Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica

dc.contributor.advisorMancera Pineda, José Ernestospa
dc.contributor.advisorPerdomo Trujillo, Laura Victoriaspa
dc.contributor.authorGomez Garcia, Luisa Fernandaspa
dc.coverage.cityColombiaspa
dc.date.accessioned2024-10-09T19:47:26Z
dc.date.available2024-10-09T19:47:26Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractLos bosques de manglar, a pesar de ocupar menos del 1% del área total de bosques tropicales, representan aproximadamente el 3% del secuestro de carbono por los bosques tropicales del mundo. Los bosques de manglares capturan y almacenan carbono orgánico (CO), lo que les otorga un papel fundamental en la mitigación del cambio climático. Sin embargo, son objeto de perturbaciones antrópicas que afectan negativamente su estructura y funcionamiento. El objetivo de este estudio fue evaluar: (i) la relación del CO con la modificación de la estructura vegetal por acción antrópica, con la hipótesis de que, a menor grado de perturbación, mayor sería el CO en los bosques. (ii) la relación del CO en sedimentos con la profundidad del suelo en bosques con diferentes grados de intervención antrópica, donde se manejó la hipótesis que bosques conservados tendrían mayor CO en las capas superficiales, y bosques perturbados en las capas más profundas. (iii) el CO desde la costa hacía el interior en bosques con diferentes grados de intervención antrópica, con la hipótesis de mayores reservas de CO en el interior del bosque respecto a la linea de costa y (iv) el efecto de la intervención antrópica en los contenidos de carbono orgánico. El análisis consideró el CO sobre el suelo (biomasa aérea y necromasa) y bajo el suelo (biomasa subterránea y sedimentos) de seis bosques de manglares de la costa del Pacífico Colombiano con diferentes grados de intervención antrópica y de múltiples usos. Los resultados confirmaron la primera hipótesis, donde los bosques conservados y maduros presentaron las mayores reservas de CO (con valores que oscilaron entre 401,3 y 535,4 Mg C ha-1), en comparación con bosques con fuertes perturbaciones antrópicas (con valores que oscilaron entre 247,2 y 342,1 Mg C ha-1). También se confirmó la segunda hipótesis, con mayores reservas de CO en sedimentos en las capas superficiales en los bosques con nula o poca perturbación antrópica. Patrón contrario al que presentaron los bosques perturbados. Se evidenció que la perturbación antrópica afecta también las características físico – químicas de los suelos, modificando su densidad aparente, granulometría e incluso la capacidad de almacenamiento de nutrientes (nitrógeno, fosforo, y carbono) y materia orgánica, factores que se identificaron como los de mayor peso para explicar la varianza del CO sedimentario (F (2,33) =191, p<0,05, R2c = 0,92). No se evidenció ningún patrón en el CO desde la costa hacía el interior de los bosques. Los resultados demuestran que hay una tendencia general a que los impactos antrópicos disminuyan las reservas de CO en los bosques de manglar, sin olvidar que impactos naturales como la erosión costera suponen una amenaza muy importante para estas reservas. Las pérdidas de carbono orgánico estimadas se situaron entre el 33 y 58%, que corresponden a 754,9 y 1.313,6 Mg CO2 -eq. ha-1, respectivamente. El impacto sobre las reservas de carbono orgánico depende del tipo y magnitud de disturbio antrópico. Los bosques con mayor desarrollo estructural están sujetos a una mayor presión. Los resultados obtenidos en este estudio sirven como base para tomar decisiones en programas de manejo y en la elaboración de medidas apropiadas en el marco de los esquemas REDD+, que permite proyectar usos sostenibles del ecosistema (Texto tomado de la fuente).spa
dc.description.abstractMangrove forests, despite covering less than 1% of the total area of tropical forests, contribute to approximately 3% of carbon sequestration by global tropical forests. Mangrove forests play a crucial role in capturing and storing organic carbon (OC), making them essential for mitigating global climate change. However, they are subject to anthropogenic disturbances that adversely affect their structure and functioning. This study aimed to assess: (i) the relationship between OC and modifications in plant structure due to anthropogenic actions, hypothesizing that forests with lower disturbance levels would exhibit higher OC. (ii) the relationship between OC in sediments and soil depth in forests with varying degrees of anthropogenic intervention, hypothesizing that preserved forests would have higher OC in surface layers, while disturbed forests would show higher OC in deeper layers. (iii) OC distribution from the coast to the interior in forests with different anthropogenic intervention levels, hypothesizing greater OC reserves in the forest interior compared to the coastline. (iv) the impact of anthropogenic intervention on organic carbon contents. The analysis considered OC above-ground (aerial and necromass biomass) and below-ground (subterranean biomass and sediments) in six mangrove forests along the Colombian Pacific coast with varying degrees of anthropogenic intervention and multiple uses. Results confirmed the first hypothesis, with preserved and mature forests exhibiting the highest OC reserves (ranging from 401.3 to 535.4 Mg C ha-1), compared to heavily disturbed forests (ranging from 247.2 to 342.1 Mg C ha-1). The second hypothesis was also confirmed, indicating higher sediment OC reserves in surface layers in forests with minimal or no anthropogenic disturbance, contrary to disturbed forests. Anthropogenic disturbance was found to affect the physicochemical characteristics of soils, altering bulk density, granulometry, and nutrient (nitrogen, phosphorus, and carbon) and organic matter storage capacity. These factors were identified as significant contributors to sedimentary OC variance (F (2,33) =191, p<0.05, R2c = 0.92). No discernible pattern in OC distribution from the coast to the forest interior was observed. The results demonstrate a general trend of anthropogenic impacts reducing OC reserves in mangrove forests, emphasizing the significant threat posed by natural impacts such as coastal erosion. Estimated losses of organic carbon ranged from 33% to 58%, corresponding to 754.9 to 1,313.6 Mg CO2 -eq. ha-1, respectively. The impact on organic carbon reserves depends on the type and magnitude of anthropogenic disturbance, with forests exhibiting greater structural development facing higher pressures. The findings from this study serve as a foundation for decision-making in management programs and the development of appropriate measures within the framework of REDD+ schemes, facilitating sustainable ecosystem utilization.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Biologíaspa
dc.description.notesEl documento presenta el resumen gráfico de la investigación.spa
dc.description.notesEsta investigación recibió distinción meritoria mediante la Resolución 0693 de 2024, Acta 027 de 2024spa
dc.format.extent143 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86924
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Biologíaspa
dc.relation.indexedN/Aspa
dc.relation.referencesAdame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean & Coastal Management, 161, 117-126. https://doi.org/10.1016/J.OCECOAMAN.2018.04.019spa
dc.relation.referencesAdame, M. Fernanda, Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52-60. https://doi.org/10.1016/J.FORECO.2017.08.016spa
dc.relation.referencesAdame, Maria Fernanda, Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., & Herrera-Silveira, J. A. (2013). Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLOS ONE, 8(2), e56569. https://doi.org/10.1371/JOURNAL.PONE.0056569spa
dc.relation.referencesAdame, Maria Fernanda, Teutli, C., Santini, N. S., Caamal, J. P., Zaldívar-Jiménez, A., Herńndez, R., & Herrera-Silveira, J. A. (2014). Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands, 34(3), 479-488. https://doi.org/10.1007/S13157-014-0514-5/FIGURES/4spa
dc.relation.referencesAlongi, D. M. (1994). Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 1994 98:3, 98(3), 320-327. https://doi.org/10.1007/BF00324220spa
dc.relation.referencesAlongi, D. M. (2009). The Energetics of Mangrove Forests. Springer.spa
dc.relation.referencesAlongi, D. M., & Dixon, P. (2000). Mangrove primary production and above- and below-ground biomass in Sawi Bay, southern Thailand. Phuket Marine Biology Centre Special Publication, 22, 31-38.spa
dc.relation.referencesAlongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Klumpp, D. W. (2005). Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 63(4), 605-618. https://doi.org/10.1016/J.ECSS.2005.01.004spa
dc.relation.referencesAlongi, D. M., Sasekumar, A., Chong, V. C., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Brunskill, G. J. (2004). Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Marine Geology, 208(2-4), 383-402. https://doi.org/10.1016/J.MARGEO.2004.04.016spa
dc.relation.referencesAlongi, Daniel M. (2002). Present state and future of the world’s mangrove forests. En Environmental Conservation (Vol. 29, Número 3, pp. 331-349). Cambridge University Press. https://doi.org/10.1017/S0376892902000231spa
dc.relation.referencesAlongi, Daniel M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13. https://doi.org/10.1016/J.ECSS.2007.08.024spa
dc.relation.referencesAlongi, Daniel M. (2011). Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science & Policy, 14(4), 462-470. https://doi.org/10.1016/J.ENVSCI.2011.02.004spa
dc.relation.referencesAlongi, Daniel M. (2012). Carbon sequestration in mangrove forests. Carbon management, 3(3), 313-322. https://doi.org/10.4155/CMT.12.20spa
dc.relation.referencesAlongi, Daniel M. (2014). Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 6(1), 195-219. https://doi.org/10.1146/annurev-marine-010213-135020spa
dc.relation.referencesAlongi, Daniel M. (2018). Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 2018, Vol. 9, Page 596, 9(10), 596. https://doi.org/10.3390/F9100596spa
dc.relation.referencesApitz, S. E. (2012). Integrated Risk Assessments for the Management of Contaminated Sediments in Estuaries and Coastal Systems. Treatise on Estuarine and Coastal Science, 4, 311-338. https://doi.org/10.1016/B978-0-12-374711-2.00413-7spa
dc.relation.referencesArnaud, M., Krause, S., Norby, R. J., Dang, T. H., Acil, N., Kettridge, N., Gauci, V., & Ullah, S. (2023). Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. Global Change Biology, 29(12), 3256-3270. https://doi.org/10.1111/GCB.16701spa
dc.relation.referencesArroyo Ponce, R., & Vargas Marin, L. A. (2020). Acciones de gobernanza comunitaria para reducir efectos de cambio climático en el consejo comunitario de comunidades negras de Bahía Málaga - Distrito de Buenaventura. Entorno Geográfico, 20, 23-41. https://doi.org/10.25100/eg.v0i20.10637spa
dc.relation.referencesAshworth, J., Keyes, D., Kirk, R., & Lessard, R. (2007). STANDARD PROCEDURE IN THE HYDROMETER METHOD FOR PARTICLE SIZE ANALYSIS. http://dx.doi.org.ezproxy.unal.edu.co/10.1081/CSS-100103897, 32(5-6), 633-642. https://doi.org/10.1081/CSS-100103897spa
dc.relation.referencesAşkin, T., & Özdemir, N. (2003). Soil bulk density as related to soil particle size distribution and organic matter content. Agriculture, 9(2), 52-55.spa
dc.relation.referencesASTM D422-63. (2007). Standard Test Method for Particle-Size Analysis of Soils. Technical standard. ASTM International.spa
dc.relation.referencesAtwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523-528. https://doi.org/10.1038/nclimate3326spa
dc.relation.referencesBall, M. C., & Pidsley, S. M. (1995). Growth Responses to Salinity in Relation to Distribution of Two Mangrove Species, Sonneratia alba and S. lanceolata, in Northern Australia. Functional Ecology, 9(1), 77. https://doi.org/10.2307/2390093spa
dc.relation.referencesBall, Marilyn C., Cowan, I., & Farquhar, G. (1988). Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove Forest. Functional Plant Biology, 15(2), 263. https://doi.org/https://doi.org/10.1071/PP9880263spa
dc.relation.referencesBaux, N., Murat, A., Faivre, Q., Lesourd, S., Poizot, E., Méar, Y., Brasselet, S., & Dauvin, J. C. (2019). Sediment dynamic equilibrium, a key for assessing a coastal anthropogenic disturbance using geochemical tracers: Application to the eastern part of the Bay of Seine. Continental Shelf Research, 175, 87-98. https://doi.org/10.1016/J.CSR.2019.02.002spa
dc.relation.referencesBenavides, A. M. S., Barboza, J. P., Rodríguez, F. M., Gairaud, C. G., Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., & Gairaud, C. G. (2015). Implicaciones sedimentológicas sobre el cambio en la cobertura del bosque de manglar en Boca Zacate, Humedal Nacional Térraba-Sierpe, Costa Rica. Revista de Biología Tropical, 63(3), 591-601. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442015000300591&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesBengtsson, L., & Enell, M. (1986). Chemical analysis. En B. E. Berglund (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 423-451). John Wiley & Sons Ldt.spa
dc.relation.referencesBhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187-201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5spa
dc.relation.referencesBlanco-Libreros, J. F., & Cantera, J. R. (1995). Patrones estructurales de algunos manglares de la Bahía de Buenaventura (Pacifico colombiano) y las condiciones hidrológicas y de intervención humana que los determinan. Delta del río San Juan, bahías de Málaga y Buenaventura, Pacifico colombiano. Universidad EAFIT-Universidad del Valle.spa
dc.relation.referencesBolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145-155. https://doi.org/10.1016/J.RSMA.2017.12.011spa
dc.relation.referencesBoone Kauffman, J., Arifanti, V. B., Hernández Trejo, H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., Hadriyanto, D., & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4), 183-188. https://doi.org/10.1002/FEE.1482spa
dc.relation.referencesBoone Kauffman, J., Fernanda Adame, M., Budi Arifanti, V., Schile-beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Del Carmen Jesus Garcia, M., Mackenzie, R. A., Patrick Megonigal, J., Murdiyarso, D., Simpson, L., Hern Andez Trejo, H., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., … Simpson, L. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), e01405. https://doi.org/10.1002/ECM.1405spa
dc.relation.referencesBorges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., & Patchineelam, S. R. (2009). Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. MarPB, 58(11), 1750-1754. https://doi.org/10.1016/J.MARPOLBUL.2009.07.025spa
dc.relation.referencesBouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003052spa
dc.relation.referencesBouillon, S., Dehairs, F., Schiettecatte, L. S., & Borges, A. V. (2007). Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnology and Oceanography, 52(1), 46-59. https://doi.org/10.4319/LO.2007.52.1.0046spa
dc.relation.referencesBouillon, S., Moens, T., Overmeer, I., Koedam, N., & Dehairs, F. (2004). Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series, 278, 77-88. https://doi.org/10.3354/MEPS278077spa
dc.relation.referencesBouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54(5), 464-465. https://doi.org/10.2134/AGRONJ1962.00021962005400050028Xspa
dc.relation.referencesBulmer, R. H., Lundquist, C. J., & Schwendenmann, L. (2015). Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences, 12(20), 6169-6180. https://doi.org/10.5194/BG-12-6169-2015spa
dc.relation.referencesBulmer, Richard H., Schwendenmann, L., & Lundquist, C. J. (2016). Carbon and nitrogen stocks and below-ground allometry in temperate mangroves. Frontiers in Marine Science, 3(AUG), 205547. https://doi.org/10.3389/FMARS.2016.00150/BIBTEXspa
dc.relation.referencesBurchett, M. D., Clarke, C. J., Field, C. D., & Pulkownik, A. (1989). Growth and respiration in two mangrove species at a range of salinities. Physiologia Plantarum, 75(2), 299-303. https://doi.org/10.1111/J.1399-3054.1989.TB06185.Xspa
dc.relation.referencesCantera, J. R., & Blanco, J. F. (2001). The Estuary Ecosystem of Buenaventura Bay, Colombia. 265-280. https://doi.org/10.1007/978-3-662-04482-7_19spa
dc.relation.referencesCastañeda-Moya, E., Twilley, R. R., Rivera-Monroy, V. H., Marx, B. D., Coronado-Molina, C., & Ewe, S. M. L. (2011). Patterns of Root Dynamics in Mangrove Forests Along Environmental Gradients in the Florida Coastal Everglades, USA. Ecosystems, 14(7), 1178-1195. https://doi.org/10.1007/S10021-011-9473-3/METRICSspa
dc.relation.referencesCastañeda, E. (2010). Landscape patterns of community structure, biomass and net primary productivity of mangrove forests in the Florida Coastal Everglades as a function of resources, regulators, hydroperiod, and hurricane disturbance. Ph.D. Dissertation [Louisiana State University]. https://repository.lsu.edu/cgi/viewcontent.cgi?article=3822&context=gradschool_dissertationsspa
dc.relation.referencesCastellanos-Galindo, G. A., Cantera, J. R., Saint-Paul, U., & Ferrol-Schulte, D. (2014). Threats to mangrove social-ecological systems in the most luxuriant coastal forests of the Neotropics. Biodiversity and Conservation 2014 24:3, 24(3), 701-704. https://doi.org/10.1007/S10531-014-0827-Yspa
dc.relation.referencesCastellanos-Galindo, G. A., Casella, E., Tavera, H., Zapata Padilla, L. A., & Simard, M. (2021). Structural Characteristics of the Tallest Mangrove Forests of the American Continent: A Comparison of Ground-Based, Drone and Radar Measurements. Frontiers in Forests and Global Change, 4, 732468. https://doi.org/10.3389/FFGC.2021.732468/BIBTEXspa
dc.relation.referencesCastellanos-Galindo, G. A., Kluger, L. C., Camargo, M. A., Cantera, J., Mancera Pineda, J. E., Blanco-Libreros, J. F., & Wolff, M. (2021). Mangrove research in Colombia: Temporal trends, geographical coverage and research gaps. Estuarine, Coastal and Shelf Science, 248, 106799. https://doi.org/10.1016/j.ecss.2020.106799spa
dc.relation.referencesChave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. https://doi.org/10.1007/S00442-005-0100-X/METRICSspa
dc.relation.referencesCormier, N., Twilley, R. R., Ewel, K. C., & Krauss, K. W. (2015). Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia, 750(1), 69-87. https://doi.org/10.1007/S10750-015-2178-4/TABLES/4spa
dc.relation.referencesCorrea, I., & Morton, R. (2010). Pacific Coast of Colombia. En E. C. F. Bird (Ed.), Encyclopedia of the World’s Coastal Landforms (pp. 193-198). Springer. https://doi.org/10.1007/978-1-4020-8639-7_29spa
dc.relation.referencesDahdouh-Guebas, F. (2011). World Atlas of Mangroves: Mark Spalding, Mami Kainuma and Lorna Collins (eds). Human Ecology, 39, 107-109. https://doi.org/10.1007/s10745-010-9366-7spa
dc.relation.referencesDe Lacerda, L. D., Ferreira, A. C., Ward, R., & Borges, R. (2022). Editorial: Mangroves in the Anthropocene: From local change to global challenge. Frontiers In Forests And Global Change, 5. https://doi.org/10.3389/ffgc.2022.993409spa
dc.relation.referencesDel Río, A. (1945). Reconocimiento geológico de la Bahía de Málaga, departamento del Valle del Cauca. Servicio Geológico Nacional (SGNC), 15.spa
dc.relation.referencesDonato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A., & Pfleeger, A. Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management, 97(1), 89-96. https://doi.org/10.1016/J.JENVMAN.2011.12.004spa
dc.relation.referencesDonato, Daniel C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. https://doi.org/10.1038/ngeo1123spa
dc.relation.referencesDuarte, C. M., Middelburg, J. J., & Caraco, N. (2004). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1), 1-8. https://doi.org/10.5194/BG-2-1-2005spa
dc.relation.referencesEid, E. M., Khedher, K. M., Ayed, H., Arshad, M., Moatamed, A., & Mouldi, A. (2020). Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia, 62(2), 200-213. https://doi.org/10.1016/J.OCEANO.2019.12.001spa
dc.relation.referencesElwin, A., Bukoski, J. J., Jintana, V., Robinson, E. J. Z., & Clark, J. M. (2019). Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Scientific Reports 2019 9:1, 9(1), 1-10. https://doi.org/10.1038/s41598-019-54893-6spa
dc.relation.referencesEstrada, G. C. D., & Soares, M. L. G. (2017). Global patterns of aboveground carbon stock and sequestration in mangroves. Anais da Academia Brasileira de Ciências, 89(2), 973-989. https://doi.org/10.1590/0001-3765201720160357spa
dc.relation.referencesFAO. (2023). The world’s mangroves: 2000 - 2020. https://doi.org/10.4060/cc7044enspa
dc.relation.referencesFeller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 134(3), 405-414. https://doi.org/10.1007/S00442-002-1117-Z/FIGURES/2spa
dc.relation.referencesField, C. D. (1999). Charter for Mangroves. En A. Yáñez-Arancibia & A. L. Lara-Domínquez (Eds.), Ecosistemas de Manglar en América Tropical (pp. 1-4).spa
dc.relation.referencesFlorida, F., Eugenia, B., & Sánchez, G. (2005). Belowground productivity of mangrove forests in southwest Florida. LSU Doctoral Dissertations. https://doi.org/10.31390/gradschool_dissertations.1652spa
dc.relation.referencesFurukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves and Salt Marshes, 1, 3-10.spa
dc.relation.referencesFurukawa, K., Wolanski, E., & Mueller, H. (1997). Currents and Sediment Transport in Mangrove Forests. Estuarine, Coastal and Shelf Science, 44(3), 301-310. https://doi.org/10.1006/ECSS.1996.0120spa
dc.relation.referencesGillis, L. G., Belshe, E. F., & Narayan, G. R. (2017). Deforested Mangroves Affect the Potential for Carbon Linkages between Connected Ecosystems. Estuaries and Coasts, 40(4), 1207-1213. https://doi.org/10.1007/S12237-017-0210-9/FIGURES/3spa
dc.relation.referencesGómez García, L. F., Quesada Mora, C. A., Peña Salamanca, E. J., Perdomo Trujillo, L. V., & Mancera Pineda, J. E. (2024). Carbon reserves in deltaic mangroves of the Colombian Pacific across different disturbance degrees. Bulletin Of Marine Science. Todavía no publicado. https://doi.org/10.5343/bms.2023.0142spa
dc.relation.referencesGrellier, S., Janeau, J. L., Dang Hoai, N., Nguyen Thi Kim, C., Le Thi Phuong, Q., Pham Thi Thu, T., Tran-Thi, N. T., & Marchand, C. (2017). Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam). Science of The Total Environment, 593-594, 654-663. https://doi.org/10.1016/J.SCITOTENV.2017.03.204spa
dc.relation.referencesGuevara-Fletcher, C. E., Cantera Kintz, J. R., Mejía-Ladino, L. M., & Cortés, F. A. (2011). Benthic Macrofauna Associated with Submerged Bottoms of a Tectonic Estuary in Tropical Eastern Pacific. Journal of Marine Biology, 2011, 1-13. https://doi.org/10.1155/2011/193759spa
dc.relation.referencesGuzmán, A. I., Selvaraj, J. J., & Martínez, A. (2012). Variabilidad espacial y temporal de parámetros físico-químicos en la Bahía de Tumaco. Acta Agronómica, 61(5), 20-21.spa
dc.relation.referencesGuzmán, A. I., Zambrano-Ortíz, M. M., Casanova-Rosero, R. F., Selvaraj, J. J., & Martínez, A. (2014). La condición ecológica de la bahía de Tumaco (Pacífico colombiano): evaluación de la calidad del agua y del fitoplancton. Boletín Científico CIOH, 32, 3-16.spa
dc.relation.referencesHamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729-738. https://doi.org/10.1111/geb.12449spa
dc.relation.referencesHamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change 2018 8:3, 8(3), 240-244. https://doi.org/10.1038/s41558-018-0090-4spa
dc.relation.referencesHavanond, S., & Maxwell, G. S. (1996). Strategies for mangrove restration. FORTROP, 10, 21-36.spa
dc.relation.referencesHayes, M. A., Jesse, A., Tabet, B., Reef, R., Keuskamp, J. A., & Lovelock, C. E. (2017). The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant and Soil, 416(1-2), 193-204. https://doi.org/10.1007/S11104-017-3206-0/FIGURES/4spa
dc.relation.referencesHe, Z., Peng, Y., Guan, D., Hu, Z., Chen, Y., & Lee, S. Y. (2018). Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species. Plant and Soil, 432(1-2), 425-436. https://doi.org/10.1007/S11104-018-3821-4/FIGURES/4spa
dc.relation.referencesHeiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101-110. https://doi.org/10.1023/A:1008119611481/METRICSspa
dc.relation.referencesHolling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1), 1-23.spa
dc.relation.referencesHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewki, M. (2014). Coastal blue carbon: methods for assessing carbon stock and emission factors in mangroves, tidal salt marshes, and seagrasses. En J. Howard, S. Hoyt, K. Isensee, E. Pidgeon, & M. Telszewki (Eds.), Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.spa
dc.relation.referencesIndoria, A. K., Sharma, K. L., & Reddy, K. S. (2020). Hydraulic properties of soil under warming climate. Climate Change and Soil Interactions, 473-508. https://doi.org/10.1016/B978-0-12-818032-7.00018-7spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2011). Análisis de suelos, Determinación del Nitrógeno Total (NTC 5889:2011).spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2020). Calidad del suelo. Determinación de fósforo disponible (NTC 5350:2020).spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas y Certificación. (2021). Calidad de suelo. Determinación del carbono orgánico (NTC 5403 2006-02-22). https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-del-carbono-organico-ntc5403-2021.htmlspa
dc.relation.referencesINVEMAR; Univalle e INCIVA. (2006). BIOMÁLAGA: Valoración de la biodiversidad marina y costera de Bahía Málaga (Valle del Cauca), como uno de los instrumentos necesarios para que sea considerada un área protegida. http://www.invemar.org.co/documents/10182/13789/9860IF_BIOMALAGA2007.pdf/9ee8dadb-a43e-46aa-a9d5-7c6cfb3c40c5spa
dc.relation.referencesINVEMAR. (2022). Mapa de Manglares de Colombia. https://siam.invemar.org.co/cifras_siam#manglCarspa
dc.relation.referencesJennerjahn, T. C. (2020). Relevance and magnitude of «Blue Carbon» storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine, Coastal and Shelf Science, 247, 107027. https://doi.org/10.1016/J.ECSS.2020.107027spa
dc.relation.referencesJennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 2001 89:1, 89(1), 23-30. https://doi.org/10.1007/S00114-001-0283-Xspa
dc.relation.referencesKalyn, A. L., & Van Rees, K. C. J. (2006). Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 140(1-4), 236-243. https://doi.org/10.1016/J.AGRFORMET.2005.08.019spa
dc.relation.referencesKauffman, J. B., Donato, D. C., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR, 117.spa
dc.relation.referencesKauffman, J. Boone, Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of micronesian mangrove forests. Wetlands, 31(2), 343-352. https://doi.org/10.1007/s13157-011-0148-9spa
dc.relation.referencesKauffman, J. Boone, Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527. https://doi.org/10.1890/13-0640.1spa
dc.relation.referencesKauffman, J. K., & Bhomia, R. K. (2017). Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLOS ONE, 12(11), e0187749. https://doi.org/10.1371/JOURNAL.PONE.0187749spa
dc.relation.referencesKauffman, J.B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR. https://doi.org/10.17528/CIFOR/003749spa
dc.relation.referencesKelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., & Saintilan, N. (2017). Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology, 23(10), 3967-3983. https://doi.org/10.1111/gcb.13727spa
dc.relation.referencesKhan, M. N. I., Suwa, R., & Hagihara, A. (2009). Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599. https://doi.org/10.1007/S11273-009-9136-8/FIGURES/9spa
dc.relation.referencesKjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Analytische Chemie, 22(1), 366-382. https://doi.org/10.1007/BF01338151/METRICSspa
dc.relation.referencesKomiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., & Miyagi, T. (2000). Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. Forest Ecology and Management, 139(1-3), 127-134. https://doi.org/10.1016/S0378-1127(99)00339-4spa
dc.relation.referencesKomiyama, A., Ogino, K., Aksornkoae, S., & Sabhasri, S. (1987). Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3(2), 97-108. https://doi.org/10.1017/S0266467400001826spa
dc.relation.referencesKomiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137. https://doi.org/10.1016/J.AQUABOT.2007.12.006spa
dc.relation.referencesKomiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471-477. https://doi.org/10.1017/S0266467405002476spa
dc.relation.referencesKrauss, K. W., & Ball, M. C. (2013). On the halophytic nature of mangroves. Trees - Structure and Function, 27(1), 7-11. https://doi.org/10.1007/S00468-012-0767-7/FIGURES/1spa
dc.relation.referencesKrauss, K. W., Mckee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. En New Phytologist (Vol. 202, Número 1, pp. 19-34). John Wiley & Sons, Ltd. https://doi.org/10.1111/nph.12605spa
dc.relation.referencesKristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201-219. https://doi.org/10.1016/J.AQUABOT.2007.12.005spa
dc.relation.referencesKusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310-323. https://doi.org/10.1016/j.ecss.2018.12.007spa
dc.relation.referencesLaffoley, D., & Grimsditch, G. (2009). The Management of Natural Coastal Carbon Sinks . www.iucn.org/marinespa
dc.relation.referencesLagomasino, D., Fatoyinbo, T., Castañeda-Moya, E., Cook, B. D., Montesano, P. M., Neigh, C. S., & Morton, D. C. (2021). Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nature Comunicativos, 12(1), 1-8.spa
dc.relation.referencesLagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C., Shapiro, A., & Mangora, M. M. (2019). Measuring mangrove carbon loss and gain in deltas. Environmental Research Letters, 14(2), 025002.spa
dc.relation.referencesLeal, M., & Spalding, M. D. (Eds.). (2022). The State of the World’s Mangroves 2022. Global Mangrove Alliance. https://www.mangrovealliance.org/mangrove-forests/spa
dc.relation.referencesLee, S. Y. (2016). From blue to black: Anthropogenic forcing of carbon and nitrogen influx to mangrove-lined estuaries in the South China Sea. Marine Pollution Bulletin, 109(2), 682-690. https://doi.org/10.1016/j.marpolbul.2016.01.008spa
dc.relation.referencesLin, Q., Chen, L., Zhang, J., Wang, L., Yu, X., & Guo, Q. (2023). How fine root turnover functions during mangrove root zone expansion and affects belowground carbon processes. Plant and Soil, 488(1-2), 451-463. https://doi.org/10.1007/S11104-023-05985-W/TABLES/3spa
dc.relation.referencesLópez-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. En Forest Ecology and Management (Vol. 368, pp. 151-162). Elsevier B.V. https://doi.org/10.1016/j.foreco.2016.03.020spa
dc.relation.referencesLovelock, C. E., Feller, I. C., Reef, R., & Ruess, R. W. (2014). Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant and Soil, 379(1-2), 135-148. https://doi.org/10.1007/S11104-014-2036-6/FIGURES/6spa
dc.relation.referencesLovelock, C. E., Ruess, R. W., & Feller, I. C. (2011). CO2 Efflux from Cleared Mangrove Peat. PLOS ONE, 6(6), e21279. https://doi.org/10.1371/JOURNAL.PONE.0021279spa
dc.relation.referencesLozada Ordóñez, L., Dias da Cruz, D., & Oliveira de Andrade, M. (2018). Ecosystem services and use of Afro-descendant land in the Colombian North Pacific: Transformations in the traditional production system. Land Use Policy, 75, 631-641. https://doi.org/10.1016/j.landusepol.2018.01.043spa
dc.relation.referencesMackenzie, R. A., Foulk, P. B., Van Klump, J., Weckerly, K., Purbopuspito, J., Murdiyarso, D., Donato, D. C., & Vien, N. N. (2016). Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves.spa
dc.relation.referencesMackey, A. P. (1993). Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Marine and Freshwater Research, 44(5), 721-725. https://doi.org/10.1071/MF9930721spa
dc.relation.referencesMacreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J., & Skilbeck, C. G. (2012). Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Global Change Biology, 18(3), 891-901. https://doi.org/10.1111/J.1365-2486.2011.02582.Xspa
dc.relation.referencesMADS. (2011). Manglares: Los manglares de Colombia. https://www.minambiente.gov.co/index.php/component/content/article?id=412:plantilla-bosques-biodiversidad-y-servicios-ecosistematicos-14spa
dc.relation.referencesMálikov, I., & Camacho Guerrero, G. A. (1998). Método de aproximación para determinar cambios entreanuales aplicado a parámetros de temperatura y salinidad del Pacífico colombiano. Boletín Científico CCCP, 7, 30-41. https://doi.org/10.26640/01213423.7.30_41spa
dc.relation.referencesMancera-Pineda, J. E., Twilley, R. R., & Rivera-Monroy, V. H. (2009). Carbono (δ 13 C) y nitrógeno (δ 15 N) discriminación isotópica en manglares de los Everglades costeros de Florida en función del estrés ambiental. Contribución Mar Sci, 38, 109-129.spa
dc.relation.referencesMartínez Ortega, Á. P., Patiño Yepes, Á. A., Riascos Araujo, A. D., Mosquera Arturo, E. J., Pepinosa Bravo, H. E., & Montoya Rivera, J. J. (2022). Goce efectivo del derecho a la educación: Una mirada desde Tumaco, Nariño. UNIMAR.spa
dc.relation.referencesMazda, Y., Magi, M., Kogo, M., & Hong, P. N. (1997). Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt Marshes, 1, 127-135.spa
dc.relation.referencesMckee, K.L. (1993). Soil Physicochemical Patterns and Mangrove Species Distribution--Reciprocal Effects? Journal of Ecology, 81(3), 477-487. https://doi.org/10.2307/2261526spa
dc.relation.referencesMckee, Karen L., Cahoon, D. R., & Feller, I. C. (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545-556. https://doi.org/10.1111/J.1466-8238.2007.00317.Xspa
dc.relation.referencesMcLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. En Frontiers in Ecology and the Environment (Vol. 9, Número 10, pp. 552-560). John Wiley & Sons, Ltd. https://doi.org/10.1890/110004spa
dc.relation.referencesMedina-Calderón, J. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Rivera-Monroy, V. H. (2021). Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7, 598132. https://doi.org/10.3389/FMARS.2020.598132/BIBTEXspa
dc.relation.referencesMedina-Contreras, D., Arenas-González, F., Cantera-Kintz, J., Sánchez-González, A., & Giraldo, A. (2020). Food web structure and isotopic niche in a fringe macro-tidal mangrove system, Tropical Eastern Pacific. Hydrobiologia, 847(15), 3185-3199. https://doi.org/10.1007/S10750-020-04295-X/FIGURES/3spa
dc.relation.referencesMedina Contreras, D., Cantera Kintz, J., Sánchez González, A., & Mancera, E. (2018). Food Web Structure and Trophic Relations in a Riverine Mangrove System of the Tropical Eastern Pacific, Central Coast of Colombia. Estuaries and Coasts, 41(5), 1511-1521. https://doi.org/10.1007/s12237-017-0350-yspa
dc.relation.referencesMejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233-240. https://doi.org/10.1016/j.ecss.2018.07.020spa
dc.relation.referencesMichigan State University. (2008, julio 1). Protocol - Particle Size Analysis ‒ Hydrometer Method. https://lter.kbs.msu.edu/protocols/108spa
dc.relation.referencesMonika, N., & Yadav, A. (2021). A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies. En Coastal research library (pp. 265-284). https://doi.org/10.1007/978-3-030-84255-0_11spa
dc.relation.referencesMonsalve, A., Herrera, D., & Bolivar, J. (2015). Caracterización de la estructura y contenido de carbono de diez parcelas permanentes establecidas en el área de jurisdicción del consejo comunitario La Plata, Bahía Málaga, Valle del Cauca (p. 58). Centro de investigación en ecosistemas y cambio global. Carbono y Bosques.spa
dc.relation.referencesMontagut Cifuentes, E. A., & Cabrera Luna, E. E. (1997). Situación de Riesgo En La Ensenada de Tumaco. Boletín Científico Centro de Control de Contaminación del Pacifico (CERRADO EN 2009), 6, 7-28.spa
dc.relation.referencesMurdiyarso, D., Donato, D., Kauffman, J. B., Kurnianto, S., Stidham, M., & Kanninen, M. (2009). Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia. Working paper 48. Bogor Banat, Indonesia: Center for International Forestry Research, 1-35. www.cifor.cgiar.orgspa
dc.relation.referencesMurdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089-1092. https://doi.org/10.1038/nclimate2734spa
dc.relation.referencesNguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D., & Ball, M. C. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Annals of Botany, 115(3), 397-407. https://doi.org/10.1093/AOB/MCU257spa
dc.relation.referencesNixon, S. (1980). Between coastal marshes and coastal waters: a review of 20 years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. En P. Hamilton & K. MacDonald (Eds.), Estuarine and Wetland Processes (pp. 437-525). Plenum Press.spa
dc.relation.referencesNóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., Mendonça, E. de S., Romero, R. E., & Otero, X. L. (2019). The importance of blue carbon soil stocks in tropical semiarid mangroves: a case study in Northeastern Brazil. Environmental Earth Sciences, 78(12), 1-10. https://doi.org/10.1007/S12665-019-8368-Z/TABLES/2spa
dc.relation.referencesOdum, E. P. (1980). The status of three ecosystem level hypotheses regarding salt marshes: tidal subsidy, outwelling and the detritus based food chain. En V. S. Kennedy (Ed.), Estuarine Perspectives (pp. 485-496). Academic Press.spa
dc.relation.referencesOdum, W. E., & Heald, E. . (1972). “Trophic analyses of an estuarine mangrove community”. Bulletin of Marine Science, 22, 671-738.spa
dc.relation.referencesOdum, W. E., & Heald, E. J. (1975). The detritus-based food web of an estuarine mangrove community. En L. E. Cronin (Ed.), Estuarine Research (pp. 265-286). Academic Press.spa
dc.relation.referencesOdum, W. E., McIvor, C. C., & Smith, T. J. (1982). The ecology of the mangroves of south Florida: A community profile. Fish and Wildlife Service/ Office of Biological Services.spa
dc.relation.referencesOsorio Garcés, C. E. (2018). Representaciones y Epistemes Locales sobre la naturaleza en el Pacifíco sur de Colombia. Universidad del Cauca.spa
dc.relation.referencesOtero, E., Mosquera, L., Silva, G., & Guzmán, J. (2007). Deltas y Estuarios de Colombia. Colección Ecológica del Banco de Occidente. https://www.imeditores.com/banocc/deltas/cap7.htmspa
dc.relation.referencesOtero, X. L., Méndez, A., Nóbrega, G. N., Ferreira, T. O., Santiso-Taboada, M. J., Meléndez, W., & Macías, F. (2017). High fragility of the soil organic C pools in mangrove forests. Marine Pollution Bulletin, 119(1), 460-464. https://doi.org/10.1016/J.MARPOLBUL.2017.03.074spa
dc.relation.referencesOuyang, X., Guo, F., & Lee, S. Y. (2024). Multiple drivers for carbon stocks and fluxes in different types of mangroves. Science of The Total Environment, 906, 167511. https://doi.org/10.1016/J.SCITOTENV.2023.167511spa
dc.relation.referencesPalacios, M. L., & Cantera, J. R. (2017). Mangrove timber use as an ecosystem service in the Colombian Pacific. Hydrobiologia, 803(1), 345-358. https://doi.org/10.1007/s10750-017-3309-xspa
dc.relation.referencesPalacios Moreno, M. A., Vargas Polonia, E. L., & De la Pava, M. L. (1990). Determinación del aporte de materia orgánica del manglar en la zona de Bocagrande. Boletín Científico CCCP, 1, 55-72. https://ojs.dimar.mil.co/index.php/CCCP/article/download/297/403spa
dc.relation.referencesPalacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227, 106299. https://doi.org/10.1016/J.ECSS.2019.106299spa
dc.relation.referencesPendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. (2012). Estimating Global «Blue Carbon» Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542spa
dc.relation.referencesPerdomo-Trujillo, L. V. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribucción a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia.spa
dc.relation.referencesPerdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M.-L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water, 13(9), 1297. https://doi.org/10.3390/w13091297spa
dc.relation.referencesPerdomo Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderon, J. H., Zimmer, M., & Schnetter, M. L. (2021). Massive loss of aboveground biomass and its effect on sediment organic carbon concentration: Less mangrove, more carbon? Estuarine, Coastal and Shelf Science, 248, 106888. https://doi.org/10.1016/J.ECSS.2020.106888spa
dc.relation.referencesPerea-Ardila, M. A., Oviedo-Barrero, F., & Leal-Villamil, J. (2019). Mangrove forest mapping through remote sensing imagery: Study case for Buenaventura, Colombia. Revista de Teledeteccion, 2019(53), 73-86. https://doi.org/10.4995/raet.2019.11684spa
dc.relation.referencesPérez, A., Machado, W., Gutiérrez, D., Borges, A. C., Patchineelam, S. R., & Sanders, C. J. (2018). Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay. Marine Pollution Bulletin, 126, 275-280. https://doi.org/10.1016/J.MARPOLBUL.2017.11.018spa
dc.relation.referencesPérez, Alexander, Libardoni, B. G., & Sanders, C. J. (2018). Factors influencing organic carbon accumulation in mangrove ecosystems. Biology Letters, 14(10). https://doi.org/10.1098/RSBL.2018.0237spa
dc.relation.referencesPickett, S. T. A., & White, P. S. (Eds.). (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press.spa
dc.relation.referencesPoveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675-1678. https://doi.org/10.1029/1999GL006091spa
dc.relation.referencesQueiroz, L. de S., Rossi, S., Calvet-Mir, L., Ruiz-Mallén, I., García-Betorz, S., Salvà-Prat, J., & Meireles, A. J. de A. (2017). Neglected ecosystem services: Highlighting the socio-cultural perception of mangroves in decision-making processes. Ecosystem Services, 26, 137-145. https://doi.org/10.1016/j.ecoser.2017.06.013spa
dc.relation.referencesRagavan, P., Rahman, A., Sarkar, S., Verma, S., Jeeva, C., Mohan, P. M., & Kumar, S. (2023). Variability in soil organic carbon stock and isotopic signature in tropical island mangrove forests of India. Regional Environmental Change, 23(4), 1-12. https://doi.org/10.1007/S10113-023-02130-2/FIGURES/3spa
dc.relation.referencesRahman, M. M., Zimmer, M., Ahmed, I., Donato, D., Kanzaki, M., & Xu, M. (2021). Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Communications 2021 12:1, 12(1), 1-9. https://doi.org/10.1038/s41467-021-24207-4spa
dc.relation.referencesRamanathan, A., Rajkumar, K., Majumdar, J., Singh, G., Behera, P., Santra, S., & Chidambaram, S. (2009). Textural characteristics of the surface sediments of a tropical mangrove Sundarban ecosystem India. Indian Journal of Marine Sciences.spa
dc.relation.referencesRangel-Ch., J. O. (2011). Ecosistemas del Chocó Biogegráfico: Síntesis final. En J. O. Rangel-Ch. (Ed.), Colombia Diversidad Biótica IV: El Chocó biogeográfico/Costa Pacífica (pp. 937-976). Universidad Nacional de Colombia.spa
dc.relation.referencesReef, R., Winter, K., Morales, J., Adame, M. F., Reef, D. L., & Lovelock, C. E. (2015). The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiologia Plantarum, 154(3), 358-368. https://doi.org/10.1111/PPL.12289spa
dc.relation.referencesSaintilan, N. (1997). Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Marine Freshwater Research, 48, 147-152.spa
dc.relation.referencesSaintilan, N., Rogers, K., Mazumder, D., & Woodroffe, C. (2013). Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science, 128, 84-92. https://doi.org/10.1016/J.ECSS.2013.05.010spa
dc.relation.referencesSaldarriaga, J. G., Duque, A. J., & Álvarez, E. (2011). Modelos para la estimación de la biomasa y el carbono en diferentes tipos de bosque del choco biogeográfico, Colombia: manglar, guandal y bosques de colina localizados en los Consejos Comunitarios de Bajo Mira y Concosta a partir de los datos colectados e (p. 22). Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial (MAVDT), Fundación Natura, Fundación Gordon y Betty Moore – USAID.spa
dc.relation.referencesSánchez-Páez, H., Alvarez-León, R., Guevara-Mancera, O., Zamora-Guzmán, A., Rodríguez-Cruz, H., & Bravo-Pazmiño, H. (1997). Diagnostico y Zonificación preliminar de los manglares del Pacífico de Colombia (H. Sánchez-Páez & R. Alvarez-Leon (Eds.)). Ministerio del Medio Ambiente. http://www.itto.int/files/user/pdf/publications/PD171 91/pd171-91-p1-1 Rev1(F) s.pdfspa
dc.relation.referencesSasmito, S. D., Sillanpää, M., Hayes, M. A., Bachri, S., Saragi-Sasmito, M. F., Sidik, F., Hanggara, B. B., Mofu, W. Y., Rumbiak, V. I., Hendri, Taberima, S., Suhaemi, Nugroho, J. D., Pattiasina, T. F., Widagti, N., Barakalla, Rahajoe, J. S., Hartantri, H., Nikijuluw, V., … Murdiyarso, D. (2020). Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Global Change Biology, 26(5), 3028-3039. https://doi.org/10.1111/GCB.15056spa
dc.relation.referencesSasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291-4302. https://doi.org/10.1111/GCB.14774spa
dc.relation.referencesSchelske, C., & Odum, E. (1961). Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute, 75-80.spa
dc.relation.referencesSGC- Servicio Geológico Colombiano. (2013). Anexo A susceptibilidad por geología. En Documento metodológico de la zonificación de susceptibilidad y amenaza relativa por movimientos en masa escala 1:100.000 (Versión 2, p. 12).spa
dc.relation.referencesShaltout, K. H., Ahmed, M. T., Alrumman, S. A., Ahmed, D. A., & Eid, E. M. (2020). Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia. Oceanologia, 62(1), 56-69. https://doi.org/10.1016/J.OCEANO.2019.08.002spa
dc.relation.referencesSherman, R. E., Fahey, T. J., & Martinez, P. (2003). Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems, 6(4), 384-398.spa
dc.relation.referencesSimard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2018). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 2018 12:1, 12(1), 40-45. https://doi.org/10.1038/s41561-018-0279-1spa
dc.relation.referencesSimpson, L. T., Feller, I. C., & Chapman, S. K. (2013). Effects of competition and nutrient enrichemnt on Avicennia germinans in the salt marsh-mangrove ecotone. Aquatic Botany, 104, 55-59. https://doi.org/10.1016/J.AQUABOT.2012.09.006spa
dc.relation.referencesSousa, W. P. (1984). The role of disturbance in natural communities. Annual review of ecology and systematics, 15(1), 353-391.spa
dc.relation.referencesSteinmetz, Z. (2007). Particle size estimation using the hydrometer method modified from ASTM D422-63 (2007) and Bouyoucos (1927). https://cran.r-project.org/web/packages/envalysis/vignettes/texture.htmlspa
dc.relation.referencesStokes, D. J., & Harris, R. J. (2015). Sediment properties and surface erodibility following a large-scale mangrove (Avicennia marina) removal. Continental Shelf Research, 107, 1-10. https://doi.org/10.1016/J.CSR.2015.07.011spa
dc.relation.referencesSuman, D. (2007). Development of an integrated coastal management plan for the Gulf of San Miguel and Darien Province, Panama: Lessons from the experience. Ocean & Coastal Management, 50(8), 634-660. https://doi.org/10.1016/J.OCECOAMAN.2007.03.007spa
dc.relation.referencesSweetman, A. K., Middelburg, J. J., Berle, A. M., Bernardino, A. F., Schander, C., Demopoulos, A. W. J., & Smith, C. R. (2010). Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments. Biogeosciences, 7(7), 2129-2145. https://doi.org/10.5194/BG-7-2129-2010spa
dc.relation.referencesTamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297. https://doi.org/10.1016/J.FORECO.2008.06.026spa
dc.relation.referencesTanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160, 12-24. https://doi.org/10.1016/j.ecolecon.2019.01.024spa
dc.relation.referencesTue, N. T., Thai, N. D., & Nhuan, M. T. (2020). Carbon storage potential of mangrove forests from Northeastern Vietnam. Regional Studies in Marine Science, 40, 101516. https://doi.org/10.1016/J.RSMA.2020.101516spa
dc.relation.referencesTwilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 1992 64:1, 64(1), 265-288. https://doi.org/10.1007/BF00477106spa
dc.relation.referencesTwilley, Robert R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503-508. https://doi.org/10.1002/FEE.1937spa
dc.relation.referencesValiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience, 51(10), 807-815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2spa
dc.relation.referencesVanacker, V., & Ortega, R. (2013). Dynamic soil properties in response to anthropogenic disturbance. EGUGA. https://ui.adsabs.harvard.edu/abs/2013EGUGA..15..908V/abstractspa
dc.relation.referencesWalkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003spa
dc.relation.referencesWarner, R., Kaidonis, M., Dun, O., Rogers, K., Shi, Y., Nguyen, T. T. X., & Woodroffe, C. D. (2016). Opportunities and challenges for mangrove carbon sequestration in the Mekong River Delta in Vietnam. Sustainability Science, 11(4), 661-677. https://doi.org/10.1007/s11625-016-0359-3spa
dc.relation.referencesWest, R. C. (1956). Mangrove swamps of the pacific coast of colombia. Annals of the Association of American Geographers, 46(1), 98-121. https://doi.org/10.1111/J.1467-8306.1956.TB01498.Xspa
dc.relation.referencesWolanski, E., Huan, N. N., Dao, L. T., Nhan, N. H., & Thuy, N. N. (1996). Fine-sediment Dynamics in the Mekong River Estuary, Vietnam. Estuarine, Coastal and Shelf Science, 43(5), 565-582. https://doi.org/10.1006/ECSS.1996.0088spa
dc.relation.referencesWorthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5spa
dc.relation.referencesWu, J., & Loucks, O. L. (1995). From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. The Quarterly review of biology, 70(4), 439-466.spa
dc.relation.referencesXiong, Y., Liu, X., Guan, W., Liao, B., Chen, Y., Li, M., & Zhong, C. (2017). Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant and Soil, 413(1-2), 83-95. https://doi.org/10.1007/S11104-016-3082-Z/FIGURES/7spa
dc.relation.referencesYin, L., Zhang, T., Dijkstra, F. A., Huo, C., Wang, P., & Cheng, W. (2021). Priming effect varies with root order: A case of Cunninghamia lanceolata. Soil Biology and Biochemistry, 160, 108354. https://doi.org/10.1016/J.SOILBIO.2021.108354spa
dc.relation.referencesZakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113spa
dc.relation.referencesZarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), e0126627. https://doi.org/10.1371/journal.pone.0126627spa
dc.relation.referencesZhang, J. P., Shen, C. De, Ren, H., Wang, J., & Han, W. D. (2012). Estimating Change in Sedimentary Organic Carbon Content During Mangrove Restoration in Southern China Using Carbon Isotopic Measurements. Pedosphere, 22(1), 58-66. https://doi.org/10.1016/S1002-0160(11)60191-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembECOLOGIA COSTERAspa
dc.subject.lembCoastal ecologyeng
dc.subject.lembMANGLARESspa
dc.subject.lembMangrove swampseng
dc.subject.lembBOSQUES TROPICALESspa
dc.subject.lembTropical forestseng
dc.subject.lembANATOMIA VEGETALspa
dc.subject.lembPlant anatomyeng
dc.subject.lembCICLO DEL CARBONO (BIOGEOQUIMICA)spa
dc.subject.lembCarbon cycle (biogeochemistry)eng
dc.subject.proposalManglarspa
dc.subject.proposalCarbono orgánicospa
dc.subject.proposalIntervención antrópicaspa
dc.subject.proposalServicios ecosistémicosspa
dc.subject.proposalMangroveeng
dc.subject.proposalOrganic Carboneng
dc.subject.proposalAnthropogenic Interventioneng
dc.subject.proposalEcosystem Serviceseng
dc.titleReservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópicaspa
dc.title.translatedOrganic carbon stocks in mangroves of the Colombian Pacific and their relationship with the degree of anthropogenic interventioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032473518.2024.pdf
Tamaño:
3.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: