Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación

dc.contributor.advisorCortés Correa, Farid B.
dc.contributor.authorGiraldo Muñoz, Maria Alejandra
dc.contributor.researchgroupFenómenos de superficie - Michael Polanyispa
dc.date.accessioned2024-07-09T19:45:38Z
dc.date.available2024-07-09T19:45:38Z
dc.date.issued2024
dc.descriptionIlustracionesspa
dc.description.abstractEn la actualidad, el uso de la nanotecnología aplicada a diferentes ramas de la industria global ha sido de gran efectividad, esto incluye a la industria del petróleo y gas que cada día enfrenta retos mayores para suplir la demanda energética mundial, volcando sus esfuerzos a la recuperación de crudo pesado y extrapesado, principalmente en países como Colombia en donde esta condición es característica de los fluidos producidos. El presente estudio tiene como objetivo desarrollar y evaluar nanofluidos de fractura con doble propósito: aumento en la movilidad de crudos pesados y reducción del daño de formación. Se realizaron diferentes pruebas estáticas y dinámicas en condiciones de laboratorio, empleando un crudo de 11,6 grados API, caracterizando y modificando superficialmente dos nanopartículas de sílice fumárica de diferentes tamaños y nanopartículas de alúmina, y utilizando un fluido de fractura comercial. Se evaluaron las interacciones entre las nanopartículas y el crudo pesado y la superficie de núcleos sintéticos humectables al agua y al aceite; además de su comportamiento en presencia de aditivos críticos del fluido de fractura. La nanopartícula con mejor desempeño fue la sílice fumárica neutra de 7 nm a 1000 mg/L, la cual fue empleada para preparar un nanofluido de fractura a partir del fluido de fractura comercial y garantizar condiciones idénticas de comportamiento reológico, así como: cambio en la humectabilidad de medios porosos hacia el agua, mejoramiento de permeabilidades relativas, disminución de daño de formación y reducción de viscosidad del crudo pesado. Con base en estos resultados, el nanofluido de fractura fue seleccionado y utilizado en la primera aplicación de campo a nivel mundial de fracturamiento hidráulico y nanotecnología, obteniendo excelentes resultados de incremental de aceite, disminución de % BSW y reducción de viscosidad de crudos pesados, que han permitido llevar a cabo operaciones exitosas implementando la tecnología en campo. (Tomado de la fuente)spa
dc.description.abstractThe utilization of nanotechnology across various global industry sectors has proven remarkably efficacious. Notably, nanotechnology has emerged as a pivotal solution in the oil and gas industry, where the imperative to meet escalating global energy demands poses ever-greater challenges. This is particularly pronounced in regions such as Colombia, where heavy and extra-heavy crude oil production is characteristic and demands innovative approaches. This study endeavors to advance the development and assessment of fracturing nanofluids with a dual objective: enhancing the mobility of heavy crude oil while mitigating formation damage. Through a series of rigorous laboratory experiments encompassing static and dynamic assessments, employing an 11.6-degree API crude oil, two variants of fumaric silica nanoparticles, alumina nanoparticles, and a commercial fracturing fluid, this study scrutinized the interactions among nanoparticles, heavy crude oil, and synthetic cores exhibiting both water- and oil-wettable characteristics. Furthermore, the performance of these nanoparticle configurations in conjunction with critical fracturing fluid additives was meticulously evaluated. The optimal nanoparticle configuration emerged as the 7 nm neutral fumaric silica at a 1000 mg/L concentration. This nanoparticle was integrated into a fracturing nanofluid derived from the commercial fracturing fluid, ensuring uniform rheological behavior and inducing a shift in porous media wettability towards water. Consequently, notable improvements in relative permeabilities, formation damage reduction, and heavy oil viscosity attenuation were observed. Building upon these findings, nanofluid fracturing was deployed, which marked the inaugural field application of hydraulic fracturing integrated with nanotechnology. The outcomes were exceptional, manifesting in substantial increments in oil production, a significant reduction in BSW%, and viscosity mitigation in heavy crude oils. These successes catalyzed several subsequent operations worldwide, firmly establishing the efficacy of this technology in practical field applications.eng
dc.description.curricularareaIngeniería Química E Ingeniería De Petróleos.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.methodsExperimentos y pruebas realizadas para desarrollar un nanofluido de fractura que mejore la movilidad del crudo dentro de los medios porosos. A través del flujo de trabajo experimental comenzando con pruebas estáticas, dinámicas y concluyendo con evaluación en campo.spa
dc.description.notesEl desarrollo de la investigación consta de dos capítulos, el primero acerca de la evaluación estática y dinámica del nanofluido de fractura y el segundo que contiene la aplicación de la tecnología desarrollada en campos colombianos de crudo pesado, las respectivas conclusiones y recomendaciones para posibles trabajos futuros.spa
dc.description.technicalinfoEvaluación el efecto de nanopartículas de diferentes naturalezas químicas en los fluidos de fractura, buscando aumentar la movilidad del crudo pesado en el medio poroso mediante dos mecanismos: la reducción de la viscosidad del crudo y el cambio de humectabilidad en la superficie de la roca, todo esto de la mano de una reducción del daño de formaciónspa
dc.format.extent103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86422
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesShafiee, S. and E. Topal, When will fossil fuel reserves be diminished? Energy policy, 2009. 37(1): p. 181-189.spa
dc.relation.referencesHirsch, R.L., R. Bezdek, and R. Wendling, Peaking of World Oil Production and Its Mitigation. Driving Climate Change: Cutting Carbon from Transportation, 2010: p. 9.spa
dc.relation.referencesWilliams, B., Heavy hydrocarbons playing key role in peak-oil debate, future energy supply. Oil & Gas Journal, 2003. 101(29): p. 20-27.spa
dc.relation.referencesChew, K.J., The future of oil: unconventional fossil fuels. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2006): p. 20120324.spa
dc.relation.referencesHinkle, A., et al., Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel, 2008. 87(13): p. 3065-3070.spa
dc.relation.referencesMeyer, R.F. and E.D. Attanasi, Heavy oil and natural bitumen-strategic petroleum resources. World, 2003. 434: p. 650-7.spa
dc.relation.referencesJaspers, H.F., et al. Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman. in SPE Enhanced Oil Recovery Conference. 2013. Society of Petroleum Engineers.spa
dc.relation.referencesRana, M.S., et al., A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231.spa
dc.relation.referencesSavage, P.E., M.T. Klein, and S.G. Kukes, Asphaltene reaction pathways. 1. Thermolysis. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(4): p. 1169-1174.spa
dc.relation.referencesMaity, S., J. Ancheyta, and G. Marroquín, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: a review. Energy & Fuels, 2010. 24(5): p. 2809-2816.spa
dc.relation.referencesDas, S.K., Vapex: An efficient process for the recovery of heavy oil and bitumen. SPE journal, 1998. 3(03): p. 232-237.spa
dc.relation.referencesCook, E.L. and A.W. Talash, In situ combustion process. 1969, Google Patents.spa
dc.relation.referencesGateau, P., et al., Heavy oil dilution. Oil & gas science and technology, 2004. 59(5): p. 503-509.spa
dc.relation.referencesPebdani, F.N. and W.R. Shu, Heavy oil recovery process using cyclic carbon dioxide steam stimulation. 1986, Google Patents.spa
dc.relation.referencesCyr, T., R. Coates, and M. Polikar, Steam-assisted gravity drainage heavy oil recovery process. 2001, Google Patents.spa
dc.relation.referencesItalo Bahamon, J., et al. Successful Implementation of Hydraulic Fracturing Techniques in High Permeability Heavy Oil Wells in the Llanos Basin-Colombia. in SPE Latin American and Caribbean Petroleum Engineering Conference. 2015. Society of Petroleum Engineers.spa
dc.relation.referencesZabala, R., C. Franco, and F. Cortés. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: a field test. in SPE Improved Oil Recovery Conference. 2016. Society of Petroleum Engineers.spa
dc.relation.referencesFranco, C.A., et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy & Fuels, 2013. 27(12): p. 7336-7347.spa
dc.relation.referencesLe, D.H., et al., Removal of fracturing gel: A laboratory and modeling investigation accounting for viscous fingering channels. Journal of Petroleum Science and Engineering, 2012. 88: p. 145-155.spa
dc.relation.referencesUren, L.C., Petroleum production engineering. 1934: McGraw-Hill Book Company.spa
dc.relation.referencesWeaver, J.D., N.C. Schultheiss, and F. Liang. Fracturing Fluid Conductivity Damage and Recovery Efficiency. in SPE European Formation Damage Conference & Exhibition. 2013. Society of Petroleum Engineers.spa
dc.relation.referencesQuintero, L., et al. Cases history studies of production enhancement in cased hole wells using microemulsion fluids. in 8th European Formation Damage Conference. 2009. Society of Petroleum Engineers.spa
dc.relation.referencesZelenev, A.S., et al. Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.spa
dc.relation.referencesPenny, G.S., T.A. Dobkins, and J.T. Pursley. Field study of completion fluids to enhance gas production in the Barnett Shale. in SPE Gas Technology Symposium. 2006. Society of Petroleum Engineers.spa
dc.relation.referencesChen, Z., et al. Formation damage induced by fracture fluids in coalbed methane reservoirs. in SPE Asia Pacific Oil & Gas Conference and Exhibition. 2006. Society of Petroleum Engineers.spa
dc.relation.referencesHuang, T., J.B. Crews, and G. Agrawal. Nanoparticle pseudocrosslinked micellar fluids: Optimal solution for fluid-loss control with internal breaking. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.spa
dc.relation.referencesHawkins, G. Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fluids Concentrated During Closure. in SPE Annual Technical Conference and Exhibition. 1988. Society of Petroleum Engineers.spa
dc.relation.referencesBostrom, N., et al. The time-dependent permeability damage caused by fracture fluid. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.spa
dc.relation.referencesHuang, T. and J.B. Crews, Nanotechnology applications in viscoelastic surfactant stimulation fluids. SPE Production & Operations, 2008. 23(04): p. 512-517.spa
dc.relation.referencesWorlow, D. and S. Holditch. Rheologic Measurements of a Crosslinked Fracture Fluid Under Conditions Expected During a Fracture Treatment. in Low Permeability Reservoirs Symposium. 1989. Society of Petroleum Engineers.spa
dc.relation.referencesHusein, M., et al. Application of In-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.spa
dc.relation.referencesChristian, C.F., et al. Production Enhancement of Cased-Hole Wells Using Mesophase Fluids. in SPE Saudia Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.spa
dc.relation.referencesMontgomery, C., Fracturing fluid components. Effective and Sustainable Hydraulic Fracturing. InTech Publishing. Available at: http://www. intechopen. com/books/effective-and-sustainablehydraulic-fracturing (Accessed February 2014), 2013: p. 25-45.spa
dc.relation.referencesPaktinat, J., et al., Field case studies: Damage preventions through leakoff control of fracturing fluids in marginal/low-pressure gas reservoirs. SPE Production & Operations, 2007. 22(03): p. 357-367.spa
dc.relation.referencesDos Santos, J.A.C., R.C.B. De Melo, and G.F. Di Lullo, Case-History Evaluation of RPMs on Conformance Fracturing Applications. Society of Petroleum Engineers.spa
dc.relation.referencesDiaz, G., et al., Fracture Conformance Treatments Using RPM: Efficiency and Durability Evaluation. Society of Petroleum Engineers.spa
dc.relation.referencesCastano, R., et al., Relative Permeability Modifier and Scale Inhibitor Combination in Fracturing Process at San Francisco Field in Colombia, South America. Society of Petroleum Engineers.spa
dc.relation.referencesLeal, J.A., et al., Unconventional RPM Applications in Hydraulic Fracturing. Society of Petroleum Engineers.spa
dc.relation.referencesBennetzen, M.V. and K. Mogensen. Novel applications of nanoparticles for future enhanced oil recovery. in International petroleum technology conference. 2014. International Petroleum Technology Conference.spa
dc.relation.referencesMartín-Palma, R.J. and A. Lakhtakia. Nanotechnology: A Crash Course. 2010. SPIE Bellingham, WA.spa
dc.relation.referencesTaborda, E.A., et al., Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel, 2016. 184: p. 222-232.spa
dc.relation.referencesAl-Maamari, R.S. and J.S. Buckley, Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reservoir Evaluation & Engineering, 2003. 6(04): p. 210-214.spa
dc.relation.referencesGiraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665.spa
dc.relation.referencesFranco, C.A., et al., Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, 2013. 27(6): p. 2899-2907.spa
dc.relation.referencesBetancur, S., et al., Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Industrial & Engineering Chemistry Research, 2016. 55(21): p. 6122-6132.spa
dc.relation.referencesZhang, H., A. Nikolov, and D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy & Fuels, 2014. 28(5): p. 3002-3009.spa
dc.relation.referencesLafitte, V., et al. Nanomaterials in fracturing applications. in SPE International Oilfield Nanotechnology Conference and Exhibition. 2012. Society of Petroleum Engineers.spa
dc.relation.referencesLiang, F., et al., Reduced Polymer Loading, High Temperature Fracturing Fluids using Nano-crosslinkers. Society of Petroleum Engineers.spa
dc.relation.referencesGuzmán, J.D., et al., Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. Journal of Natural Gas Science and Engineering, 2017. 40: p. 347-355.spa
dc.relation.referencesAl-Muntasheri, G.A. A critical review of hydraulic fracturing fluids over the last decade. in SPE Western North American and Rocky Mountain Joint Meeting. 2014. Society of Petroleum Engineers.spa
dc.relation.referencesHarris, P.C., Fracturing-fluid additives. Journal of petroleum technology, 1988. 40(10): p. 1,277-1,279.spa
dc.relation.referencesBarnes, H.A., J.F. Hutton, and K. Walters, An introduction to rheology. Vol. 3. 1989: Elsevier.spa
dc.relation.referencesBarnes, H.A., A handbook of elementary rheology. 2000.spa
dc.relation.referencesMontgomery, C. Fracturing fluids. in ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. 2013. International Society for Rock Mechanics and Rock Engineering.spa
dc.relation.referencesKirkwood, J.G., F.P. Buff, and M.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. The Journal of Chemical Physics, 1949. 17(10): p. 988-994.spa
dc.relation.referencesEwell, R.H. and H. Eyring, Theory of the Viscosity of Liquids as a Function of Temperature and Pressure. The Journal of Chemical Physics, 1937. 5(9): p. 726-736.spa
dc.relation.referencesFox, T., et al., Rheology, Vol. 1. Academic Press, New York, 1956: p. 431-523.spa
dc.relation.referencesRha, C., Theories and principles of viscosity, in Theory, determination and control of physical properties of food materials. 1975, Springer. p. 7-24.spa
dc.relation.referencesSorbie, K., P. Clifford, and E. Jones, The rheology of pseudoplastic fluids in porous media using network modeling. Journal of Colloid and Interface Science, 1989. 130(2): p. 508-534.spa
dc.relation.referencesApi, R., Recommended Practice on Measuring the Viscous Properties of a Crosslinked Water-based Fracturing Fluid”. 1998, May.spa
dc.relation.referencesKuhlbusch, T.A., et al., Nanoparticle exposure at nanotechnology workplaces: a review. Particle and fibre toxicology, 2011. 8(1): p. 22.spa
dc.relation.referencesPoole Jr, C.P. and F.J. Owens, Introduction to nanotechnology. 2003: John Wiley & Sons.spa
dc.relation.referencesSanchez, F. and K. Sobolev, Nanotechnology in concrete–a review. Construction and building materials, 2010. 24(11): p. 2060-2071.spa
dc.relation.referencesAmanullah, M. and A.M. Al-Tahini. Nano-technology-its significance in smart fluid development for oil and gas field application. in SPE Saudi Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.spa
dc.relation.referencesNabhani, N., M. Emami, and A.T. Moghadam. Application of nanotechnology and nanomaterials in oil and gas industry. in AIP Conference Proceedings. 2011. American Institute of Physics.spa
dc.relation.referencesEsmaeili, A. Applications of nanotechnology in oil and gas industry. in AIP conference proceedings. 2011. American Institute of Physics.spa
dc.relation.referencesPeng, B., et al., Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of Chemical Engineering, 2018. 96(1): p. 91-100.spa
dc.relation.referencesHirasaki, G., Wettability: fundamentals and surface forces. SPE Formation Evaluation, 1991. 6(02): p. 217-226.spa
dc.relation.referencesGiraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665.spa
dc.relation.referencesCastro, S., Análisis petrofísicos básicos y especiales. 2009: Universidad Nacional de Colombia Sede Medellín.spa
dc.relation.referencesAbdallah, W., et al., Fundamentals of wettability. Technology, 1986. 38(1125-1144): p. 268.spa
dc.relation.referencesCassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.spa
dc.relation.referencesMaghzi, A., et al., Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Experimental Thermal and Fluid Science, 2012. 40: p. 168-176.spa
dc.relation.referencesNazari Moghaddam, R., et al., Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 2015. 29(4): p. 2111-2119.spa
dc.relation.referencesAl-Anssari, S., et al., Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel, 2017. 206: p. 34-42.spa
dc.relation.referencesDehghan Monfared, A., et al., Potential application of silica nanoparticles for wettability alteration of oil–wet calcite: A mechanistic study. Energy & Fuels, 2016. 30(5): p. 3947-3961.spa
dc.relation.referencesCortés, F.B., et al., Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(4): p. 89-106.spa
dc.relation.referencesLi, R., et al., Experimental investigation of silica-based nanofluid enhanced oil recovery: the effect of wettability alteration. Energy & Fuels, 2017. 31(1): p. 188-197.spa
dc.relation.referencesGhannam, M.T., et al., Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 2012. 81: p. 122-128.spa
dc.relation.referencesAli, L.H., K.A. Al-Ghannam, and J.M. Al-Rawi, Chemical structure of asphaltenes in heavy crude oils investigated by nmr. Fuel, 1990. 69(4): p. 519-521.spa
dc.relation.referencesAlboudwarej, H., et al., La importancia del petróleo pesado. Oilfield review, 2006. 18(2): p. 38-58.spa
dc.relation.referencesMartínez-Palou, R., et al., Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 2011. 75(3-4): p. 274-282.spa
dc.relation.referencesSchmidt, R., Thermal enhanced oil recovery current status and future needs. Chemical Engineering Progress;(USA), 1990. 86(1).spa
dc.relation.referencesHong, K., Recent advances in steamflood technology. 1989.spa
dc.relation.referencesHart, A., A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 2014. 4(3): p. 327-336.spa
dc.relation.referencesSheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.spa
dc.relation.referencesCaudle, B. and A. Dyes, Improving miscible displacement by gas-water injection. 1958.spa
dc.relation.referencesSheng, J., Enhanced oil recovery field case studies. 2013: Gulf Professional Publishing.spa
dc.relation.referencesSchramm, L.L., E.N. Stasiuk, and D.G. Marangoni, 2 Surfactants and their applications. Annual Reports Section" C"(Physical Chemistry), 2003. 99: p. 3-48.spa
dc.relation.referencesMai, A. and A. Kantzas, Heavy oil waterflooding: effects of flow rate and oil viscosity. Journal of Canadian Petroleum Technology, 2009. 48(03): p. 42-51.spa
dc.relation.referencesJiang, Q., Recovery of heavy oil and bitumen using vapex process in homogeneous and heterogenous reservoirs. 1997: University of Calgary.spa
dc.relation.referencesMontes, D., et al., Development of nanofluids for perdurability in viscosity reduction of extra-heavy oils. Energies, 2019. 12(6): p. 1068.spa
dc.relation.referencesMontes, D., et al., Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. ACS omega, 2020. 5(10): p. 5085-5097.spa
dc.relation.referencesTaborda, E.A., V. Alvarado, and F.B. Cortés, Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Conversion and Management, 2017. 148: p. 30-42.spa
dc.relation.referencesMedina, O.E., et al., Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019. 12(24): p. 4671.spa
dc.relation.referencesShokrlu, Y.H. and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering, 2014. 119: p. 210-220.spa
dc.relation.referencesWei, L., J.-H. Zhu, and J.-H. Qi, Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. Journal of Fuel Chemistry and Technology, 2007. 35(2): p. 176-180.spa
dc.relation.referencesMontes, D., F.B. Cortés, and C.A. Franco, Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. Dyna, 2018. 85(207): p. 153-160.spa
dc.relation.referencesTaborda, E.A., et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels, 2017. 31(2): p. 1329-1338.spa
dc.relation.referencesCivan, F., Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. 2015: Gulf Professional Publishing.spa
dc.relation.referencesMANUEL, G.E.J., NOMBRE DE TESIS: DAÑO A LA FORMACIÓN EN POZOS PETROLEROS. 2014, Universidad Nacional Autónoma de México.spa
dc.relation.referencesCivan, F., Overview of formation damage. Reservoir Formation Damage, 2016: p. 1-6.spa
dc.relation.referencesCivan, F. Formation damage mechanisms and their phenomenological modeling-an overview. in European formation damage conference. 2007. Society of Petroleum Engineers.spa
dc.relation.referencesEconomides, M.J. and K.G. Nolte, Reservoir stimulation. Vol. 2. 1989: Prentice Hall Englewood Cliffs, NJ.spa
dc.relation.referencesLi, L., et al. Vital role of nanotechnology and nanomaterials in the field of oilfield chemistry. in IPTC 2013: International Petroleum Technology Conference. 2013. European Association of Geoscientists & Engineers.spa
dc.relation.referencesBetancur, S., C.A. Franco, and F.B. Cortés, Magnetite-silica nanoparticles with a core-shell structure for inhibiting the formation damage caused by the precipitation/deposition of asphaltene. Journal of Magnetohydrodynamics and Plasma Research, 2016. 21(3): p. 289-322.spa
dc.relation.referencesLopez, D., et al., Cardanol/SiO2 Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO2–Cardanol Interactions. Energy & Fuels, 2020. 34(6): p. 7048-7057.spa
dc.relation.referencesBelcher, C.K., et al. Maximizing production life with the use of nanotechnology to prevent fines migration. in International Oil and Gas Conference and Exhibition in China. 2010. Society of Petroleum Engineers.spa
dc.relation.referencesMansour, M., et al., Using nanotechnology to prevent fines migration while production. Petroleum, 2020.spa
dc.relation.referencesMady, M.F. and M.A. Kelland, Review of nanotechnology impacts on oilfield scale management. ACS Applied Nano Materials, 2020. 3(8): p. 7343-7364.spa
dc.relation.referencesLópez, D., et al., Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. Fuel, 2021. 283: p. 118931.spa
dc.relation.referencesFilgueiras, P.R., et al., Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel, 2014. 116: p. 123-130.spa
dc.relation.referencesInstitute, E., IP 469: Determination of Saturated, Aromatic and Polar Compounds in Petroleum Products by Thin Layer Chromatography and Flame Ionization Detection. 2006, Energy Institute Publications United Kingdom.spa
dc.relation.referencesAustrich, A., E. Buenrostro-Gonzalez, and C. Lira-Galeana, ASTM D-5307 and ASTM D-7169 SIMDIS standards: a comparison and correlation of methods. Petroleum Science and Technology, 2015. 33(6): p. 657-663.spa
dc.relation.referencesNassar, N.N., A. Hassan, and P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. Journal of colloid and interface science, 2011. 360(1): p. 233-238.spa
dc.relation.referencesHosseinpour, N., et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 2013. 29(46): p. 14135-14146.spa
dc.relation.referencesXu, R., Particle characterization: light scattering methods. Vol. 13. 2001: Springer Science & Business Media.spa
dc.relation.referencesLópez, D., et al., Metal oxide nanoparticles supported on macro-mesoporous aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts, 2017. 7(11): p. 319.spa
dc.relation.referencesWaseda, Y., E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. 2011: Springer Science & Business Media.spa
dc.relation.referencesFranco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018. 51: p. 53-64.spa
dc.relation.referencesClogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70.spa
dc.relation.referencesJan, API Recommended Practices for Standard Procedures for Evaluation of Hydraulic Fracturing Fluids , API RP 39, in Dallas. 1983.spa
dc.relation.referencesRoskes, B., SketchUp 2015 Hands-On: LayOut. 2015.spa
dc.relation.referencesGuzmán, J.D., et al., Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy & Fuels, 2016. 30(3): p. 2052-2059.spa
dc.relation.referencesFink, J., Hydraulic Fracturing Chemicals and Fluids Technology. 2013: Gulf Professional Publishing.spa
dc.relation.referencesFranco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018.spa
dc.relation.referencesTao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 1-error analysis. Society of Petroleum Engineers Journal, 1984. 24(02): p. 209-214.spa
dc.relation.referencesTao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 2-algorithms. Society of Petroleum Engineers Journal, 1984. 24(02): p. 215-223.spa
dc.relation.referencesSigmund, P. and F. McCaffery, An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media (includes associated papers 8028 and 8777). Society of petroleum engineers journal, 1979. 19(01): p. 15-28.spa
dc.relation.referencesMortazavi-Manesh, S. and J.M. Shaw, Thixotropic rheological behavior of Maya crude oil. Energy & fuels, 2014. 28(2): p. 972-979.spa
dc.relation.referencesNik, W.W., et al., Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 2005. 22(3): p. 249-255.spa
dc.relation.referencesSimanzhenkov, V. and R. Idem, Crude oil chemistry. 2003: Crc Press.spa
dc.relation.referencesMusić, S., N. Filipović-Vinceković, and L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering, 2011. 28(1): p. 89-94.spa
dc.relation.referencesMehlhorn, H., Nanoparticles–Definitions, in Nanoparticles in the Fight Against Parasites. 2016, Springer. p. 1-14.spa
dc.relation.referencesIsernia, L.F., FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite. Materials Research, 2013. 16(4): p. 792-802.spa
dc.relation.referencesTopsoe, N. and H. Topsoe, FTIR studies of Mo/Al2O3-based catalysts: II. Evidence for the presence of SH groups and their role in acidity and activity. Journal of catalysis, 1993. 139(2): p. 641-651.spa
dc.relation.referencesSocrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.spa
dc.relation.referencesSalopek, B., D. Krasic, and S. Filipovic, Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik, 1992. 4(1): p. 147.spa
dc.relation.referencesSposito, G., On points of zero charge. Environmental science & technology, 1998. 32(19): p. 2815-2819.spa
dc.relation.referencesBallard, M., R. Buscall, and F. Waite, The theory of shear-thickening polymer solutions. Polymer, 1988. 29(7): p. 1287-1293.spa
dc.relation.referencesCortés, F.B., et al., Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels, 2012. 26(3): p. 1725-1730.spa
dc.relation.referencesAdams, J.J., Asphaltene adsorption, a literature review. Energy & Fuels, 2014. 28(5): p. 2831-2856.spa
dc.relation.referencesMoghadam, A.M. and M.B. Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 2019. 35(4): p. 531-563.spa
dc.relation.referencesAl-Zahrani, S.M., A generalized rheological model for shear thinning fluids. Journal of Petroleum Science and Engineering, 1997. 17(3): p. 211-215.spa
dc.relation.referencesSong, K.-W., Y.-S. Kim, and G.-S. Chang, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers and Polymers, 2006. 7(2): p. 129-138.spa
dc.relation.referencesLaguna, M.T.R., M.P. Tarazona, and E. Saiz, The use of molecular dynamics for the study of solution properties of guar gum. The Journal of chemical physics, 2003. 119(2): p. 1148-1156.spa
dc.relation.referencesMontoya, T., et al., A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy & Fuels, 2014. 28(8): p. 4963-4975.spa
dc.relation.referencesThommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10): p. 1051-1069.spa
dc.relation.referencesGiraldo, L.J., et al., Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. Journal of Petroleum Science and Engineering, 2019. 174: p. 40-48.spa
dc.relation.referencesLi, S. and O. Torsæter. The impact of nanoparticles adsorption and transport on wettability alteration of intermediate wet berea sandstone. in SPE Middle East Unconventional Resources Conference and Exhibition. 2015. OnePetro.spa
dc.relation.referencesAlmubarak, T., et al., Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers, 2020. 12(11): p. 2722.spa
dc.relation.referencesAl-Hajri, S., et al., Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS omega, 2022. 7(9): p. 7431-7443.spa
dc.relation.referencesZheng, X., et al., Effect of proppant distribution pattern on fracture conductivity and permeability in channel fracturing. Journal of Petroleum Science and Engineering, 2017. 149: p. 98-106.spa
dc.relation.referencesByrne, M.T. and C.A. Mcphee. The extinction of skin. in SPE International Conference and Exhibition on Formation Damage Control. 2012. SPE.spa
dc.relation.referencesYudin, I.K. and M.A. Anisimov, Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions, in Asphaltenes, Heavy Oils, and Petroleomics. 2007, Springer. p. 439-468.spa
dc.relation.referencesNassar, N.N., et al., Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Industrial & Engineering Chemistry Research, 2015. 54(33): p. 8201-8211.spa
dc.relation.referencesCanh, S.T., et al., Organic and inorganic formation damage and remediation. Petrovietnam Journal, 2017. 6: p. 39-44.spa
dc.relation.referencesBudd, N., et al. The Remediation of Oilfield Asphaltenic Deposits: Near-Well-Bore Application. in SPE International Conference and Exhibition on Formation Damage Control. 2018. SPE.spa
dc.relation.referencesMehana, M. and M.O. Bashir, Diagnostic fracture injection test (DFIT). Petroleum Today, 2015. 11: p. 26.spa
dc.relation.referencesEarlougher Jr, R.C., R. Kersch, and H. Ramey Jr, Wellbore effects in injection well testing. Journal of Petroleum Technology, 1973. 25(11): p. 1244-1250.spa
dc.relation.referencesGringarten, A., H. Ramey Jr, and R. Raghavan, Applied pressure analysis for fractured wells. Journal of Petroleum Technology, 1975. 27(07): p. 887-892.spa
dc.relation.referencesYew, C.H. and X. Weng, Mechanics of hydraulic fracturing. 2014: Gulf Professional Publishing.spa
dc.relation.referencesCleary, J.M., Hydraulic fracture theory. Vol. 251. 1958: Division of the Illinois State Geological Survey.spa
dc.relation.referencesBarree, R.D., V.L. Barree, and D. Craig. Holistic fracture diagnostics. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 2007. SPE.spa
dc.relation.referencesCheremisinoff, N.P. and A. Davletshin, Hydraulic fracturing operations: handbook of environmental management practices. 2015: John Wiley & Sons.spa
dc.relation.referencesMartinez, A., C. Wright, and T. Wright. Field Application of Real-Time Hydraulic Fracturing Analysis. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 1993. SPE.spa
dc.relation.referencesMontgomery, C.T. and M.B. Smith, Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 2010. 62(12): p. 26-40.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lembReología
dc.subject.lembNanotecnología
dc.subject.lembIndustria del petróleo
dc.subject.lembDinámica de fluidos
dc.subject.lembNanopartículas
dc.subject.proposalNanofluidospa
dc.subject.proposalFluido de fracturaspa
dc.subject.proposalComportamiento reológicospa
dc.subject.proposalDaño de formaciónspa
dc.subject.proposalNanofluideng
dc.subject.proposalFracture fluideng
dc.subject.proposalRheological behavioreng
dc.subject.proposalFormation damageeng
dc.titleDesarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formaciónspa
dc.title.translatedDevelopment and evaluation from laboratory to field trial of a dual-purpose fracturing nanofluid: Inhibition of associated formation damage and increasing heavy crude oil mobilityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de un nanofluido de fractura con doble propósito: Aumento en la movilidad de crudos pesados y reducción del daño de formaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017211010.2024.pdf
Tamaño:
1.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: