Impacto del modelo de carga en el desempeño dinámico de la tensión de un sistema eléctrico de potencia

dc.contributor.advisorCastrillón Gutiérrez, Neby Jennyfer
dc.contributor.authorGalindo Ramirez, Juan Daniel
dc.date.accessioned2024-09-02T19:31:54Z
dc.date.available2024-09-02T19:31:54Z
dc.date.issued2024
dc.description.abstractEsta tesis evalúa el impacto de diferentes modelos de carga en el desempeño dinámico de la tensión en sistemas eléctricos de potencia sometidos a perturbaciones, utilizando el sistema IEEE de 39 barras como caso de estudio y realizando simulaciones en el software DIgSILENT PowerFactory. Se exploran varios modelos, incluyendo el modelo WECC (Western Electricity Coordinating Council), Modelo ZIP (Impedancia constante, corriente y potencia constantes), Modelo Exponencial, Modelo Complejo y la combinación de Motor de Inducción con modelo ZIP. Los modelos de carga fueron parametrizados mediante la optimización de sus parámetros utilizando el método Nelder-Mead, comparando la respuesta dinámica de la tensión de cada modelo con la del modelo WECC. El estudio se centra en evaluar cómo la elección del modelo de carga influye en la respuesta de la tensión en los nodos de los sistemas eléctricos de potencia en condiciones de fallas. Los resultados subrayan la importancia crítica de seleccionar y parametrizar adecuadamente los modelos de carga, demostrando que cada modelo tiene la capacidad de capturar dinámicas específicas del sistema que otros no logran representar. Este análisis resalta la relevancia práctica del modelado de carga para la estabilidad de tensión, orientando hacia la implementación de modelos más precisos y efectivos en los análisis dinámicos de un sistema eléctrico de potencia. Así, se contribuye a un modelado más confiable de los SEP, asegurando una planificación más fiable de estos.spa
dc.description.abstractThis thesis evaluates the impact of different load models on the dynamic voltage performance in power systems under disturbances, using the IEEE 39-bus system as a case study and performing simulations in DIgSILENT PowerFactory software. Various models are explored, including the WECC (Western Electricity Coordinating Council) model, ZIP Model (Constant Impedance, Constant Current, Constant Power), Exponential Model, Complex Model, and the combination of Induction Motor with ZIP Model. The load models were parameterized by optimizing their parameters using the Nelder-Mead method, comparing the dynamic voltage response of each model with the WECC model. The study focuses on assessing how the choice of load model influences the voltage response of the power system during faults. The results highlight the critical importance of proper selection and parameterization of load models, demonstrating that each model has the capability to capture specific system dynamics that others may fail to represent. This analysis underscores the practical relevance of load modeling for voltage stability and guides the implementation of more accurate and effective models in dynamic analyses of power systems. In doing so, it contributes to a more reliable modeling of power systems, ensuring more dependable system planning.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas Eléctricos de Potencia y Optimizaciónspa
dc.format.extent100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86776
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesP. Kundur, Power system stability and control. Palo Alto, California, 1994.spa
dc.relation.referencesCarson W. Taylor, “Power System Voltage Stability,” Palo Alto, California, 1994.spa
dc.relation.referencesA. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling - A review,” IEEE Transactions on Smart Grid, vol. 9, no. 6. Institute of Electrical and Electronics Engineers Inc., pp. 5986–5999, Nov. 01, 2018. doi: 10.1109/TSG.2017.2700436.spa
dc.relation.references“Reliability Guideline Developing Load Model Composition Data NERC | Report Title | Report Date I,” 2017spa
dc.relation.referencesH. S. Salama and I. Vokony, “Voltage stability indices–A comparison and a review,” Computers and Electrical Engineering, vol. 98, Mar. 2022, doi: 10.1016/j.compeleceng.2022.107743.spa
dc.relation.referencesS. M. Pérez-Londoño, G. Olivar-Tost, and J. J. Mora-Flórez, “Una propuesta de clasificación para los índices de estabilidad de tensión Voltage stability indices-A review and a new classification,” 2014.spa
dc.relation.referencesS. Mokred, Y. Wang, and T. Chen, “Modern voltage stability index for prediction of voltage collapse and estimation of maximum load-ability for weak buses and critical lines identification,” International Journal of Electrical Power and Energy Systems, vol. 145, Feb. 2023, doi: 10.1016/j.ijepes.2022.108596.spa
dc.relation.referencesJ. Modarresi, E. Gholipour, and A. Khodabakhshian, “A comprehensive review of the voltage stability indices,” Renewable and Sustainable Energy Reviews, vol. 63. Elsevier Ltd, pp. 1–12, Sep. 01, 2016. doi: 10.1016/j.rser.2016.05.010.spa
dc.relation.referencesRAMÍREZ SINDY, “Metodología para el monitoreo de la estabilidad de tensión en tiempo real en sistemas de potencia usando mediciones,” UNIVERSIDAD DEL VALLE, SANTIAGO DE CALI, 2018.spa
dc.relation.referencesInstitute of Electrical and Electronics Engineers. Canadian Region. and Institute of Electrical and Electronics Engineers. Vancouver Section., 2008 IEEE Electrical Power and Energy Conference : “energy innovation” : Vancouver, BC, Canada, October 6-7 2008. IEEE, 2008.spa
dc.relation.referencesX. Xu, M. Elkhatib, and M. Wu, “NERC TPL-001-4 Compliance Study: Application of A New Composite Load Model in Dynamic Voltage Assessment,” in IEEE Power and Energy Society General Meeting, IEEE Computer Society, Aug. 2020. doi: 10.1109/PESGM41954.2020.9281597spa
dc.relation.referencesvol. 8, no. 2, pp. 472–482, IEEE Trans. Power Syst., “Load representation for dynamic performance analysis,” 1993.spa
dc.relation.referencesIEEE Power & Energy Society, IEEE International Conference on Service-Oriented Computing and Applications, International Conference on Electric Power and Energy Conversion Systems 3 2013.10.02-04 Istanbul, and EPECS 3 2013.10.02-04 Istanbul, 2013 3rd International Conference on Electric Power and Energy Conversion Systems (EPECS) 2-4 Oct. 2013, Yildiz Technical University, Davutpase Campus, Istanbul, Turkey.spa
dc.relation.referencesZ. Ma, Z. Wang, Y. Wang, R. Diao, and D. Shi, “Mathematical representation of WECC composite load model,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 1015–1023, Sep. 2020, doi: 10.35833/MPCE.2019.000296.spa
dc.relation.references“NERC | Technical Reference Document, Dynamic Load Modeling” 2016.spa
dc.relation.references“Technical Reference on the Composite Load Model”. EPRIspa
dc.relation.referencesGaikwad Anish, Markham Penn, and Pourbeik Pouyan, Implementation of the WECC Composite Load Model for Utilities using the Component-Based Modeling Approach, IEEE T & D Exposition. 2016.spa
dc.relation.referencesW. H. Press, “Numerical Recipes: The Art of Scientific Computing,” Cambridge University Press, 2007.spa
dc.relation.referencesD. E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley, 1989.spa
dc.relation.referencesJ. K. y T. B. R. Poli, “Particle Swarm Optimization: An Overview,” Swarm Intelligence, 2007.spa
dc.relation.referencesJ. A. Nelder y R. Mead, “A Simplex Method for Function Minimization,” Computer Journal, vol. 7, no. 4, pp. 308-313, 1965.spa
dc.relation.referencesL. Korunovic et al., “Overview of Existing Load Models and Their Applications,” 2012. [Online]. Available: https://www.researchgate.net/publication/271272882spa
dc.relation.referencesN. Hatziargyriou et al., “Definition and Classification of Power System Stability - Revisited & Extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271–3281, Jul. 2021, doi: 10.1109/TPWRS.2020.3041774.spa
dc.relation.referencesJ. E. Candelo, G. Caicedo, and F. Castro, “Métodos para el estudio de la estabilidad de voltaje en sistemas de potencia,” Informacion Tecnologica, vol. 19, no. 5, pp. 97–110, 2008, doi: 10.1612/inf.tecnol.3963it.07.spa
dc.relation.referencesM. J. J. P. F. C. W. T. F. D. J. Shoup, “A Survey of Current Practices for Transient Voltage Dip/Sag Criteria Related to Power System Stability,” IEEE, 2004.spa
dc.relation.referencesA. Dmitry Kosterev, “Load Modeling in Power System Studies: WECC Progress Update,” 2008.spa
dc.relation.referencesM. Parniani and M. Vanouni, “A fast local index for online estimation of closeness to loadability limit,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 584–585, Feb. 2010, doi: 10.1109/TPWRS.2009.2036460.spa
dc.relation.references“TPL-001-5-Transmission System Planning Performance Requirements.”spa
dc.relation.references“TPL-001-WECC-CRT-3.2-Transmission System Planning Performance 2 4.2.2.7. Other buses specifically excluded by each Planning Coordinator or Transmission Planner internal to its system,” 2019.spa
dc.relation.referencesI. New England, “Transmission Planning Technical Guide © ISO New England Inc. System Planning” 2024spa
dc.relation.references“Transmission Planning Technical Guide Appendix E Dynamic Stability Simulation,” Iso New England, 2013.spa
dc.relation.referencesR. Podmore and S. V. Memeber, “A practical method for the direct analysis of transient stability.” IEEE Transactions on Power Apparatus and Systems, Vol.PAS-98, No.2 March/April 1979spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.lembPotencia reactiva (Ingeniería eléctrica)
dc.subject.proposalModelo de carga eléctricaspa
dc.subject.proposalModelo WECCspa
dc.subject.proposalDesempeño dinámico de la tensión
dc.subject.proposalCarga eléctrica
dc.subject.proposalElectric load modeleng
dc.subject.proposalWECC modeleng
dc.subject.proposalDynamic voltage responseeng
dc.subject.wikidataCarga eléctrica
dc.titleImpacto del modelo de carga en el desempeño dinámico de la tensión de un sistema eléctrico de potenciaspa
dc.title.translatedImpact of load model on the dynamic voltage performance of an electric power systemeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1096241484.2024.pdf
Tamaño:
2.59 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: