Bioconversión de la torta de palmiste con el hongo Pleurotus ostreatus : efectos en la alimentación de rumiantes y las emisiones de metano entérico

dc.contributor.advisorBarahona Rosales, Rolando
dc.contributor.advisorMojica Rodríguez, José Edwin
dc.contributor.authorIbarra Rondón, Aldo Jesús
dc.contributor.educationalvalidatorFragoso Castilla Pedro José
dc.contributor.educationalvalidatorDurán Sequeda Dinary Eloisa
dc.contributor.orcidIbarra Rondón, Aldo Jesús [0000-000299374488]
dc.contributor.orcidBarahona Rosales, Rolando [0000-0002-4246-7835]
dc.contributor.orcidMojica Rodríguez, José Edwin [0000-0001-7751-8631]
dc.date.accessioned2025-09-02T14:45:02Z
dc.date.available2025-09-02T14:45:02Z
dc.date.issued2025-09-01
dc.description.abstractLa bioconversión de subproductos agroindustriales lignocelulósicos, mediante el uso de Pleurotus ostreatus ha sido considerada como un enfoque de bajo costo para mejorar la calidad nutricional de estos materiales con fines a la alimentación de rumiantes. El objetivo de esta tesis fue evaluar el efecto de la bioconversión de la torta de palmiste (TP, o PKC por sus siglas en inglés) mediante el hongo Pleurotus ostreatus (Jacq.) P. Kumm sobre la nutrición de rumiantes y la reducción de las emisiones de metano entérico. Para lo cual, se llevaron a cabo cuatro experimentos in vitro (EIV) y un ensayo de campo. En el primer EIV, se llevó a cabo una fermentación en estado sólido durante trece días de 3 subproductos: torta de palmiste, cuesco y fibra para identificar la biomasa lignocelulosa donde se aumenta la actividad enzimática lacasa. El segundo EIV consistió en una fermentación líquida y sólida para optimizar a través de un diseño central compuesto y un diseño de vértices extremos el proceso de bioconversión de la torta de palmiste para determinar la fuente de nitrógeno inorgánico y la relación carbono:nitrógeno (C:N) que maximiza la producción de biomasa y la expresión de genes de enzimas lignocelulolíticas en P. ostreatus creciendo en TP. Para el tercer EIV, se escaló el proceso fermentativo en estado sólido, ajustando la relación C:N para determinar la composición química y perfil de ácidos grasos de la TPFPo. En el cuarto EIV, se evaluó a través de la técnica de gases, el efecto de la inclusión de la TPFPo sobre la composición química, la degradabilidad in vitro de componentes fibrosos y los principales parámetros de fermentación ruminal in vitro, incluida la producción de metano (CH4), en dietas de forrajes tropicales. Para la etapa de campo, se llevó a cabo un experimento con vacas mestizas multíparas en lactancia, asignadas aleatoriamente a cuatro tratamientos experimentales que consistieron en: animales en pastoreo sin suplementación (CON); animales en pastoreo más suplementación con 1,0 kg MS/día de torta de palmiste no fermentada (ATPNF); animales en pastoreo más suplementación con 1,0 kg MS/día de torta de palmiste fermentada con P. ostreatus (ATPFPo1), y animales en pastoreo más suplementación con 1.5 kg MS/día de torta de palmiste fermentada con P. ostreatus (ATPFPo2) con el fin de determinar el nivel óptimo de suplementación con TPFPo que maximiza en consumo de materia seca en la pradera (CMSp), mejora la producción y modifica la calidad composicional de la leche en términos de perfil lipídico, a la vez que reduce las emisiones de metano entérico. Los resultados mostraron que, enriquecer la TP con urea, ajustando la relación C:N a 34:1, para la fermentación con P. ostreatus, optimiza la producción de biomasa fúngica, estimula la expresión de genes relacionados con la síntesis de enzimas lignocelulolíticas, aumenta el contenido de proteína cruda (PC), y ácidos grasos insaturados, además de reducir la proporción de fibra en detergente neutro (FDN), fibra en detergente ácido (FDA) y lignina (LIG) en el sustrato fermentado. Adicionalmente, la degradabilidad de componentes nutritivos de la dieta (PC, FDN y FDA) aumentó, y la producción de CH4 in vitro, disminuyó hasta en un 30% en las dietas forrajeras con la inclusión de TPFPo. En el ensayo de campo se encontró que, ofrecer 0,86 kg/vaca/día de TPFPo, que correspondió a un nivel de inclusión del 9,8% del CMS total, resultó en un aumento en la producción de leche vendible y en una mayor concentración de ácidos grasos poliinsaturados en la grasa láctea, además de contribuir hasta en un 30% en la reducción de las emisiones de metano entérico en los bovinos. En conclusión, la optimización del proceso de bioconversión de la torta de palmiste con Pleurotus ostreatus constituye una estrategia innovadora para la producción de suplementos enriquecidos, con calidad nutritiva y biológica mejorada, destinados a vacas doble propósito en sistemas de pastoreo tropical, con el potencial de mejorar la producción y calidad composicional de la leche, además de reducir las emisiones de CH4 entérico. (Tomado de la fuente)spa
dc.description.abstractThe bioconversion of lignocellulosic agro-industrial by-products using Pleurotus ostreatus has been considered a low-cost approach to improve the nutritional quality of these materials for ruminant feeding. The objective of this thesis was to evaluate the effect of palm kernel cake (PKC) bioconversion by the fungus Pleurotus ostreatus (Jacq.) P. Kumm on ruminant nutrition and the reduction of enteric methane emissions. To this end, four in vitro experiments (EIV) and one field trial were conducted. In the first IVE, a solid-state fermentation of three by-products—palm kernel cake, palm kernel shell, and fiber—was carried out for thirteen days to identify the lignocellulosic biomass with the highest increase in laccase enzymatic activity. The second experimental phase involved liquid and solid-state fermentation to optimize the bioconversion process of palm kernel cake using a central composite design and an extreme vertices design, in order to determine the inorganic nitrogen source and the carbon-to-nitrogen (C:N) ratio that maximize biomass production and the expression of lignocellulolytic enzyme genes in P. ostreatus growing on PKC. For the third EIV, a solid-state fermentation process was scaled up, adjusting the C:N ratio to determine the chemical composition and fatty acid profile of TPFPo. In the fourth EIV, using the gas production technique, the effect of TPFPo inclusion was evaluated on chemical composition, in vitro degradability of fibrous components, and key in vitro ruminal fermentation parameters, including methane (CH₄) production, in tropical forage-based diets. For the field trial, an experiment was conducted with multiparous lactating crossbred cows, randomly assigned to four experimental treatments: animals grazing without supplementation (CON); animals grazing plus supplementation with 1.0 kg DM/day of non-fermented palm kernel cake (ATPNF); animals grazing plus supplementation with 1.0 kg DM/day of PKC fermented with P. ostreatus (ATPFPo1); and animals grazing plus supplementation with 1.5 kg DM/day of PKC fermented with P. ostreatus (ATPFPo2), to determine the optimal level of TPFPo supplementation that maximizes pasture dry matter intake (pDMI), improves milk yield, modifies milk compositional quality in terms of lipid profile, and reduces enteric methane emissions. The results showed that enriching PKC with urea, ratio adjusted to 34:1, for fermentation with P. ostreatus optimizes fungal biomass production, stimulates the expression of genes related to lignocellulolytic enzyme synthesis, increases crude protein (CP) content and unsaturated fatty acids, and reduces the neutral detergent fiber (NDF), acid detergent fiber (ADF), and lignin (LIG) contents in the fermented substrate. Additionally, the degradability of nutritional components (CP, NDF, and ADF) increased, and in vitro CH₄ production decreased by up to 30% in forage-based diets supplemented with TPFPo. In the field trial, providing 0.86 kg/cow/day of TPFPo, corresponding to 9.8% of total DM intake, resulted in an increase in marketable milk yield and a higher concentration of polyunsaturated fatty acids in milk fat, while also contributing to a reduction of up to 30% in enteric methane emissions from cattle. In conclusion, optimizing the bioconversion process of palm kernel cake with Pleurotus ostreatus represents an innovative strategy for producing enriched supplements with improved nutritional and biological quality for dual-purpose cows under tropical grazing systems, with the potential to enhance milk yield and compositional quality, while reducing enteric CH₄ emissions.eng
dc.description.curricularareaProducción Agraria Sostenible.Sede Medellín
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Agrarias
dc.description.researchareaNutrición Animal
dc.format.extent239 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88531
dc.language.isospa
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.relation.indexedLaReferencia
dc.relation.referencesIbarra-Rondón, A. J., Fragoso-Castilla, P. J., Giraldo-Valderrama, L. A., Mojica-Rodríguez, J. E. (2022). Effect of tropical forage species in silvopastoral arrangements on methane production and in vitro fermentation parameters in a RUSITEC system. Revista Colombiana de Ciencias Pecuarias, 35, 217–232. https://doi.org/10.17533/udea.rccp.v35n4a02
dc.relation.referencesMojica-Rodríguez, J. E., Castro-Rincón, E., Carulla-Fornaguera, J. E., & Lascano-Aguilar, C. E. (2019). Intensidad de pastoreo sobre perfil lipídico en leche bovina en el trópico seco colombiano. Agronomía Mesoamericana, 30, 783–802. https://doi.org/10.15517/am.v30i3.36312
dc.relation.referencesHristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., et al. (2013). SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci, 91, 5045–5069. https://doi.org/10.2527/jas.2013-6583
dc.relation.referencesGerssen-Gondelach, S. J., Lauwerijssen, R. B. G., Havlík, P., Herrero, M., Valin, H., Faaij, A. P. C., & Wicke, B. (2017). Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agriculture, Ecosystems and Environment, 240, 135-147. https://doi.org/10.1016/j.agee.2017.02.012
dc.relation.referencesHerrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., Wirsenius, S., Hristov, A. N., Gerber, P., Gill, M., Butterbach-Bahl, K., Valin, H., et al. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang, 6, 452–461. https://doi.org/10.1038/nclimate2925
dc.relation.referencesSharifi, M., Bashtani, M., Naserian, A. A., & Farhangfar, H. (2017). The Effect of increasing levels of date palm (Phoenix dactylifera L.) seed on the performance, ruminal fermentation, antioxidant status and milk fatty acid profile of Saanen dairy goats. J Anim Physiol Anim Nutr (Berl), 101, e332–e341. https://doi.org/10.1111/jpn.12609
dc.relation.referencesFebrina, D., Jamarun, N., Zain, M., & Khasrad. (2017). Digestibility of goat rations containing fermented oil palm fronds by Phanerochaete chrysosporium supplemented with phosphorus, sulfur and magnesium. Journal of Biological Sciences, 17, 298–304. https://doi.org/10.3923/jbs.2017.298.304
dc.relation.referencesGirón, J. E. P., Restrepo, M. L. P., & Fornaguera, J. E. C. (2016). Supplementation with corn oil and palm kernel oil to grazing cows: Ruminal fermentation, milk yield, and fatty acid profile. Revista Brasileira de Zootecnia, 45, 693–703. https://doi.org/10.1590/S1806-92902016001100008
dc.relation.referencesSalt, M. P. F., da Silva, F. F., de Carvalho, G. G. P., Santos, L. V., de Souza, S. O., Vieira, V. A., Paixão, T. R., Silva, J. W. D., et al. (2022). Inclusion of palm kernel cake in the supplement reduces nutrient digestibility but does not interfere with the performance of steers finished on tropical pasture. Trop Anim Health Prod, 54, 406. https://doi.org/10.1007/s11250-022-03407-0
dc.relation.referencesJamarun, N., Pazla, R., Zain, M., & Arief. A. (2020). Milk quality of Etawa crossbred dairy goat fed combination of fermented oil palm fronds, Tithonia (Tithonia diversifolia) and Elephant Grass (Pennisetum Purpureum). Journal of Physics: Conference Series, 1469, 012004. https://doi.org/10.1088/1742-6596/1469/1/012004
dc.relation.referencesDewi, S. P., Ridla, M., Laconi, E. B., & Jayanegara, A. (2018). Increasing the quality of agricultural and plantation residues using combination of Fiber Cracking Technology and urea for ruminant feeds. Tropical Animal Science Journal, 41, 137–146. https://doi.org/10.5398/tasj.2018.41.2.137
dc.relation.referencesFebrina, D., Jamarun, N., Zain, M., & Khasrad. (2016). Effects of Calcium and Manganese (Mn) suplementation During Oil Palm Frond Fermentation with Phanerochaete chrysosporium on in vitro digestibility and Rumen Fluid Characteristica. Pakistan Journal of Nutrition, 352–358. https://doi.org/10.3923/pjn.2016.352.358
dc.relation.referencesYolande, M. E., Germaine, M. J. E., Abraham, N. T., Germaine, Y., Marcellin, M. L., Aime, B. B. D., Leroy, S. K. S. (2023). Impact of substrate methionine content on lovastatin potentiation and morphological parameters of Pleurotus ostreatus. Sci Afr, 20, e01621. https://doi.org/10.1016/j.sciaf.2023.e01621
dc.relation.referencesEspinosa-Negrín, A. M., López-González, L. M., & Casdelo-Gutiérrez, N. L. (2022). Pretratamientos aplicados a biomasas lignocelulósicas: una revisión de los principales métodos analíticos utilizados para su evaluación. Rev. Cubana Quím, 34, 87–110. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212022000100087
dc.relation.referencesUsmani, Z., Sharma, M., Awasthi, A. K., Lukk, T., Tuohy, M. G., Gong, L., Nguyen-Tri, P., Goddard, A. D., Bill, R. M., Nayak, S. C., & Gupta, V. K. (2021). Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization. Renewable and Sustainable Energy Reviews, 148, 111258. https://doi.org/10.1016/j.rser.2021.111258
dc.relation.referencesFitriyah, F., Aziz, M.A., Wahyuni, S., Fadila, H., Permana, I. G., Priyono., & Siswanto. (2022). Nutritional improvement of oil palm and sugarcane plantation waste by solid-state fermentation of Marasmiellus palmivorus. IOP Conference Series: Earth and Environmental Science, 974, 012121. https://doi.org/10.1088/1755-1315/974/1/012121
dc.relation.referencesKumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess, 4, 7. https://doi.org/10.1186/s40643-017-0137-9
dc.relation.referencesLee, J. W., Rodrigues, R. C. L. B., & Jeffries, T. W. (2009). Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresour Technol, 100, 6307–6311. https://doi.org/10.1016/j.biortech.2009.06.088
dc.relation.referencesRueda-Correa, M. H. J., & Correa, H. (2021). Consumo y respuesta animal de vacas doble propósito suplementadas con torta de palmiste y paja de arroz sometidos a tratamiento de deslignificación. Livestock Research for Rural Development, 33, 7. [Online]. Available: https://www.lrrd.org/lrrd33/7/3389hjcor.html
dc.relation.referencesFebrina, D., Jamarun, N., & Zain, M. (2020). Effects of Using Different Levels of Oil Palm Fronds (POPFS) Fermented with Phanerochaete chrysosporium Plus Minerals (P, S and Mg) Instead of Napier Grass on Nutrient Comsumption and the Growth Performance of Goats. Pakistan Journal of Nutrition, 16, 612-617. https://doi.org/10.3923/pjn.2017.612.617
dc.relation.referencesNuraini, A., Djulardi, A., & Trisna. (2017). Palm oil sludge fermented by using lignocellulolytic fungi as poultry diet. Int J Poult Sci, 16, 6–10. https://doi.org/10.3923/ijps.2017.6.10
dc.relation.referencesAzzahra, Y. R., Toharmat, T., & Prihantoro, I. (2022). Bio-processing Plantation by-products with White Oyster Mushroom (Pleurotus ostreatus) to Improve Fermentability and Digestibility Based on Substrate Type and Fermentation Time. Buletin Peternakan, 46, 228. https://doi.org/10.21059/buletinpeternak.v46i4.74574
dc.relation.referencesAstudillo-Neira, R., Suescun-Ospina, S., Vera-Aguilera, N., Alarcon-Enos, J., & Ávila-Stagno, J. (2023). Biodegraded hay with graded addition of Pleurotus ostreatus improves dry matter disappearance and reduces methane production of diets incubated in vitro. Ital J Anim Sci, 22, 347–358. https://doi.org/10.1080/1828051X.2023.2193607
dc.relation.referencesKhonkhaeng, B., & Cherdthong, A. (2020). Improving nutritive value of purple field corn residue and rice straw by culturing with white-rot fungi. Journal of Fungi, 6, 69; https://doi.org/10.3390/jof6020069
dc.relation.referencesSufyan, A., N. Khan, A., Akbar, A., Tang, S., & Tan, Z. (2024). Scaling-up fungal pretreatment of lignocellulose biomass: Impact on nutritional value, ruminal degradability, methane production, and performance of lactating dairy cows. Livest Sci, 285, 105499. https://doi.org/10.1016/j.livsci.2024.105499
dc.relation.referencesKhonkhaeng, B., Cherdthong, A., Chantaprasarn, N., Harvatine, K.J., Foiklang, S., Chanjula, P., Wanapat, M., So, S., & Polyorach, S. (2021). Comparative effect of Volvariella volvacea-treated rice straw and purple corn stover fed at different levels on predicted methane production and milk fatty acid profiles in tropical dairy cows. Livest Sci, 251, 104626. https://doi.org/10.1016/j.livsci.2021.104626
dc.relation.referencesMoneeb, A. H. M., Aguilar‐Pérez, C. F., Ayala‐Burgos, A. J., Solorio-Sánchez, F. J., & Ku‐Vera, J. C. (2019). Effect of grazing cows in an intensive silvopastoral system with Leucaena leucocephala on Panela cheese properties: yield, composition, fatty acid profile and sensory acceptability. Animal Science Journal, 90, 1303–1312. https://doi.org/10.1111/asj.13207
dc.relation.referencesWang, X., Martin, G.B., Wen, Q., Liu, S., Li, Y., Shi, B., Guo, X., Zhao, Y., Guo, Y., & Yan, S. (2020). Palm oil protects α-linolenic acid from rumen biohydrogenation and muscle oxidation in cashmere goat kids. J Anim Sci Biotechnol, 11, 100. https://doi.org/10.1186/s40104-020-00502-w
dc.relation.referencesBernard, L., Bonnet, M., Delavaud, C., Delosière, M., Ferlay, A., Fougère, H., & Graulet, B. (2018). Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. European Journal of Lipid Science and Technology, 120, 1700039. https://doi.org/10.1002/ejlt.201700039
dc.relation.referencesKliem, K. E., & Shingfield, K. J. (2016). Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. European Journal of Lipid Science and Technology, 118, 1661–1683. https://doi.org/10.1002/ejlt.201400543
dc.relation.referencesMititelu, M., Lupuliasa, D., Neacsu, S. M., Olteanu, G., Busnatu, S.S., Mihai, A., Popovici, V., Măru, N., Boroghină, S.C., et al. (2024). Polyunsaturated Fatty Acids and Human Health: A Key to Modern Nutritional Balance in Association with Polyphenolic Compounds from Food Sources. Foods, 14, 46. https://doi.org/10.3390/foods14010046
dc.relation.referencesNguyen, Q. V., Malau-Aduli, B. S., Cavalieri, J., Nichols, P. D., & Malau-Aduli, A. E. O. (2019). Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption. Nutrients, 11, 743. https://doi.org/10.3390/nu11040743
dc.relation.referencesNaidu, Y., Siddiqui, Y., & Idris, A. S. (2020). Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. Journal of Environmental Management, 259, 110056. https://doi.org/10.1016/j.jenvman.2019.110056
dc.relation.referencesOlagunju, L. K., Isikhuemhen, O. S., Dele, P. A., Anike, F. N., Essick, B. G., Holt, N., & Anele, U. Y. (2023). Pleurotus ostreatus can significantly improve the nutritive value of lignocellulosic crop residues. Agriculture, 13, 1161. https://doi.org/10.3390/agriculture13061161
dc.relation.referencesÖstbring, K., Lager, I., Chagas, J. C. C., Ramin, M., Ahlström, C., & Hultberg, M. (2023). Use of oyster mushrooms (Pleurotus ostreatus) for increased circularity and valorization of rapeseed residues. Journal of Environmental Management, 344, 118742. https://doi.org/10.1016/j.jenvman.2023.118742
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc590 - Animales
dc.subject.lembBovinos - Alimentación
dc.subject.lembAcidos grasos como alimento para animales
dc.subject.lembHongos como alimento para animales
dc.subject.lembMetano
dc.subject.lembAceite de palmiste
dc.subject.proposalSuplementación de bovinosspa
dc.subject.proposalBovine supplementationeng
dc.subject.proposalSubproductos agroindustrialesspa
dc.subject.proposalAgro-industrial by-productseng
dc.subject.proposalÁcidos grasosspa
dc.subject.proposalFatty acidseng
dc.subject.proposalLechespa
dc.subject.proposalMilkeng
dc.subject.proposalHongos de pudrición blancaspa
dc.subject.proposalWhite-rot funguseng
dc.subject.proposalEnzimas lignocelulolíticasspa
dc.subject.proposalLignocellulolytic enzymeseng
dc.subject.proposalMetanospa
dc.subject.proposalMethaneeng
dc.subject.proposalBasidiomycotaspa
dc.subject.proposalBasidiomycotaeng
dc.titleBioconversión de la torta de palmiste con el hongo Pleurotus ostreatus : efectos en la alimentación de rumiantes y las emisiones de metano entéricospa
dc.title.translatedBioconversion of palm kernel cake with the fungus Pleurotus ostreatus : effects on ruminant feeding and enteric methane emissionseng
dc.typeTrabajo de grado - Doctorado
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Doctorado en Ciencias Agrarias
Tamaño:
3.64 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 5 de 6
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Cap. 1 - U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.pdf
Tamaño:
319.73 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Cap. 2 - U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.pdf
Tamaño:
307.16 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Cap. 3 - U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.pdf
Tamaño:
326.12 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Cap. 4 - U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.pdf
Tamaño:
336.09 KB
Formato:
Adobe Portable Document Format
Descripción: