape and Urban Planning, 187, 47–59. https://doi.org/10.1016/j.landurbplan.2019.02.010 | spa |
dc.relation.references | Escorcia-Rodríguez, J. M., Gaytan-Nuñez, E., Hernandez-Benitez, E. M., Zorro-Aranda, A., Tello-Palencia, M. A., & Freyre-González, J. A. (2023). Improving gene regulatory network inference and assessment: The importance of using network structure. Frontiers in Genetics, 14, 1143382. https://doi.org/10.3389/fgene.2023.1143382 | spa |
dc.relation.references | Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 | spa |
dc.relation.references | Feng, S., Huang, F., Zhang, Y., Feng, Y., Zhang, Y., Cao, Y., & Wang, X. (2023). The pathophysiological and molecular mechanisms of atmospheric PM2.5 affecting cardiovascular health: A review. Ecotoxicology and Environmental Safety, 249, 114444. https://doi.org/10.1016/j.ecoenv.2022.114444 | spa |
dc.relation.references | Fishilevich, S., Nudel, R., Rappaport, N., Hadar, R., Plaschkes, I., Iny Stein, T., Rosen, N., Kohn, A., Twik, M., Safran, M., Lancet, D., & Cohen, D. (2017). GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database: The Journal of Biological Databases and Curation, 2017, bax028. https://doi.org/10.1093/database/bax028 | spa |
dc.relation.references | Fongsodsri, K., Chamnanchanunt, S., Desakorn, V., Thanachartwet, V., Sahassananda, D., Rojnuckarin, P., & Umemura, T. (2021). Particulate Matter 2.5 and Hematological Disorders From Dust to Diseases: A Systematic Review of Available Evidence. Frontiers in Medicine, 8, 692008. https://doi.org/10.3389/fmed.2021.692008 | spa |
dc.relation.references | Furth, N., & Shema, E. (2022). It’s all in the combination: Decoding the epigenome for cancer research and diagnostics. Current Opinion in Genetics & Development, 73, 101899. https://doi.org/10.1016/j.gde.2022.101899 | spa |
dc.relation.references | Gao, Y., Chen, L., Han, Y., Wu, F., Yang, W.-S., Zhang, Z., Huo, T., Zhu, Y., Yu, C., Kim, H., Lee, M., Tang, Z., Phillips, K., He, B., Jung, S. Y., Song, Y., Zhu, B., Xu, R.-M., & Feng, Q. (2020). Acetylation of histone H3K27 signals the transcriptional elongation for estrogen receptor alpha. Communications Biology, 3(1), 165. https://doi.org/10.1038/s42003-020-0898-0 | spa |
dc.relation.references | Gates, L. A., Shi, J., Rohira, A. D., Feng, Q., Zhu, B., Bedford, M. T., Sagum, C. A., Jung, S. Y., Qin, J., Tsai, M.-J., Tsai, S. Y., Li, W., Foulds, C. E., & O’Malley, B. W. (2017). Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. Journal of Biological Chemistry, 292(35), 14456–14472. https://doi.org/10.1074/jbc.M117.802074 | spa |
dc.relation.references | Gavito-Covarrubias, D., Ramírez-Díaz, I., Guzmán-Linares, J., Limón, I. D., Manuel-Sánchez, D. M., Molina-Herrera, A., Coral-García, M. Á., Anastasio, E., Anaya-Hernández, A., López-Salazar, P., Juárez-Díaz, G., Martínez-Juárez, J., Torres-Jácome, J., Albarado-Ibáñez, A., Martínez-Laguna, Y., Morán, C., & Rubio, K. (2024). Epigenetic mechanisms of particulate matter exposure: Air pollution and hazards on human health. Frontiers in Genetics, 14, 1306600. https://doi.org/10.3389/fgene.2023.1306600 | spa |
dc.relation.references | Ghatak, S., Mehrabi, S. F., Mehdawi, L. M., Satapathy, S. R., & Sjölander, A. (2022). Identification of a Novel Five-Gene Signature as a Prognostic and Diagnostic Biomarker in Colorectal Cancers. International Journal of Molecular Sciences, 23(2), 793. https://doi.org/10.3390/ijms23020793 | spa |
dc.relation.references | Gillespie, C. S. (2015). Fitting Heavy Tailed Distributions: The poweRlaw Package. Journal of Statistical Software, 64(2). https://doi.org/10.18637/jss.v064.i02 | spa |
dc.relation.references | González, D., Infante, A., López, L., Ceschin, D., Fernández-Sanchez, M. J., Cañas, A., Zafra-Mejía, C., & Rojas, A. (2025). Airborne fine particulate matter exposure induces transcriptomic alterations resembling asthmatic signatures: Insights from integrated omics analysis. Environmental Epigenetics, 11(1), dvae026. https://doi.org/10.1093/eep/dvae026 | spa |
dc.relation.references | Greenstone, M., Hasenkopf, C., Sharma, N., & Gautam, H. (2024). Annual Update. Air Quality Life Index, 45. | spa |
dc.relation.references | Harrison, P. W., Amode, M. R., Austine-Orimoloye, O., Azov, A. G., Barba, M., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S. K., Boddu, S., Branco Lins, P. R., Brooks, L., Ramaraju, S. B., Campbell, L. I., Martinez, M. C., Charkhchi, M., Chougule, K., … Yates, A. D. (2024). Ensembl 2024. Nucleic Acids Research, 52(D1), D891–D899. https://doi.org/10.1093/nar/gkad1049 | spa |
dc.relation.references | Health Effects Institute. (2024). State of Global Air 2024. Special Report. 33 pp. | spa |
dc.relation.references | Hitz, B. C., Lee, J.-W., Jolanki, O., Kagda, M. S., Graham, K., Sud, P., Gabdank, I., Seth Strattan, J., Sloan, C. A., Dreszer, T., Rowe, L. D., Podduturi, N. R., Malladi, V. S., Chan, E. T., Davidson, J. M., Ho, M., Miyasato, S., Simison, M., Tanaka, F., … Cherry, J. M. (2023). The ENCODE Uniform Analysis Pipelines. https://doi.org/10.1101/2023.04.04.535623 | spa |
dc.relation.references | Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., & Geurts, P. (2010). Inferring Regulatory Networks from Expression Data Using Tree-Based Methods. PLoS ONE, 5(9), e12776. https://doi.org/10.1371/journal.pone.0012776 | spa |
dc.relation.references | Jun, Q., Youhong, L., Yuan, Z., Xi, Y., Wang, B., Xinyi, S., Fu, Y., Kedan, C., Lian, J., & Jianqing, Z. (2022). Histone modification of endothelial-mesenchymal transition in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 9, 1022988. https://doi.org/10.3389/fcvm.2022.1022988 | spa |
dc.relation.references | Kan, M., Diwadkar, A. R., Shuai, H., Joo, J., Wang, A. L., Ong, M.-S., Sordillo, J. E., Iribarren, C., Lu, M. X., Hernandez-Pacheco, N., Perez-Garcia, J., Gorenjak, M., Potočnik, U., Burchard, E. G., Pino-Yanes, M., Wu, A. C., & Himes, B. E. (2022). Multiomics analysis identifies BIRC3 as a novel glucocorticoid response–associated gene. Journal of Allergy and Clinical Immunology, 149(6), 1981–1991. https://doi.org/10.1016/j.jaci.2021.11.025 | spa |
dc.relation.references | Kaviraj, A., Unlu, E., Gupta, A., & El Nemr, A. (2014). Biomarkers of Environmental Pollutants. BioMed Research International, 2014, 1–2. https://doi.org/10.1155/2014/806598 | spa |
dc.relation.references | Kayalar, Ö., Rajabi, H., Konyalilar, N., Mortazavi, D., Aksoy, G. T., Wang, J., & Bayram, H. (2024). Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Frontiers in Immunology, 15, 1324552. https://doi.org/10.3389/fimmu.2024.1324552 | spa |
dc.relation.references | Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915. https://doi.org/10.1038/s41587-019-0201-4 | spa |
dc.relation.references | Klemm, S. L., Shipony, Z., & Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature Reviews Genetics, 20(4), 207–220. https://doi.org/10.1038/s41576-018-0089-8 | spa |
dc.relation.references | Kundaje, A., & Shcherbina, A. (2020). Encode:encode4_GRCh38_blacklist (Bed Bed3 No. ENCSR636HFF) [Bed bed3]. ENCODE. https://www.encodeproject.org/files/ENCFF356LFX | spa |
dc.relation.references | Lacal, I., & Ventura, R. (2018). Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Frontiers in Molecular Neuroscience, 11, 292. https://doi.org/10.3389/fnmol.2018.00292 | spa |
dc.relation.references | Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., Bernstein, B. E., Bickel, P., Brown, J. B., Cayting, P., Chen, Y., DeSalvo, G., Epstein, C., Fisher-Aylor, K. I., Euskirchen, G., Gerstein, M., Gertz, J., Hartemink, A. J., Hoffman, M. M., … Snyder, M. (2012). ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 22(9), 1813–1831. https://doi.org/10.1101/gr.136184.111 | spa |
dc.relation.references | Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559 | spa |
dc.relation.references | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 | spa |
dc.relation.references | Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. https://doi.org/10.1186/gb-2009-10-3-r25 | spa |
dc.relation.references | Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. https://doi.org/10.1093/bioinformatics/btt656 | spa |
dc.relation.references | Lin, H., & Zhang, W. (2023). RNA-seq analysis identifies the effect of PM2.5 on human nasal epithelial cells cultured under air-liquid interface (ALI) conditions until differentiated. (Expression Profiling by High Throughput Sequencing No. GSE243618). GEO. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE243618 | spa |
dc.relation.references | Lionetto, M. G., Caricato, R., & Giordano, M. E. (2019). Pollution Biomarkers in Environmental and Human Biomonitoring. The Open Biomarkers Journal, 9(1), 1–9. https://doi.org/10.2174/1875318301909010001 | spa |
dc.relation.references | Lisi, S., Trovato, M., Vitaloni, O., Fantini, M., Chirichella, M., Tognini, P., Cornuti, S., Costa, M., Groth, M., & Cattaneo, A. (2022). Acetylation-Specific Interference by Anti-Histone H3K9ac Intrabody Results in Precise Modulation of Gene Expression. International Journal of Molecular Sciences, 23(16), 8892. https://doi.org/10.3390/ijms23168892 | spa |
dc.relation.references | Liu, B.-H. (2018). Differential Coexpression Network Analysis for Gene Expression Data. In T. Huang (Ed.), Computational Systems Biology (Vol. 1754, pp. 155–165). Springer New York. https://doi.org/10.1007/978-1-4939-7717-8_9 | spa |
dc.relation.references | Liu, C., Xu, J., Chen, Y., Guo, X., Zheng, Y., Wang, Q., Chen, Y., Ni, Y., Zhu, Y., Joyce, B. T., Baccarelli, A., Deng, F., Zhang, W., & Hou, L. (2015). Characterization of genome-wide H3K27ac profiles reveals a distinct PM2.5-associated histone modification signature. Environmental Health, 14(1), 65. https://doi.org/10.1186/s12940-015-0052-5 | spa |
dc.relation.references | Liu, E., Li, L., & Cheng, L. (2019). Gene Regulatory Network Review. In Encyclopedia of Bioinformatics and Computational Biology (pp. 155–164). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20218-5 | spa |
dc.relation.references | Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8 | spa |
dc.relation.references | Lovejoy, J. C. (2024). Expanding our thought horizons in systems biology and medicine. Frontiers in Systems Biology, 4, 1385458. https://doi.org/10.3389/fsysb.2024.1385458 | spa |
dc.relation.references | Lv, Y., Huang, S., Zhang, T., & Gao, B. (2021). Application of Multilayer Network Models in Bioinformatics. Frontiers in Genetics, 12, 664860. https://doi.org/10.3389/fgene.2021.664860 | spa |
dc.relation.references | Madaniyazi, L., Li, S., Li, S., & Guo, Y. (2020). Candidate gene expression in response to low-level air pollution. Environment International, 140, 105610. https://doi.org/10.1016/j.envint.2020.105610 | spa |
dc.relation.references | Majeed, A., & Rauf, I. (2020). Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social Networks. Inventions, 5(1), 10. https://doi.org/10.3390/inventions5010010 | spa |
dc.relation.references | Maleki, F., Ovens, K., McQuillan, I., & Kusalik, A. J. (2019). Size matters: How sample size affects the reproducibility and specificity of gene set analysis. Human Genomics, 13(S1), 42. https://doi.org/10.1186/s40246-019-0226-2 | spa |
dc.relation.references | McClure, R. S., Wendler, J. P., Adkins, J. N., Swanstrom, J., Baric, R., Kaiser, B. L. D., Oxford, K. L., Waters, K. M., & McDermott, J. E. (2019). Unified feature association networks through integration of transcriptomic and proteomic data. PLOS Computational Biology, 15(9), e1007241. https://doi.org/10.1371/journal.pcbi.1007241 | spa |
dc.relation.references | McCullough, S. D., Dhingra, R., Fortin, M. C., & Diaz-Sanchez, D. (2017). Air pollution and the epigenome: A model relationship for the exploration of toxicoepigenetics. Current Opinion in Toxicology, 6, 18–25. https://doi.org/10.1016/j.cotox.2017.07.001 | spa |
dc.relation.references | McLeay, R. C., & Bailey, T. L. (2010). Motif Enrichment Analysis: A unified framework and an evaluation on ChIP data. BMC Bioinformatics, 11(1), 165. https://doi.org/10.1186/1471-2105-11-165 | spa |
dc.relation.references | Millan, J., Lesarri, A., Fernández, J. A., & Martínez, R. (2021). Exploring Epigenetic Marks by Analysis of Noncovalent Interactions. ChemBioChem, 22(2), 408–415. https://doi.org/10.1002/cbic.202000380 | spa |
dc.relation.references | Ministerio de Ambiente y desarrollo sostenible. (2017). Resolución 2254 de 2017. Por la cual se adopta la norma de calidad del aire ambiente y se dictan otras disposiciones. https://www.minambiente.gov.co/wp-content/uploads/2021/10/Resolucion-2254-de-2017.pdf | spa |
dc.relation.references | Misiukiewicz-Stępien, P., Mierzejewski, M., Zajusz-Zubek, E., Goryca, K., Adamska, D., Szeląg, M., Krenke, R., & Paplińska-Goryca, M. (2022). RNA-Seq Analysis of UPM-Exposed Epithelium Co-Cultivated with Macrophages and Dendritic Cells in Obstructive Lung Diseases. International Journal of Molecular Sciences, 23(16), 9125. https://doi.org/10.3390/ijms23169125 | spa |
dc.relation.references | Montaner, J., Ramiro, L., Simats, A., Tiedt, S., Makris, K., Jickling, G. C., Debette, S., Sanchez, J.-C., & Bustamante, A. (2020). Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nature Reviews Neurology, 16(5), 247–264. https://doi.org/10.1038/s41582-020-0350-6 | spa |
dc.relation.references | Mukherjee, S., Dasgupta, S., Mishra, P. K., & Chaudhury, K. (2021). Air pollution-induced epigenetic changes: Disease development and a possible link with hypersensitivity pneumonitis. Environmental Science and Pollution Research International, 28(40), 55981–56002. https://doi.org/10.1007/s11356-021-16056-x | spa |
dc.relation.references | Naik, A., Dalpatraj, N., & Thakur, N. (2022). Global Gene Expression Regulation Mediated by TGFβ Through H3K9me3 Mark. Cancer Informatics, 21, 11769351221115135. https://doi.org/10.1177/11769351221115135 | spa |
dc.relation.references | Nakato, R., & Sakata, T. (2021). Methods for ChIP-seq analysis: A practical workflow and advanced applications. Methods, 187, 44–53. https://doi.org/10.1016/j.ymeth.2020.03.005 | spa |
dc.relation.references | Nathan, R. A., Sorkness, C. A., Kosinski, M., Schatz, M., Li, J. T., Marcus, P., Murray, J. J., & Pendergraft, T. B. (2004). Development of the asthma control test☆A survey for assessing asthma control. Journal of Allergy and Clinical Immunology, 113(1), 59–65. https://doi.org/10.1016/j.jaci.2003.09.008 | spa |
dc.relation.references | Newell, R., Pienaar, R., Balderson, B., Piper, M., Essebier, A., & Bodén, M. (2021). ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates. Genomics, 113(4), 1855–1866. https://doi.org/10.1016/j.ygeno.2021.04.026 | spa |
dc.relation.references | Newman, M. (2018). Networks (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198805090.001.0001 | spa |
dc.relation.references | Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., Vollger, M. R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt, S. J., Diekhans, M., Logsdon, G. A., Alonge, M., Antonarakis, S. E., Borchers, M., Bouffard, G. G., Brooks, S. Y., … Phillippy, A. M. (2022). The complete sequence of a human genome. Science, 376(6588), 44–53. https://doi.org/10.1126/science.abj6987 | spa |
dc.relation.references | Observatorio Nacional de Salud. (2018). Carga de Enfermedad Ambiental en Colombia (Informe Técnico Especial No. 10; p. 96). Instituto Nacional de Salud. https://www.ins.gov.co/Direcciones/ONS/Informes/10%20Carga%20de%20enfermedad%20ambiental%20en%20Colombia.pdf | spa |
dc.relation.references | Ona, S. (2023). ChIP sequencing. BioRender. https://app.biorender.com/biorender-templates/t-5f20a148563a0600ad9d9f87 | spa |
dc.relation.references | Paplińska-Goryca, M., Misiukiewicz-Stępien, P., Goryca, K., Adamska, D., & Szelag, M. (2022). RNA-Seq analysis of differentially expressed genes in UPM-exposed epithelium co-cultivated with macrophages and dendritic cells from patients with asthma and COPD (Expression Profiling by High Throughput Sequencing No. GSE175541). Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175541 | spa |
dc.relation.references | Patridge, E. F., & Bardyn, T. P. (2018). Research Electronic Data Capture (REDCap). Journal of the Medical Library Association, 106(1). https://doi.org/10.5195/jmla.2018.319 | spa |
dc.relation.references | Peng, Y., Markov, Y., Goncearenco, A., Landsman, D., & Panchenko, A. R. (2021). Human Histone Interaction Networks: An Old Concept, New Trends. Journal of Molecular Biology, 433(6), 166684. https://doi.org/10.1016/j.jmb.2020.10.018 | spa |
dc.relation.references | Pérez, R., & Jarosińska, D. (2022). Update of the WHO global air quality guidelines: Systematic reviews – An introduction. Environment International, 170, 107556. https://doi.org/10.1016/j.envint.2022.107556 | spa |
dc.relation.references | Pham, D., Vincentz, J. W., Firulli, A. B., & Kaplan, M. H. (2012). Twist1 Regulates Ifng Expression in Th1 Cells by Interfering with Runx3 Function. The Journal of Immunology, 189(2), 832–840. https://doi.org/10.4049/jimmunol.1200854 | spa |
dc.relation.references | Pirot, N., Delpech, H., Deleuze, V., Dohet, C., Courtade-Saïdi, M., Basset-Léobon, C., Chalhoub, E., Mathieu, D., & Pinet, V. (2014). Lung endothelial barrier disruption in Lyl1 -deficient mice. American Journal of Physiology-Lung Cellular and Molecular Physiology, 306(8), L775–L785. https://doi.org/10.1152/ajplung.00200.2013 | spa |
dc.relation.references | Prada, D., López, G., Solleiro-Villavicencio, H., Garcia-Cuellar, C., & Baccarelli, A. A. (2020). Molecular and cellular mechanisms linking air pollution and bone damage. Environmental Research, 185, 109465. https://doi.org/10.1016/j.envres.2020.109465 | spa |
dc.relation.references | Qian, H., Zhu, M., Tan, X., Zhang, Y., Liu, X., & Yang, L. (2023). Super-enhancers and the super-enhancer reader BRD4: Tumorigenic factors and therapeutic targets. Cell Death Discovery, 9(1), 470. https://doi.org/10.1038/s41420-023-01775-6 | spa |
dc.relation.references | Quezada, H., Guzmán-Ortiz, A. L., Díaz-Sánchez, H., Valle-Rios, R., & Aguirre-Hernández, J. (2017). Omics-based biomarkers: Current status and potential use in the clinic. Boletín Médico Del Hospital Infantil de México (English Edition), 74(3), 219–226. https://doi.org/10.1016/j.bmhime.2017.11.030 | spa |
dc.relation.references | Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033 | spa |
dc.relation.references | R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ | spa |
dc.relation.references | Rosa, S., & Shaw, P. (2013). Insights into Chromatin Structure and Dynamics in Plants. Biology, 2(4), 1378–1410. https://doi.org/10.3390/biology2041378 | spa |
dc.relation.references | Ross-Innes, C. S., Stark, R., Teschendorff, A. E., Holmes, K. A., Ali, H. R., Dunning, M. J., Brown, G. D., Gojis, O., Ellis, I. O., Green, A. R., Ali, S., Chin, S.-F., Palmieri, C., Caldas, C., & Carroll, J. S. (2012). Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature, 481(7381), 389–393. https://doi.org/10.1038/nature10730 | spa |
dc.relation.references | Rossner, P., Tulupova, E., Rossnerova, A., Libalova, H., Honkova, K., Gmuender, H., Pastorkova, A., Svecova, V., Topinka, J., & Sram, R. J. (2015). Reduced gene expression levels after chronic exposure to high concentrations of air pollutants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 780, 60–70. https://doi.org/10.1016/j.mrfmmm.2015.08.001 | spa |
dc.relation.references | Russell, M., Aqil, A., Saitou, M., Gokcumen, O., & Masuda, N. (2023). Gene communities in co-expression networks across different tissues. PLOS Computational Biology, 19(11), e1011616. https://doi.org/10.1371/journal.pcbi.1011616 | spa |
dc.relation.references | Schatz, M., Kosinski, M., Yarlas, A. S., Hanlon, J., Watson, M. E., & Jhingran, P. (2009). The minimally important difference of the Asthma Control Test. Journal of Allergy and Clinical Immunology, 124(4), 719-723.e1. https://doi.org/10.1016/j.jaci.2009.06.053 | spa |
dc.relation.references | Secretaría Distrital de Ambiente. (2018). Se declara alerta ambiental en Bogotá. Se declara alerta ambiental en Bogotá. https://www.ambientebogota.gov.co/search?p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_returnToFullPageURL=https%3A%2F%2Fambientebogota.gov.co%2Fsearch%3Fp_auth%3DL9YHV1xs%26p_p_id%3D3%26p_p_lifecycle%3D1%26p_p_state%3Dnormal%26p_p_state_rcv%3D1&_101_assetEntryId=498636&_101_type=content&_101_urlTitle=se-declara-alerta-ambiental-en-bogota&inheritRedirect=true | spa |
dc.relation.references | Secretaría Distrital de Ambiente. (2023). Alerta por calidad del aire Bogotá—Todas las investigaciones. Alerta por calidad del aire Bogotá - Todas las investigaciones. https://www.ambientebogota.gov.co/todas-las-investigaciones | spa |
dc.relation.references | Selma, S., & Orzáez, D. (2021). Perspectives for epigenetic editing in crops. Transgenic Research, 30(4), 381–400. https://doi.org/10.1007/s11248-021-00252-z | spa |
dc.relation.references | Seth, S., Mallik, S., Bhadra, T., & Zhao, Z. (2022). Dimensionality Reduction and Louvain Agglomerative Hierarchical Clustering for Cluster-Specified Frequent Biomarker Discovery in Single-Cell Sequencing Data. Frontiers in Genetics, 13, 828479. https://doi.org/10.3389/fgene.2022.828479 | spa |
dc.relation.references | Shin, B., Cole, S. L., Park, S.-J., Ledford, D. K., & Lockey, R. F. (2010). A new symptom-based questionnaire for predicting the presence of asthma. Journal of Investigational Allergology & Clinical Immunology, 20(1), 27–34. | spa |
dc.relation.references | Shvedunova, M., & Akhtar, A. (2022). Modulation of cellular processes by histone and non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 23(5), 329–349. https://doi.org/10.1038/s41580-021-00441-y | spa |
dc.relation.references | Sonawane, A. R., DeMeo, D. L., Quackenbush, J., & Glass, K. (2021). Constructing gene regulatory networks using epigenetic data. Npj Systems Biology and Applications, 7(1), 45. https://doi.org/10.1038/s41540-021-00208-3 | spa |
dc.relation.references | Sonawane, A. R., Weiss, S. T., Glass, K., & Sharma, A. (2019). Network Medicine in the Age of Biomedical Big Data. Frontiers in Genetics, 10, 294. https://doi.org/10.3389/fgene.2019.00294 | spa |
dc.relation.references | Stark, R., & Brown, G. (2017). DiffBind [Computer software]. Bioconductor. https://doi.org/10.18129/B9.BIOC.DIFFBIND | spa |
dc.relation.references | Stolovitzky, G., Monroe, D., & Califano, A. (2007). Dialogue on Reverse‐Engineering Assessment and Methods: The DREAM of High‐Throughput Pathway Inference. Annals of the New York Academy of Sciences, 1115(1), 1–22. https://doi.org/10.1196/annals.1407.021 | spa |
dc.relation.references | Stretch, C., Khan, S., Asgarian, N., Eisner, R., Vaisipour, S., Damaraju, S., Graham, K., Bathe, O. F., Steed, H., Greiner, R., & Baracos, V. E. (2013). Effects of Sample Size on Differential Gene Expression, Rank Order and Prediction Accuracy of a Gene Signature. PLoS ONE, 8(6), e65380. https://doi.org/10.1371/journal.pone.0065380 | spa |
dc.relation.references | The Encyclopedia of DNA Elements. (n.d.). Terms and Definitions. ENCODE. Retrieved August 20, 2024, from https://www.encodeproject.org/data-standards/terms/ | spa |
dc.relation.references | The Encyclopedia of DNA Elements. (2020, July). Histone ChIP-seq Data Standards and Processing Pipeline. ENCODE. https://www.encodeproject.org/chip-seq/histone-encode4/ | spa |
dc.relation.references | The Encyclopedia of DNA Elements. (2021, May). Bulk RNA-seq Data Standards and Processing Pipeline – ENCODE. ENCODE. https://www.encodeproject.org/data-standards/encode4-bulk-rna/ | spa |
dc.relation.references | Thomas, M., Kay, S., Pike, J., Williams, A., Rosenzweig, J. R. C., Hillyer, E. V., & Price, D. (2009). The Asthma Control TestTM (ACT) as a predictor of GINA guideline-defined asthma control: Analysis of a multinational cross-sectional survey. Primary Care Respiratory Journal, 18(1), 41–49. https://doi.org/10.4104/pcrj.2009.00010 | spa |
dc.relation.references | Turesky, R. J., & Lu, K. (2020). Biomarkers of Environmental Toxicants: Exposure and Biological Effects. Toxics, 8(2), 37. https://doi.org/10.3390/toxics8020037 | spa |
dc.relation.references | Verheul, T. C. J., Van Hijfte, L., Perenthaler, E., & Barakat, T. S. (2020). The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Frontiers in Cell and Developmental Biology, 8, 592164. https://doi.org/10.3389/fcell.2020.592164 | spa |
dc.relation.references | Vlaanderen, J., Vermeulen, R., Whitaker, M., Chadeau-Hyam, M., Hottenga, J.-J., De Geus, E., Willemsen, G., Penninx, B. W. J. H., Jansen, R., & Boomsma, D. I. (2022). Impact of long-term exposure to PM2.5 on peripheral blood gene expression pathways involved in cell signaling and immune response. Environment International, 168, 107491. https://doi.org/10.1016/j.envint.2022.107491 | spa |
dc.relation.references | Vorontsov, I. E., Eliseeva, I. A., Zinkevich, A., Nikonov, M., Abramov, S., Boytsov, A., Kamenets, V., Kasianova, A., Kolmykov, S., Yevshin, I. S., Favorov, A., Medvedeva, Y. A., Jolma, A., Kolpakov, F., Makeev, V. J., & Kulakovskiy, I. V. (2024). HOCOMOCO in 2024: A rebuild of the curated collection of binding models for human and mouse transcription factors. Nucleic Acids Research, 52(D1), D154–D163. https://doi.org/10.1093/nar/gkad1077 | spa |
dc.relation.references | Wachowski, N. A., Pippin, J. A., Boehm, K., Lu, S., Leonard, M. E., Manduchi, E., Parlin, U. W., Wabitsch, M., Chesi, A., Wells, A. D., Grant, S. F. A., & Pahl, M. C. (2024). Implicating type 2 diabetes effector genes in relevant metabolic cellular models using promoter-focused Capture-C. Diabetologia. https://doi.org/10.1007/s00125-024-06261-x | spa |
dc.relation.references | Wang, L., Wang, S., & Li, W. (2012). RSeQC: Quality control of RNA-seq experiments. Bioinformatics, 28(16), 2184–2185. https://doi.org/10.1093/bioinformatics/bts356 | spa |
dc.relation.references | Wang, Q., Li, M., Wu, T., Zhan, L., Li, L., Chen, M., Xie, W., Xie, Z., Hu, E., Xu, S., & Yu, G. (2022). Exploring Epigenomic Datasets by ChIPseeker. Current Protocols, 2(10), e585. https://doi.org/10.1002/cpz1.585 | spa |
dc.relation.references | Wang, X.-M., Ming, K., Wang, S., Wang, J., Li, P.-L., Tian, R.-F., Liu, S.-Y., Cheng, X., Chen, Y., Shi, W., Wan, J., Hu, M., Tian, S., Zhang, X., She, Z.-G., Li, H., Ding, Y., & Zhang, X.-J. (2023). Network-based analysis identifies key regulatory transcription factors involved in skin aging. Experimental Gerontology, 178, 112202. https://doi.org/10.1016/j.exger.2023.112202 | spa |
dc.relation.references | Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484 | spa |
dc.relation.references | World Health Organization (Ed.). (2006). Air quality guidelines: Global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization. | spa |
dc.relation.references | World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO European Centre for Environment and Health. | spa |
dc.relation.references | Wu, Y.-L., Lin, Z.-J., Li, C.-C., Lin, X., Shan, S.-K., Guo, B., Zheng, M.-H., Li, F., Yuan, L.-Q., & Li, Z. (2023). Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy, 8(1), 98. https://doi.org/10.1038/s41392-023-01333-7 | spa |
dc.relation.references | Yamada, R., Okada, D., Wang, J., Basak, T., & Koyama, S. (2021). Interpretation of omics data analyses. Journal of Human Genetics, 66(1), 93–102. https://doi.org/10.1038/s10038-020-0763-5 | spa |
dc.relation.references | Yao, R.-Q., Shen, Z., Ma, Q.-M., Ling, P., Wei, C.-R., Zheng, L.-Y., Duan, Y., Li, W., Zhu, F., Sun, Y., & Wu, G.-S. (2023). Combination of transcriptional biomarkers and clinical parameters for early prediction of sepsis indued acute respiratory distress syndrome. Frontiers in Immunology, 13, 1084568. https://doi.org/10.3389/fimmu.2022.1084568 | spa |
dc.relation.references | Yu, G., Wang, L.-G., & He, Q.-Y. (2015). ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31(14), 2382–2383. https://doi.org/10.1093/bioinformatics/btv145 | spa |
dc.relation.references | Yulinawati, H., Khairani, T., & Siami, L. (2021). Analysis of indoor and outdoor particulate (PM2.5 ) at a women and children’s hospital in West Jakarta. IOP Conference Series: Earth and Environmental Science, 737(1), 012067. https://doi.org/10.1088/1755-1315/737/1/012067 | spa |
dc.relation.references | Zhang, B., & Horvath, S. (2005). A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Genetics and Molecular Biology, 4(1). https://doi.org/10.2202/1544-6115.1128 | spa |
dc.relation.references | Zhang, H.-H., Li, Z., Liu, Y., Xinag, P., Cui, X.-Y., Ye, H., Hu, B.-L., & Lou, L.-P. (2018). Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. Journal of Zhejiang University. Science. B, 19(4), 317–326. https://doi.org/10.1631/jzus.B1700123 | spa |
dc.relation.references | Zhang, J., Li, J., Hou, Y., Lin, Y., Zhao, H., Shi, Y., Chen, K., Nian, C., Tang, J., Pan, L., Xing, Y., Gao, H., Yang, B., Song, Z., Cheng, Y., Liu, Y., Sun, M., Linghu, Y., Li, J., … Zhou, D. (2024). Osr2 functions as a biomechanical checkpoint to aggravate CD8+ T cell exhaustion in tumor. Cell, 187(13), 3409-3426.e24. https://doi.org/10.1016/j.cell.2024.04.023 | spa |
dc.relation.references | Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., & Liu, X. S. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biology, 9(9), R137. https://doi.org/10.1186/gb-2008-9-9-r137 | spa |
dc.relation.references | Zhang, Y., Yin, X., & Zheng, X. (2023). The relationship between PM2.5 and the onset and exacerbation of childhood asthma: A short communication. Frontiers in Pediatrics, 11, 1191852. https://doi.org/10.3389/fped.2023.1191852 | spa |
dc.relation.references | Zhao, W., Xu, Y., Wang, Y., Gao, D., King, J., Xu, Y., & Liang, F.-S. (2021). Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Scientific Reports, 11(1), 15912. https://doi.org/10.1038/s41598-021-95398-5 | spa |
dc.relation.references | Zheng, S., Hedl, M., & Abraham, C. (2015). Twist1 and Twist2 Contribute to Cytokine Downregulation following Chronic NOD2 Stimulation of Human Macrophages through the Coordinated Regulation of Transcriptional Repressors and Activators. The Journal of Immunology, 195(1), 217–226. https://doi.org/10.4049/jimmunol.1402808 | spa |
dc.relation.references | Zhong, Y., Jiang, L., Hiai, H., Toyokuni, S., & Yamada, Y. (2007). Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene, 26(48), 6937–6947. https://doi.org/10.1038/sj.onc.1210494 | spa |
dc.relation.references | Zhu, L. J. (2013). Integrative Analysis of ChIP-Chip and ChIP-Seq Dataset. In T.-L. Lee & A. C. Shui Luk (Eds.), Tiling Arrays (Vol. 1067, pp. 105–124). Humana Press. https://doi.org/10.1007/978-1-62703-607-8_8 | spa |
dc.relation.references | Zhu, L. J., Gazin, C., Lawson, N. D., Pagès, H., Lin, S. M., Lapointe, D. S., & Green, M. R. (2010). ChIPpeakAnno: A Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics, 11(1), 237. https://doi.org/10.1186/1471-2105-11-237 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 570 - Biología | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.lemb | CONTAMINACION DEL AIRE | spa |
dc.subject.lemb | Air - Pollution | eng |
dc.subject.lemb | MARCADORES BIOQUIMICOS | spa |
dc.subject.lemb | Biochemical markers | eng |
dc.subject.lemb | CALIDAD DEL AIRE | spa |
dc.subject.lemb | Air quality | eng |
dc.subject.lemb | PERFILACION DE LA EXPRESION GENICA | spa |
dc.subject.lemb | Gene expression profiling | eng |
dc.subject.lemb | ENFERMEDADES DE LOS PULMONES | spa |
dc.subject.lemb | Lung diseases | eng |
dc.subject.proposal | Redes de regulación | spa |
dc.subject.proposal | Redes de coexpresión | spa |
dc.subject.proposal | Epigenética | spa |
dc.subject.proposal | PM2.5 | spa |
dc.subject.proposal | Contaminación del aire | spa |
dc.subject.proposal | Biomarcadores | |
dc.subject.proposal | Integración multiómica | |
dc.subject.proposal | Transcriptómica | |
dc.subject.proposal | Epigenómica | |
dc.subject.proposal | Regulation networks | eng |
dc.subject.proposal | Co-expression networks | eng |
dc.subject.proposal | Epigenetics | eng |
dc.subject.proposal | PM2.5 | eng |
dc.subject.proposal | Air pollution | eng |
dc.subject.proposal | Biomarkers | eng |
dc.subject.proposal | Multi-omics integration | eng |
dc.subject.proposal | Transcriptomics | eng |
dc.subject.proposal | Epigenomics | eng |
dc.title | Construcción de una red de regulación génica en respuesta a la polución ambiental a partir de la integración de datos ómicos e identificación de potenciales biomarcadores relacionados | spa |
dc.title.translated | Construction of a gene regulatory network in response to environmental pollution through omics data integration and identification of potential related biomarkers | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Impacto de la calidad del aire en los patrones epigenéticos de la histona H3 en habitantes de Bogotá - Código Minciencias 84742 | spa |
oaire.fundername | Ministerio de Ciencia Tecnología e Innovación | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032475928.2025.pdf
- Tamaño:
- 3.09 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioinformática
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: