Study of indoor optical channel models for color shift keying-based visible light communications
| dc.contributor.advisor | Quintero Quintero, Jesús María | spa |
| dc.contributor.advisor | Sandoval, Diego | spa |
| dc.contributor.author | Gutiérrez Gómez, Juan Felipe | spa |
| dc.contributor.orcid | Gutiérrez Gómez, Juan Felipe [0000000185098075] | spa |
| dc.contributor.researchgate | Gutiérrez Gómez, Juan Felipe[https://www.researchgate.net/profile/Juan-Gutierrez-84] | |
| dc.contributor.researchgroup | Grupo de Investigación en Metrología, Iluminación y Radiometría - Matisse | spa |
| dc.date.accessioned | 2025-11-25T23:39:37Z | |
| dc.date.available | 2025-11-25T23:39:37Z | |
| dc.date.issued | 2025-11-04 | |
| dc.description | ilustraciones, gráficas, tablas | spa |
| dc.description.abstract | This dissertation investigates the design, modeling, and optimization of visible light communication (VLC) systems for indoor environments, with emphasis on trichromatic color shift keying (CSK) modulation. The research presents three main contributions: a Python-based channel model for discrete photodetectors, a robust optimization methodology for CSK symbol constellation design, and a simulation framework for CSK using image sensors with rolling shutter acquisition.The first contribution introduces a recursive channel modeling framework capable of accurately estimating received spectral power in multipath environments while considering wavelength-dependent properties of light sources, wall reflectance, and detector responsivity. The model jointly evaluates photometric and colorimetric metrics such as illuminance and color temperature, alongside communication indicators like symbol error rate, enabling the co-optimization of lighting and data performance. The second contribution proposes a generalized CSK constellation optimization approach based on multiple inter-channel interference matrices obtained from spatially distributed receiver positions. This method improves robustness to environmental variability and ensures compliance with illumination standards. The third contribution delivers a physically based simulation framework for modeling image sensor–based VLC using ray tracing and realistic sensor response, supporting synthetic dataset generation for machine learning–based decoding. Finally, a custom VLC luminaire was developed to validate the proposed models experimentally. Overall, this work establishes VLC as a promising and mature technology for future intelligent indoor communication systems. | eng |
| dc.description.abstract | Esta tesis doctoral investiga el diseño, modelado y optimización de los sistemas de comunicación por luz visible (VLC) en entornos interiores, con énfasis en la modulación tricromática por desplazamiento de color (CSK). La investigación presenta tres contribuciones principales: un modelo de canal basado en Python para fotodetectores discretos, una metodología robusta de optimización para el diseño de constelaciones de símbolos CSK, y un marco de simulación para sistemas CSK que utilizan sensores de imagen con adquisición mediante obturador rodante. La primera contribución introduce un marco de modelado recursivo del canal, capaz de estimar con precisión la potencia espectral recibida en entornos multipropagación, considerando las propiedades dependientes de la longitud de onda de las fuentes de luz, la reflectancia de las superficies y la responsividad del fotodetector. El modelo evalúa de forma conjunta métricas fotométricas y colorimétricas, como la iluminancia y la temperatura de color. junto con indicadores de comunicación, como la tasa de error de símbolo, permitiendo la cooptimización del rendimiento lumínico y de transmisión de datos. La segunda contribución propone un enfoque generalizado de optimización de constelaciones CSK, basado en múltiples matrices de interferencia entre canales obtenidas desde posiciones receptoras espacialmente distribuidas. Este método mejora la robustez frente a la variabilidad ambiental y garantiza el cumplimiento de los estándares de iluminación. La tercera contribución presenta un marco de simulación físicamente basado para modelar la recepción VLC mediante sensores de imagen, integrando trazado de rayos y una respuesta espectral realista del sensor, lo que permite generar conjuntos de datos sintéticos para tareas de decodificación basadas en aprendizaje automático. Finalmente, se desarrolló una luminaria VLC personalizada para validar experimentalmente los modelos propuestos. En conjunto, este trabajo establece a la VLC como una tecnología prometedora y madura para los futuros sistemas inteligentes de comunicación en interiores. (Texto tomado de la fuente). | spa |
| dc.description.degreelevel | Doctorado | spa |
| dc.description.degreename | Doctor en Ingeniería | spa |
| dc.description.researcharea | Visible light communication and lighting | eng |
| dc.format.extent | 105 páginas | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89149 | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
| dc.publisher.department | Department of Electrical and Electronic Engineering | eng |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.place | Bogotá, Colombia | spa |
| dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | spa |
| dc.relation.references | Marcos Katz and Iqrar Ahmed. Opportunities and challenges for visible light communications in 6G. 2nd 6G Wireless Summit 2020: Gain Edge for the 6G Era, 6G SUMMIT 2020, 2020. | |
| dc.relation.references | László, S. K. (2000). Monte-carlo methods in global illumination. Available electronically from http://www. iit. bme. hu/szirmay/puba. html. Book Preprint. | |
| dc.relation.references | Eric Monteiro and Steve Hranilovic. Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 32(10):2053–2060, 2014. | |
| dc.relation.references | John R. Barry, Joseph M. Kahn, William J. Krause, Edward A. Lee, and David G. Messer-schmitt. Simulation of Multipath Impulse Response for Indoor Wireless Optical Channels. IEEE Journal on Selected Areas in Communications, 11(3):367–379, 1993. | |
| dc.relation.references | Ping Yang, Yue Xiao, Ming Xiao, and Shaoqian Li. 6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 33(4):70–75, 2019. | |
| dc.relation.references | Murat Uysal and Hatef Nouri. Optical wireless communications—an emerging technology. In Transparent Optical Networks (ICTON), 2014 16th International Conference on, pages 1–7. IEEE, 2014. | |
| dc.relation.references | Brennen Chow. Assessing the Impact of Wi-Fi Radio Frequency Interference on Mobile Application Quality of Experience. Nhk, 151(2005):10–17, 2015. | |
| dc.relation.references | Mohammad Shaifur Rahman, Md Mejbaul Haque, and Ki-Doo Kim. Indoor positioning by led visible light communication and image sensors. International Journal of Electrical and Computer Engineering, 1(2):161, 2011. | |
| dc.relation.references | Mostafa Zaman Chowdhury, Md Tanvir Hossan, Amirul Islam, and Yeong Min Jang. A Comparative Survey of Optical Wireless Technologies: Architectures and Applications. IEEE Access, 6:9819–9840, 2018. | |
| dc.relation.references | Kwonhyung Lee, Hyuncheol Park, and John R. Barry. Indoor channel characteristics for visible light communications. IEEE Communications Letters, 15(2):217–219, 2011. | |
| dc.relation.references | IEEE. Revision: Short-range optical wireless communications task group (tg 7r1). http://www.ieee802.org/15/pub/IEEE%20802_15%20WPAN%2015_7%20Revision1% 20Task%20Group.htm. | |
| dc.relation.references | Ahmed A Abdulhussain Al-Kinani. Channel Modelling for Visible Light Communication Systems. (February), 2018. | |
| dc.relation.references | Fritz R. Gfeller and Urs Bapst. Wireless In-House Data Communication via Diffuse Infrared Radiation. Proceedings of the IEEE, 67(11):1474–1486, 1979. | |
| dc.relation.references | Jeffrey B. Carruthers and Prasanna Kannan. Iterative site-based modeling for wireless infrared channels. IEEE Transactions on Antennas and Propagation, 50(5):759–765, 2002. | |
| dc.relation.references | Hyunchae Chun, Chien Jung Chiang, and Dominic C. O’Brien. Visible light communica- tion using OLEDs: Illumination and channel modeling. 2012 International Workshop on Optical Wireless Communications, IWOW 2012, pages 8–10, 2012. | |
| dc.relation.references | Zhongpeng Wang and Shoufa Chen. Grouped DFT Precoding for PAPR Reduction in Visible Light OFDM Systems. 6(6):710–713, 2015. | |
| dc.relation.references | Jupeng Ding, Kun Wang, and Zhengyuan Xu. Accuracy analysis of different modeling schemes in indoor visible light communications with distributed array sources. 2014 9th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2014, (July 2014):1005–1010, 2014. | |
| dc.relation.references | Su Il Choi. Analysis of VLC channel based on the shapes of white-light LED lighting. ICUFN 2012 - 4th International Conference on Ubiquitous and Future Networks, Final Program, pages 1–5, 2012. | |
| dc.relation.references | V. Pohl, V. Jungnickel, R. Hentges, and C. Von Helmolt. Integrating sphere diffuser for wireless infrared communication. IEE Colloquium (Digest), (128):45–50, 1999. | |
| dc.relation.references | F. J. López-Hernández and M. J. Betancor. DUSTIN: Algorithm for calculation of impulse response on IR wireless indoor channels. Electronics Letters, 33(21):1804–1806, 1997. | |
| dc.relation.references | Juan F Gutierrez, Diego Sandoval, and Jesus M Quintero. An analytical performance study of a non-line-of-sight optical camera communication system based on rolling shutter and color shift keying. In 2023 IEEE Sustainable Smart Lighting World Conference & Expo (LS18), pages 1–6. IEEE, 2023. | |
| dc.relation.references | Philip Dutré, Kavita Bala, and Philippe Bekaert. Advanced Global Illumination. 2018. | |
| dc.relation.references | Ahmed A Abdulhussain Al-Kinani et al. Channel modelling for visible light communication systems. PhD thesis, Heriot-Watt University, 2018. | |
| dc.relation.references | Yoshi Ohno. Practical use and calculation of cct and duv. Leukos, 10(1):47–55, 2014. | |
| dc.relation.references | Commission Internationale de l’Éclairage (CIE). Method of measuring and specifying colour rendering properties of light sources. Technical Report CIE 13.3-1995, CIE Central Bureau, Vienna, Austria, 1995. | |
| dc.relation.references | Kevin AG Smet. Tutorial: The luxpy python toolbox for lighting and color science. Leukos, 16(3):179–201, 2020. | |
| dc.relation.references | Robert J. Drost and Brian M. Sadler. Constellation design for color-shift keying using billiards algorithms. 2010 IEEE Globecom Workshops, GC’10, pages 980–984, 2010. | |
| dc.relation.references | Chen Gong, Shangbin Li, Qian Gao, and Zhengyuan Xu. Power and rate optimization for visible light communication system with lighting constraints. IEEE Transactions on Signal Processing, 63(16):4245–4256, 2015. | |
| dc.relation.references | Shun Lou, Chen Gong, Nan Wu, and Zhengyuan Xu. Power optimization under bright- ness and communication requirements for visible light communication based on MacAdam ellipse. Journal of Communications and Information Networks, 2(4):28–35, 2017. | |
| dc.relation.references | Yu Zuo and Jian Zhang. Energy-efficient optimization design for the multi-color LED based visible light communication systems under illumination constraints. Applied Sciences (Switzerland), 9(1):1–14, 2018. | |
| dc.relation.references | Ye Xiao, Yi Jun Zhu, Yan Yu Zhang, and Zheng Guo Sun. Linear optimal signal designs for multi-color MISO-VLC systems adapted to CCT requirement. IEEE Access, 6:75519– 75530, 2018. | |
| dc.relation.references | Jun Ming Dong, Yi Jun Zhu, Yan Yu Zhang, and Zheng Guo Sun. Illumination-Adapted Transceiver Design for Quadrichromatic Light-Emitting Diode Based Visible Light Com- munication. IEEE Photonics Journal, 10(3):1–10, 2018. | |
| dc.relation.references | Roger Alexander Martı́nez-Ciro, Francisco Eugenio López-Giraldo, Andrés Felipe Betancur-Perez, and Jose Martı́n Luna-Rivera. Design and implementation of a multi- colour visible light communication system based on a light-to-frequency receiver. Photon- ics, 6(2), 2019. | |
| dc.relation.references | Ravinder Singh, Timothy O’Farrell, and John P.R. David. An enhanced color shift key- ing modulation scheme for high-speed wireless visible light communications. Journal of Lightwave Technology, 32(14):2582–2592, 2014. | |
| dc.relation.references | Xiao Liang, Ming Yuan, Jiaheng Wang, Zhi Ding, Ming Jiang, and Chunming Zhao. Constellation Design Enhancement for Color-Shift Keying Modulation of Quadrichromatic LEDs in Visible Light Communications. Journal of Lightwave Technology, 35(17):3650– 3663, 2017. | |
| dc.relation.references | Farshad Miramirkhani and Murat Uysal. Channel Modeling and Characterization for Visible Light Communications. IEEE Photonics Journal, 7(6), 2015. | |
| dc.relation.references | Trang Nguyen, Amirul Islam, Tanvir Hossan, and Yeong Min Jang. Current status and performance analysis of optical camera communication technologies for 5G networks. IEEE Access, 5(VLC):4574–4594, 2017. | |
| dc.relation.references | Christos Danakis, Mostafa Afgani, Gordon Povey, Ian Underwood, and Harald Haas. Using a CMOS camera sensor for visible light communication. 2012 IEEE Globecom Workshops, GC Wkshps 2012, pages 1244–1248, 2012. | |
| dc.relation.references | Rui Deng, Liqiong Liu, Yingjie Shao, and Lian Kuan Chen. 2D-Constellation-Assisted CSK transmission over OCC system under low-level illuminance. OECC/PSC 2019 - 24th OptoElectronics and Communications Conference/International Conference Photonics in Switching and Computing 2019, 1:2019–2021, 2019. | |
| dc.relation.references | Trang Nguyen, Minh Duc Thieu, and Yeong Min Jang. 2D-OFDM for Optical Camera Communication: Principle and Implementation. IEEE Access, 7(2):29405–29424, 2019. | |
| dc.relation.references | Duy Thong Nguyen, Yoonsung Chae, Sangcheol Park, and Youngil Park. A Hybrid Optical Wireless System for Simultaneous Service of VLC and OCC. International Conference on Ubiquitous and Future Networks, ICUFN, 2018-July:571–574, 2018. | |
| dc.relation.references | Xiaolong Zheng, Chuanchuan Yang, Hong Kou, and Ziyu Wang. A new VLC localization system with the assistance of RGB-D camera. Proceedings of 5th IEEE Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services, UPINLBS 2018, pages 1–5, 2018. | |
| dc.relation.references | A. M. Ramirez-Aguilera, J. M. Luna-Rivera, V. Guerra, J. Rabadan, R. Perez-Jimenez, and F. J. Lopez-Hernandez. A Review of Indoor Channel Modeling Techniques for Visible Light Communications. Proceedings - 2018 10th IEEE Latin-American Conference on Communications, LATINCOM 2018, pages 1–6, 2019. | |
| dc.relation.references | Xicong Li, Navid Bani Hassan, Andrew Burton, Zabih Ghassemlooy, Stanislav Zvanovec, and Rafael Perez-Jimenez. A simplified model for the rolling shutter based camera in op- tical camera communications. ConTEL 2019 - 15th International Conference on Telecom- munications, Proceedings, pages 1–5, 2019. | |
| dc.relation.references | Nguyen Manh Tuan, Truong Viet Phuong, Trong Hop Do, and Ngo Tan Vu Khanh. An highly realistic optical camera communication simulation framework for Internet of Things applications. Proceedings - 2021 21st ACIS International Semi-Virtual Winter Confer- ence on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD-Winter 2021, 7(4):240–242, 2021. | |
| dc.relation.references | Alexis Duque, Razvan Stanica, Herve Rivano, and Adrien Desportes. Analytical and simu- lation tools for optical camera communications. Computer Communications, 160(May):52– 62, 2020. | |
| dc.relation.references | Alexis Duque, Razvan Stanica, Hervé Rivano, and Adrien Desportes. CamComSim : a LED-to-Camera Communication CamComSim : a LED-to-Camera Communication Sim- ulator. 2017. | |
| dc.relation.references | Shih Hao Chen and Chi Wai Chow. Color-Shift Keying and Code-Division Multiple-Access Transmission for RGB-LED Visible Light Communications Using Mobile Phone Camera. IEEE Photonics Journal, 6(6), 2014. | |
| dc.relation.references | Hao-Wei Chen, Shang-Sheng Wen, Xing-Lin Wang, Ming-Zhu Liang, Mu-Yun Li, Qing- Chang Li, and Yun Liu. Color-shift keying for optical camera communication using a rolling shutter mode. IEEE Photonics Journal, 11(2):1–8, 2019. | |
| dc.relation.references | Hao Wei Chen, Shang Sheng Wen, Xing Lin Wang, Ming Zhu Liang, Mu Yun Li, Qing Chang Li, and Yun Liu. Color-Shift Keying for Optical Camera Communication Using a Rolling Shutter Mode. IEEE Photonics Journal, 11(2):1–8, 2019. | |
| dc.relation.references | Byung Wook Kim, Jong Ho Yoo, and Sung Yoon Jung. Design of streaming data trans- mission using rolling shutter camera-based optical camera communications. Electronics (Switzerland), 9(10):1–9, 2020. | |
| dc.relation.references | Patricia Chavez-Burbano, Victor Guerra, Jose Rabadan, Dionisio Rodrı́guez-Esparragón, and Rafael Perez-Jimenez. Experimental characterization of close-emitter interference in an optical camera communication system. Sensors (Switzerland), 17(7):1–18, 2017. | |
| dc.relation.references | Shivani Rajendra Teli, Klara Eollosova, Stanislav Zvanovec, Zabih Ghassemlooy, and Matej Komanec. Experimental Characterization of Fiber Optic Lighting - Optical Camera Com- munications. IEEE International Symposium on Personal, Indoor and Mobile Radio Com- munications, PIMRC, 2021-Septe:1–5, 2021. | |
| dc.relation.references | Jenn Kaie Lain, Zheng Dao Yang, and Ting Wei Xu. Experimental DCO-OFDM optical camera communication systems with a commercial smartphone camera. IEEE Photonics Journal, 11(6):1, 2019. | |
| dc.relation.references | Bangjiang Lin, Xuan Tang, Yiwei Li, Min Zhang, Chun Lin, Zabih Ghassemlooy, Yunfeng Wei, Yi Wu, and Hui Li. Experimental Demonstration of Optical Camera Communications Based Indoor Visible Light Positioning System. 1(1):3–5, 2017. | |
| dc.relation.references | Pengfei Luo, Zabih Ghassemlooy, Stanislav Zvanovec, Shulan Feng, Philipp Zhang, and Min Zhang. Experimental demonstration of undersampled color-shift keying optical camera communications. 2017 IEEE/CIC International Conference on Communications in China, ICCC Workshops 2017, 2018-Janua:1–6, 2018. | |
| dc.relation.references | Yosua Prawira. Flocker FRee VLC System with Automatic Code Resynchronization using Low Frame Camera. SSRN Electronic Journal, 5(564):1–19, 2019. | |
| dc.relation.references | Md Shahjalal, Moh Khalid Hasan, Mostafa Zaman Chowdhury, and Yeong Min Jang. Future Optical Camera Communication Based Applications and Opportunities for 5G and beyond. 1st International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2019, pages 492–495, 2019. | |
| dc.relation.references | Alberto Pepe, Zixian Wei, and H. Y. Fu. Heuristic, machine learning approach to 8-CSK decision regions in RGB-LED visible light communication. OSA Continuum, 3(3):473, 2020. | |
| dc.relation.references | Pengfei Hu, Parth H. Pathak, Huanle Zhang, Zhicheng Yang, and Prasant Mohapatra. High Speed LED-to-Camera Communication using Color Shift Keying with Flicker Mitigation. IEEE Transactions on Mobile Computing, 19(7):1603–1617, 2020. | |
| dc.relation.references | Trang Nguyen, Chang Hyun Hong, Nam Tuan Le, and Yeong Min Jang. High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera. In- ternational Conference on Ubiquitous and Future Networks, ICUFN, 2015-Augus:214–219, 2015. | |
| dc.relation.references | Takaya Yamazato, Isamu Takai, Hiraku Okada, Toshiaki Fujii, Tomohiro Yendo, Shintaro Arai, Michinori Andoh, Tomohisa Harada, Keita Yasutomi, Keiichiro Kagawa, and Shoji Kawahito. Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 52(7):88–97, 2014. | |
| dc.relation.references | Zequn Chen, Runji Lin, Haihan Duan, Yanru Chen, Yanbing Yang, Rengmao Wu, and Liangyin Chen. Increasing the data rate for reflected optical camera communication using uniform LED light. IEEE INFOCOM 2020 - IEEE Conference on Computer Communi- cations Workshops, INFOCOM WKSHPS 2020, pages 1274–1275, 2020. | |
| dc.relation.references | Yanqun Tang, Siyu Tao, Wei Li, Zhengyu Zhu, and Zhiguo Shi. Indoor Visible Light Communication Networks for Camera-Based Mobile Sensing. In Encyclopedia of Wireless Networks, pages 1–7. Springer International Publishing, 2019. | |
| dc.relation.references | Isamu Takai, Shinya Ito, Keita Yasutomi, Keiichiro Kagawa, Michinori Andoh, and Shoji Kawahito. LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics Journal, 5(5):6801418, 2013. | |
| dc.relation.references | Yamato Noma and Wataru Chujo. Line-of-sight distance extension of rolling-shutter OCC using dual-camera spatial luminance distribution. 2020 IEEE Globecom Workshops, GC Wkshps 2020 - Proceedings, 2020. | |
| dc.relation.references | Md Habibur Rahman, Mohammad Abrar Shakil Sejan, and Wan Young Chung. Long- Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Mod- ulation Technique. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12616 LNCS:53–62, 2021. | |
| dc.relation.references | Robert D. Fiete and Bradley D. Paul. Modeling the optical transfer function in the imaging chain. Optical Engineering, 53(08):1, 2014. | |
| dc.relation.references | Saadallah Kassir, Safa Halawi, Elias Yaacoub, Zaher Dawy, and Amine Bermak. Novel Extended Circular Color Shift Keying Constellation in VLC Systems with Camera-based Receivers. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2019-Septe:1–6, 2019. | |
| dc.relation.references | Safa Halawi, Elias Yaacoub, Saadallah Kassir, and Zaher Dawy. Performance Analysis of Circular Color Shift Keying in VLC Systems with Camera-Based Receivers. IEEE Transactions on Communications, 67(6):4252–4266, 2019. | |
| dc.relation.references | Shivani Rajendra Teli, Stanislav Zvanovec, and Zabih Ghassemlooy. Performance eval- uation of neural network assisted motion detection schemes implemented within indoor optical camera based communications. Optics Express, 27(17):24082, 2019. | |
| dc.relation.references | H Chen, X Z Lai, P Chen, Y T Liu, M Y Yu, Z H Liu, and Z J Zhu. Quadrichromatic LED based mobile phone camera visible light communication. Optics Express, 26(13):17132, 2018. | |
| dc.relation.references | Md Shareef Ifthekhar, M. Arif Hossain, C. Hyun Hong, and Yeong Min Jang. Radio- metric and geometric camera model for Optical Camera Communications. International Conference on Ubiquitous and Future Networks, ICUFN, 2015-Augus(1):53–57, 2015. | |
| dc.relation.references | V. Matus, V. Guerra, C. Jurado-Verdu, J. Rabadan, and R. Perez-Jimenez. Simulation of rolling shutter acquisition in optical camera communications. ConTEL 2019 - 15th International Conference on Telecommunications, Proceedings, pages 1–5, 2019. | |
| dc.relation.references | Shun Hsiang Yu, Oliver Shih, Hsin Mu Tsai, and Richard D. Roberts. Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 51(12):50–59, 2013. | |
| dc.relation.references | Shivani Rajendra Teli, Vicente Matus, Stanislav Zvanovec, Rafael Perez-Jimenez, Stanislav Vitek, and Zabih Ghassemlooy. The First Study of MIMO Scheme within Rolling-shutter Based Optical Camera Communications. 2020 12th International Symposium on Com- munication Systems, Networks and Digital Signal Processing, CSNDSP 2020, pages 0–4, 2020. | |
| dc.relation.references | Huy Nguyen, Minh Duc Thieu, Tung Lam Pham, Hoan Nguyen, and Yeong Min Jang. The Impact of Camera Parameters on Optical Camera Communication. 1st International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2019, pages 526–529, 2019. | |
| dc.relation.references | Y. Q. Xu, J. Hua, Z. Gong, W. Zhao, Z. Q. Zhang, C. Y. Xie, Z. T. Chen, and J. F. Chen. Visible light communication using dual camera on one smartphone. Optics Express, 26(26):34609, 2018. | |
| dc.relation.references | Duy Thong Nguyen, Sangcheol Park, Yoonsung Chae, and Youngil Park. VLC/OCC Hybrid Optical Wireless Systems for Versatile Indoor Applications. IEEE Access, 7(February):22371–22376, 2019. | |
| dc.relation.references | Navid Bani Hassan, Zabih Ghassemlooy, Stanislav Zvanovec, Pengfei Luo, and Hoa Le- Minh. Non-line-of-sight 2 × N indoor optical camera communications. Applied Optics, 57(7):B144, 2018. | |
| dc.relation.references | Yun-Shen Lin, Chi-Wai Chow, Yang Liu, Yun-Han Chang, Kun-Hsien Lin, Yi-Chang Wang, and Yi-Yuan Chen. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications. Optics Express, 29(20):31680, 2021. | |
| dc.relation.references | Patricia Chavez-Burbano, Jose Rabadan, Victor Guerra, and Rafael Perez-Jimenez. Flickering-free distance-independent modulation scheme for occ. Electronics (Switzerland), 10(9):1–26, 2021. | |
| dc.relation.references | Ke-Ling Hsu, Yu-Chun Wu, Yu-Cheng Chuang, Chi-Wai Chow, Yang Liu, Xin-Lan Liao, Kun-Hsien Lin, and Yi-Yuan Chen. CMOS camera based visible light communication (VLC) using grayscale value distribution and machine learning algorithm. Optics Express, 28(2):2427, 2020. | |
| dc.relation.references | Antonio Mederos-Barrera, Cristo Jurado-Verdu, Victor Guerra, Jose Rabadan, and Rafael Perez-Jimenez. Discovering and Tracking-based Detection System for Optical Camera Communication. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2020, pages 5–10, 2020. | |
| dc.relation.references | Liqiong Liu, Rui Deng, and Lian-Kuan Chen. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation. Optics Express, 27(23):33840, 2019. | |
| dc.relation.references | Moh Khalid Hasan, Mostafa Zaman Chowdhury, Md Shahjalal, Van Thang Nguyen, and Yeong Min Jang. Performance analysis and improvement of optical camera communication. Applied Sciences (Switzerland), 8(12), 2018. | |
| dc.relation.references | Willy Anugrah Cahyadi, Yeon Ho Chung, Zabih Ghassemlooy, and Navid Bani Hassan. Optical camera communications: Principles, modulations, potential and challenges. Electronics (Switzerland), 9(9):1–45, 2020. | |
| dc.relation.references | Ashwin Ashok, Marco Gruteser, Narayan Mandayam, and Kristin Dana. Characterizing multiplexing and diversity in visual MIMO. 2011 45th Annual Conference on Information Sciences and Systems, CISS 2011, pages 1–6, 2011. | |
| dc.relation.references | Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cam- bridge university press, 2003. | |
| dc.relation.references | Jin Shi, Jing He, Zhongwei Jiang, and Gee Kung Chang. Modulation Format Shift- ing Scheme for Optical Camera Communication. IEEE Photonics Technology Letters, 32(18):1167–1170, 2020. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
| dc.subject.proposal | Visible light communication | eng |
| dc.subject.proposal | Optical camera communication | eng |
| dc.subject.proposal | Indoor channel modeling | eng |
| dc.subject.proposal | Color shift keying | eng |
| dc.subject.proposal | Optimization | eng |
| dc.subject.proposal | Indoor chanel modeling | eng |
| dc.subject.proposal | Rolling shutter | eng |
| dc.subject.proposal | Comunicación por luz visible | spa |
| dc.subject.proposal | Comunicación óptica por Cámara | spa |
| dc.subject.proposal | Modulación por desplazamiento de color | spa |
| dc.subject.proposal | Modelado del canal interior | spa |
| dc.subject.proposal | Optimización | spa |
| dc.subject.proposal | Obturador rodante | spa |
| dc.subject.unesco | Transmisión de datos | spa |
| dc.subject.unesco | Data transmission | eng |
| dc.subject.unesco | Onda electromagnética | spa |
| dc.subject.unesco | Electromagnetic waves | eng |
| dc.subject.unesco | Actividad científica | spa |
| dc.subject.unesco | Scientific activities | eng |
| dc.title | Study of indoor optical channel models for color shift keying-based visible light communications | eng |
| dc.title.translated | Estudio de modelos de canales ópticos en interiores para comunicaciones por uz visible basadas en modulación por desplazamiento de color | spa |
| dc.type | Trabajo de grado - Doctorado | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Investigadores | spa |
| dcterms.audience.professionaldevelopment | Público general | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Study of Indoor Optical Channel Models for Color Shift Keying-Based Visible Light Communications.pdf
- Tamaño:
- 12.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

