Desarrollo de un sistema de identificación de la antracnosis en frutos de mango basado en características espectrales, fisicoquímico-fisiológicas y morfológicas

dc.contributor.advisorPrieto Ortiz, Flavio Augustospa
dc.contributor.advisorMelgarejo, Luz Marinaspa
dc.contributor.authorCabrera Ardila, Carlos Eduardospa
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional GAUNALspa
dc.date.accessioned2021-01-19T20:54:07Zspa
dc.date.available2021-01-19T20:54:07Zspa
dc.date.issued2020-08-14spa
dc.description.abstractEl uso de espectroscopia en frutos proporciona información espectral que puede ser utiliza para estimar variables químicas-fisiológicas o determinar el estado fitopatológico del fruto. El mango, es una fruta propensa a desarrollar el patógeno de la antracnosis durante su cosecha, afectando la comercialización de este. Existen diferentes estudios del mango que evalúan el desarrollo de la antracnosis, sin embargo, ningún trabajo en la literatura previa presenta un método para estimar el estado de desarrollo de la antracnosis de forma temprana. En este trabajo se utilizó un espectroradiómetro para evaluar la evolución de la antracnosis en frutos de mango. Se analizaron tres etapas de desarrollo en el mango: sano, asintomático y enfermo, evaluando el rendimiento con random forest (RF) y las máquinas de vectores de soporte (SVM). Se utilizó el análisis de componentes principales (PCA) y el análisis discriminante lineal (LDA) para reducir la dimensionalidad e identificar las bandas más significantes del espectro trabajado con ayuda de un filtro gaussiano. Se encontraron 61 bandas significantes con PCA y 29 bandas significantes con LDA. El mejor rendimiento de evaluación se obtuvo con LDA alcanzando una precisión del 91% al 100% en las tres clases. Se destacan las bandas 399, 514, 726, 822, 912 y 1061 nm del conjunto de 29 bandas de LDA para identificar frutos asintomáticos. Este método no destructivo para identificar el desarrollo de la antracnosis en etapa temprana, podría beneficiar al agricultor ayudándolo a mejorar la comercialización del mango. En general, la detección temprana de la antracnosis, que es no visible, alcanza una precisión promedio con las 29 bandas identificadas con LDA del 91%. Por otra parte, se realizó el análisis con imágenes térmicas en los mangos a partir de los metadatos obtenidos de una cámara FLIR E6, segmentando por temperatura las regiones con un nivel de antracnosis elevado del mango respecto de las regiones sanas o enfermas del mismo.spa
dc.description.abstractThe use of spectroscopy in fruits provides spectral information that can be used to estimate chemical-physiological variables or to determine the phytopathological state of the fruit. Mango is a fruit prone to develop the anthracnose pathogen during its harvest, affecting its commercialization. There are different studies of mango that evaluate the development of anthracnose, however, no work in the previous literature has presented a method to estimate early the state of development of anthracnose. In this work, a spectroradiometer was used to evaluate the evolution of anthracnose in mango fruits. Three stages of development in the mango were analyzed (healthy, asymptomatic and diseased) and the performance was evaluated with random forest (RF) and support vector machines (SVM). The principal component analysis (PCA) and linear discriminant analysis (LDA) were used to reduce the dimensionality and identify the most significant bands of the spectrum used, with the help of a Gaussian filter. A total of 61 significant bands with PCA and 29 significant bands with LDA were found. The best evaluation performance was obtained with LDA reaching an accuracy of 91% to 100% in the three classes. The bands 399, 514, 726, 822, 912 and 1061 nm of the set of 29 bands of LDA are highlighted to identify asymptomatic fruits. This non-destructive method to identify the development of anthracnose at an early stage could benefit the farmer by helping to improve the commercialization of mango. In general, early detection of anthracnose, which is not visible, reached an average accuracy in the 29 bands identified with 91% LDA. In addition, the analysis was performed with thermal images in the mango fruits from the metadata obtained from a FLIR E6 camera, segmenting by temperature the regions with a high level of anthracnose of the fruit with respect to the healthy or diseased regions of the same.spa
dc.description.additionalLínea de Investigación: Visión artificial y espectroscopiaspa
dc.description.degreelevelMaestríaspa
dc.description.projectDesarrollo de una herramienta no invasiva y de bajo costo para ayuda a la detección temprana de Antracnosis en frutos de mango como apoyo a las actividades de selección y mercadeo de frutosspa
dc.format.extent102spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78827
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesNagle, M., Kiatkamjon, I., Busarakorn, M., Vicha, S., Joachim, M., 2012. Non-destructive mango quality assessment using image processing: Inexpensive innovation for the fruit handling industry, in: Conference on International Research on Food Security, Natural Resource Management and Rural Development, pp. 1–4.spa
dc.relation.referencesNaik, S., Patel, B., 2017. Thermal imaging with fuzzy classifier for maturity and size based non-destructive mango (mangifera indica l.) grading, in: 2017 International Conference on Emerging Trends & Innovation in ICT (ICEI), IEEE. pp. 15–20.spa
dc.relation.referencesPatel, K.K., Kar, A., Khan, M., 2019. Potential of reflected uv imaging technique for detection of defects on the surface area of mango. Journal of food science and technology 56, 1295–1301.spa
dc.relation.referencesPierrot-Deseilligny, M., Jouin, D., Belvaux, J., Maillet, G., Girod, L., Rupnik, E., Muller, J., Daakir, M., Choqueux, G., Deveau, M., 2020. Micmac, apero, pastis and other beverages in a nutshell! Institut G´eographique National .spa
dc.relation.referencesQin, J., Burks, T., Zhao, X., Niphadkar, N., Ritenour, M., 2011. Multispectral detection of citrus canker using hyperspectral band selection. Transactions of the ASABE 54, 2331– 2341.spa
dc.relation.referencesQin, J., Burks, T.F., Kim, M.S., Chao, K., Ritenour, M.A., 2008. Detecting citrus canker by hyperspectral reflectance imaging and pca-based image classification method, in: Defense and Security 2008: Special Sessions on Food Safety, Visual Analytics, Resource Restricted Embedded and Sensor Networks, and 3D Imaging and Display, International Society for Optics and Photonics. p. 698305.spa
dc.relation.referencesRumpf, T., Mahlein, A.K., Steiner, U., Oerke, E.C., Dehne, H.W., Pl¨umer, L., 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and electronics in agriculture 74, 91–99.spa
dc.relation.referencesRupnik, E., Daakir, M., Deseilligny, M.P., 2017. Micmac–a free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards 2, 1–9.spa
dc.relation.referencesSankaran, S., Mishra, A., Ehsani, R., Davis, C., 2010. A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture 72, 1–13.spa
dc.relation.referencesSankaran, S., Mishra, A., Maja, J.M., Ehsani, R., 2011. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Computers and electronics in agriculture 77, 127–134.spa
dc.relation.referencesSharif, M., Khan, M.A., Iqbal, Z., Azam, M.F., Lali, M.I.U., Javed, M.Y., 2018. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Computers and electronics in agriculture 150, 220–234.spa
dc.relation.referencesShuaibu, M., Lee, W.S., Schueller, J., Gader, P., Hong, Y.K., Kim, S., 2018. Unsupervised hyperspectral band selection for apple marssonina blotch detection. Computers and Electronics in Agriculture 148, 45–53.spa
dc.relation.referencesSinha, R., Khot, L.R., Rathnayake, A.P., Gao, Z., Naidu, R.A., 2019. Visible-near infrared spectroradiometry-based detection of grapevine leafroll-associated virus 3 in a red-fruited wine grape cultivar. Computers and Electronics in Agriculture 162, 165–173.spa
dc.relation.referencesTattersall, G., 2016a. Thermimage: thermal image analysis. r package version 2.1.spa
dc.relation.referencesTattersall, G.J., 2016b. Infrared thermography: a non-invasive window into thermal physiology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 202, 78–98.spa
dc.relation.referencesWendel, A., Underwood, J., Walsh, K., 2018. Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform. Computers and electronics in agriculture 155, 298–313.spa
dc.relation.referencesWestoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. ‘structure-from-motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300–314.spa
dc.relation.referencesXie, C., Yang, C., He, Y., 2017. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities. Computers and electronics in agriculture 135, 154–162.spa
dc.relation.referencesXing, J., Guyer, D., 2008. Comparison of transmittance and reflectance to detect insect infestation in Montmorency tart cherry. Computers and electronics in agriculture 64, 194–201.spa
dc.relation.referencesYeh, Y.H., Chung, W.C., Liao, J.Y., Chung, C.L., Kuo, Y.F., Lin, T.T., 2016. Strawberry foliar anthracnose assessment by hyperspectral imaging. Computers and Electronics in Agriculture 122, 1–9.spa
dc.relation.referencesZhang, B., Dai, D., Huang, J., Zhou, J., Gui, Q., Dai, F., 2018a. Influence of physical and biological variability and solution methods in fruit and vegetable quality nondestructive inspection by using imaging and near-infrared spectroscopy techniques: A review. Critical reviews in food science and nutrition 58, 2099–2118.spa
dc.relation.referencesZhang, B., Liu, L., Gu, B., Zhou, J., Huang, J., Tian, G., 2018b. From hyperspectral imaging to multispectral imaging: Portability and stability of his-mis algorithms for common defect detection. Postharvest Biology and Technology 137, 95–105.spa
dc.relation.referencesZhang, J.C., Pu, R.L., Wang, J.H., Huang, W.J., Yuan, L., Luo, J.H., 2012. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture 85, 13–23.spa
dc.relation.referencesZhang, M., Li, C., Yang, F., 2017. Classification of foreign matter embedded inside cotton lint using short wave infrared (swir) hyperspectral transmittance imaging. Computers and Electronics in Agriculture 139, 75–90.spa
dc.relation.referencesZhang, R., Li, C., Zhang, M., Rodgers, J., 2016. Shortwave infrared hyperspectral reflectance imaging for cotton foreign matter classification. Computers and Electronics in Agriculture 127, 260–270.spa
dc.relation.referencesZhu, W., Chen, H., Ciechanowska, I., Spaner, D., 2018. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine 51, 424–430.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalAntracnosisspa
dc.subject.proposalAnthracnoseeng
dc.subject.proposalEspectroscopiaspa
dc.subject.proposalSpectroscopyeng
dc.subject.proposalReflectanceeng
dc.subject.proposalReflectanciaspa
dc.subject.proposalLDAeng
dc.subject.proposalLDAspa
dc.subject.proposalSVMspa
dc.subject.proposalSVMeng
dc.subject.proposalThermal imagingeng
dc.subject.proposalImágenes Térmicasspa
dc.subject.proposalImágenes 3Dspa
dc.subject.proposal3D imagingeng
dc.subject.proposalMangospa
dc.subject.proposalMangoeng
dc.titleDesarrollo de un sistema de identificación de la antracnosis en frutos de mango basado en características espectrales, fisicoquímico-fisiológicas y morfológicasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10184457317.2020.pdf
Tamaño:
23.5 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: