scikit-forecasts: Una librería en Python para el pronóstico de series de tiempo no lineales

dc.contributor.advisorVelásquez Henao, Juan David
dc.contributor.authorArango González, María Alejandra
dc.date.accessioned2022-08-19T15:56:45Z
dc.date.available2022-08-19T15:56:45Z
dc.date.issued2021
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl interés en el uso de técnicas de aprendizaje de máquinas, y en general, de modelos no lineales para el pronóstico de series de tiempo ha crecido exponencialmente en las últimas dos décadas. Sin embargo, muchas de las librerías disponibles de aprendizaje de máquinas no contemplan el uso de modelos de series de tiempo, haciendo que el científico de datos consuma gran parte de su tiempo en la tarea de convertir sus datos a un formato de problema de regresión para poder utilizar estas librerías. Esto claramente evidencia la necesidad de contar con librerías especializadas en el pronóstico de series de tiempo usando técnicas de aprendizaje de máquinas y modelos no lineales en general. En esta tesis se presenta la librería de Python de código abierto llamada scikit-forecasts, la cual permite transformar y pronosticar series de tiempo usando técnicas de aprendizaje de máquinas, entre las que se incluyen los modelos autorregresivos, las redes neuronales artificiales, modelos neuro-difusos, modelos TAR y modelos SETAR, entre otros. La librería puede ser usada interactivamente en un libro de Jupyter, lo que facilita el desarrollo de modelos. Los métodos de pronóstico se encuentran implementados como clases que pueden ser utilizadas con muchas de las funciones disponibles en scikit-learn. La librería está diseñada para soportar los procesos de evaluación de distintos tipos de transformaciones, el pronóstico con diferentes tipos de modelos no lineales y la comparación de pronósticos obtenidos con modelos diferentes. (Texto tomado de la fuente)spa
dc.description.abstractThe significance of using machine learning techniques and nonlinear models for time series forecasting has been grown exponentially in past two decades. Nevertheless, a lot of Python packages and libraries using machine learning methods are not taking in account time series models and making data scientists to consume a lot of their time converting data into a regression problem format in order to use these libraries. This kind of issue remarks a necessity of packages and libraries focused on time series forecasting and the use of machine learning techniques and nonlinear models in general. This thesis introduces an open-source Python package called scikit-forecasts, which allows time series transforming and forecasting by using machine learning techniques such as autoregressive modes, artificial neural networks, neuro-fuzzy models, TAR and SETAR models, among others. This package can be interactively used in Jupyter notebooks, which simplifies and promotes new models’ development. Forecasting methods are implemented as classes that can be used with scikit-learn’s available functions. This package has been designed to support evaluation processes of different types of transformations, forecasts of several types of nonlinear models and comparisons of forecasting results that have been obtained using different models.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería de Sistemasspa
dc.description.researchareaAnalíticaspa
dc.format.extentxi, 65 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81979
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.referencesD. R. Brillinger, “Time Series: General,” 2000.spa
dc.relation.referencesR. S. Tsay, “Time series and forecasting: Brief history and future research,” in Statistics in the 21st Century, CRC Press, 2001, pp. 121–131. doi: 10.2307/2669408spa
dc.relation.referencesF. Perez, B. E. Granger, U. C. Berkeley, C. Poly, and S. L. Obispo, “AN OPEN SOURCE FRAMEWORK FOR INTERACTIVE, COLLABORATIVE AND REPRODUCIBLE SCIENTIFIC COMPUTING AND EDUCATION.”spa
dc.relation.referencesC. M. Kelty, Two bits the cultural significance of free software. 2008spa
dc.relation.references“Top Programming Languages 2020 - IEEE Spectrum.” https://spectrum.ieee.org/at-work/tech-careers/top-programming-language-2020?referrer=%2F (accessed Apr. 20, 2021).spa
dc.relation.references“Series de Tiempo : Pricing.” https://www.pricing.cl/conocimiento/series-de-tiempo/ (accessed Aug. 18, 2021).spa
dc.relation.references“The 2017 Top Programming Languages - IEEE Spectrum.” https://spectrum.ieee.org/computing/software/the-2017-top-programming-languages (accessed Apr. 20, 2021).spa
dc.relation.references“pandas - Python Data Analysis Library.” https://pandas.pydata.org/ (accessed Apr. 20, 2021).spa
dc.relation.references“Matlab CAPTAIN Toolbox for time series analysis and forecasting.” http://www.es.lancs.ac.uk/cres/captain/default.htm (accessed Apr. 20, 2021).spa
dc.relation.references“Deep Learning Toolbox - MATLAB.” https://www.mathworks.com/products/deep-learning.html (accessed Apr. 20, 2021).spa
dc.relation.references“Package ‘forecast’ Title Forecasting Functions for Time Series and Linear Models Description Methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling,” 2021spa
dc.relation.references“Package ‘neuralnet’ Title Training of Neural Networks,” 2019.spa
dc.relation.references“SAS/ETS Time Series Forecasting System.” https://support.sas.com/rnd/app/ets/cap/ets_forecasting.html (accessed Apr. 20, 2021).spa
dc.relation.references“Title stata.com forecast-Econometric model forecasting.”spa
dc.relation.references“SPSS Software | IBM.” https://www.ibm.com/analytics/spss-statistics-software (accessed Apr. 20, 2021).spa
dc.relation.references“Introduction — statsmodels.” https://www.statsmodels.org/stable/index.html (accessed Apr. 20, 2021).spa
dc.relation.referencesD. van Kuppevelt, C. Meijer, F. Huber, A. van der Ploeg, S. Georgievska, and V. T. van Hees, “Mcfly: Automated deep learning on time series,” SoftwareX, vol. 12, Jul. 2020, doi: 10.1016/j.softx.2020.100548.spa
dc.relation.references“Welcome to TSFEL documentation! — TSFEL 0.1.4 documentation.” https://tsfel.readthedocs.io/en/latest/ (accessed Apr. 20, 2021).spa
dc.relation.references“Software de hojas de cálculo Microsoft Excel | Microsoft 365.” https://www.microsoft.com/es-es/microsoft-365/excel (accessed Apr. 20, 2021).spa
dc.relation.references“NeuralTools para análisis de predicción usando redes neuronales inteligentes - Palisade.” https://www.palisade-lta.com/neuraltools/ (accessed Jul. 02, 2021).spa
dc.relation.referencesTime Series Analysis and Its Applications - With R Examples | Robert H. Shumway | Springer. 2006.spa
dc.relation.references“Nonlinear Time Series Models 18.1 Introduction.”spa
dc.relation.referencesR. J. Hyndman and G. Athanasopoulus, “Forecasting: Principles and Practice (2nd ed).” https://otexts.com/fpp2/ (accessed Apr. 20, 2021).spa
dc.relation.references“TensorFlow.” https://www.tensorflow.org/?hl=es-419 (accessed Apr. 20, 2021).spa
dc.relation.references“Keras: the Python deep learning API.” https://keras.io/ (accessed Apr. 20, 2021).spa
dc.relation.references“PyTorch.” https://pytorch.org/ (accessed Apr. 20, 2021).spa
dc.relation.references“scikit-learn: machine learning in Python — scikit-learn 0.24.1 documentation.” https://scikit-learn.org/stable/ (accessed Apr. 20, 2021).spa
dc.relation.references“Time Series Analysis: Forecasting and Control - George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, Greta M. Ljung - Google Libros.” https://books.google.com.co/books?hl=es&lr=&id=rNt5CgAAQBAJ&oi=fnd&pg=PR7&dq=Time+Series+Analysis,+Forecasting+and+Control.+box+jenkins&ots=DK28BOj_QG&sig=HkqPSrBFGGDao_IztPkTUtXxxH0#v=onepage&q=Time Series Analysis%2C Forecasting and Control. box jenkins&f=false (accessed Apr. 30, 2021).spa
dc.relation.referencesM. G. Bulmer, “A Statistical Analysis of the 10-Year Cycle in Canada,” The Journal of Animal Ecology, vol. 43, no. 3, p. 701, Oct. 1974, doi: 10.2307/3532.spa
dc.relation.references“SILSO | World Data Center for the production, preservation and dissemination of the international sunspot number.” http://sidc.oma.be/silso/home (accessed Apr. 30, 2021).spa
dc.relation.references“UCI Machine Learning Repository: Internet Usage Data Data Set.” https://archive.ics.uci.edu/ml/datasets/Internet+Usage+Data (accessed Apr. 30, 2021).spa
dc.relation.referencesC. Beaumont, S. Makridakis, S. C. Wheelwright, and V. E. McGee, “Forecasting: Methods and Applications,” J Oper Res Soc, vol. 35, no. 1, p. 79, Jan. 1984, doi: 10.2307/2581936.spa
dc.relation.referencesJ. D. V. HENAO, C. O. Z. PEREZ, and C. J. F. CARDONA, “A COMPARISON OF EXPONENTIAL SMOOTHING AND NEURAL NETWORKS IN TIME SERIES PREDICTION,” DYNA, vol. 80, no. 182, pp. 66–73, Nov. 2013.spa
dc.relation.references“Time Series Forecast Study with Python: Monthly Sales of French Champagne.” https://machinelearningmastery.com/time-series-forecast-study-python-monthly-sales-french-champagne/ (accessed Apr. 20, 2021).spa
dc.relation.references“RPubs - Análisis de normalidad.” https://rpubs.com/PAVelasquezVasconez/354989 (accessed Apr. 20, 2021).spa
dc.relation.referencesC. M. Jarque and A. K. Bera, “Efficient tests for normality, homoscedasticity and serial independence of regression residuals,” Economics Letters, vol. 6, no. 3, pp. 255–259, 1980, doi: 10.1016/0165-1765(80)90024-5.spa
dc.relation.referencesJ. D. Velásquez, “Adaptive Multidimensional Neuro-Fuzzy Inference System for Time Series Prediction,” IEEE Latin America Transactions, vol. 13, no. 8, pp. 2694–2699, Aug. 2015, doi: 10.1109/TLA.2015.7332151.spa
dc.relation.referencesM. Ghiassi, H. Saidane, and D. K. Zimbra, “A dynamic artificial neural network model for forecasting time series events,” International Journal of Forecasting, vol. 21, no. 2, pp. 341–362, Apr. 2005, doi: 10.1016/j.ijforecast.2004.10.008.spa
dc.relation.referencesR. S. Tsay, “Analysis of Financial Time Series Financial Econometrics.”spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembMachine learning
dc.subject.proposalpredicciónspa
dc.subject.proposalseries de tiempospa
dc.subject.proposalredes neuronales artificialesspa
dc.subject.proposalno linealidadspa
dc.subject.proposalaprendizaje de máquinasspa
dc.titlescikit-forecasts: Una librería en Python para el pronóstico de series de tiempo no linealesspa
dc.title.translatedscikit-forecasts: A Python package for nonlinear time series forecastingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152440067.2021.pdf
Tamaño:
1.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: